Universal Coalgebra

Enric Cosme Llópez

Master research supervised by Ramon Jansana

Barcelona, February 2012

UNIVERSITAT DE BARCELONA

Contents

0. Introduction

- 1. Coalgebras for an endofunctor
- 2. Coalgebra Homomorphisms
- 3. Bisimulations
- 4. Subcoalgebras
- 5. Quotients
- 6. Isomorphism Theorems
- 7. Simple Coalgebras
- 8. Final Coalgebras

0. Introduction

Universal Coalgebra is a theory of Systems

Universal Coalgebra is a theory of Systems

It suffices to:

- Model systems.
- Construct morphisms between systems.
- Detect behavioural equivalent states.
- Simplify systems.
- Define new concepts and operators via coinduction.

1. Coalgebra

Definition

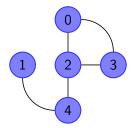
Given a category **X**, called the *base category*, and an endofunctor $F : \mathbf{X} \to \mathbf{X}$, a *F-coalgebra* (or *F-system*) consists of a pair (X, α) , where X is an object of **X** and $\alpha : X \to FX$ an arrow in **X**. We call X the *base* and α the *structure map* of the coalgebra.

1. Example: Graphs

Definition

A graph is an ordered pair G = (V, E) comprising a set V of vertices together with a set $E \subseteq [V]^2$ called edges.

Example



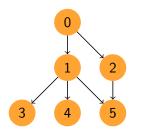
$$V = 5 \\ E = \{\{0,2\}, \{0,3\}, \{1,4\}, \{2,3\}, \{2,4\}\}$$

1. Example: Posets

Definition

A partially ordered set (or poset) is a pair $\mathbb{P} = (P, \leq)$ where P is a set and \leq is an order over P.

Example

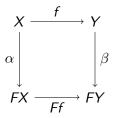


To each $p \in P$ we can associate two subsets of P:

lts <i>downset</i>	$\downarrow p = \{q \in P :$	$q \leq p$
lts <i>upset</i>	$\uparrow p = \{q \in P :$	$p \leq q$

Definition

Let **X** be any category. Let *F* be an endofunctor over **X**. Let (X, α) and (Y, β) be two *F*-coalgebras. A *F*-coalgebra homomorphism, $f : (X, \alpha) \to (Y, \beta)$ is an arrow $f : X \to Y$ in **X** such that the following diagram commutes:



2. Example: \mathcal{P} -Coalgebra Homomorphisms **B**

Remark

Given a \mathcal{P} -coalgebra (X, α) , we can write it as (X, R_{α}) with $R_{\alpha} \subseteq X \times X$ and $x_1 R_{\alpha} x_2 \Leftrightarrow x_2 \in \alpha(x_1)$. Notice that R_{α} can also play the role of α by setting $R_{\alpha} x_1 = \{x_2 \in X : x_1 R_{\alpha} x_2\} = \alpha(x_1)$.

Proposition

Let (X, R_{α}) and (Y, R_{β}) be two \mathcal{P} -coalgebras. A function $f : X \to Y$ is a \mathcal{P} -coalgebra homomorphism if and only if:

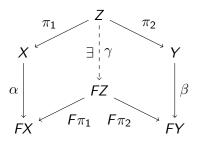
- $x_1 R_{\alpha} x_2 \implies f(x_1) R_{\beta} f(x_2)$
- $f(x_1)R_{\beta}y \implies \exists x_2 \in X \ (x_1R_{\alpha}x_2 \text{ and } f(x_2)=y)$

UNIVERSITAT DE BARCELONA

3. Bisimulation

Definition

Let *F* be any endofunctor over **Set**. Let (X, α) , (Y, β) be two *F*-coalgebras. A subset $Z \subseteq X \times Y$ of the cartesian product of *X* and *Y* is called a *F*-bisimulation if there exists a structure map $\gamma: Z \to FZ$ such that the projections from *Z* to *X* and *Y* are *F*-coalgebra homomorphisms.



3. Bisimulation

Definition

- We will denote by B(X, Y) to the set of all bisimulations between X and Y.
- If (X, α) = (Y, β), then (Z, γ) is called a bisimulation on (X, α). We will write B(X) instead of B(X, X). A *bisimulation equivalence* is a bisimulation that is also an equivalence relation.
- Two states x ∈ X, y ∈ Y are called *bisimilar* if there exists a bisimulation Z with ⟨x, y⟩ ∈ Z.

Example

The empty set, $\emptyset \subseteq X \times Y$, is always a bisimulation. $\emptyset \in B(X, Y)$.

Properties

Let (X, α) , (Y, β) and (W, δ) be three *F*-coalgebras.

• $f: X \to Y$ is a *F*-coalgebra homomorphism iff $G(f) \in B(X, Y)$.

$$G(f) = \{ \langle x, f(x) \rangle : x \in X \}$$

• If $Z \in B(X, Y)$ then $Z^{-1} \in B(Y, X)$.

$$Z^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in Z \}$$

Theorem

Let (X, α) and (Y, β) be two *F*-coalgebras and let $\{Z_j : j \in J\}$ be a family of B(X, Y). Then the union of the family is also a bisimulation between X and Y.

Corollary

B(X, Y) is a complete lattice for the inclusion order, with least upper bound and greatest lower bound given by:

$$\bigvee_{j \in J} Z_j = \bigcup_{j \in J} Z_j$$
$$\bigwedge_{j \in J} Z_j = \bigcup \{ Z : \ Z \in B(X, Y) \text{ and } Z \subseteq \bigcap_{j \in J} Z_j \}$$

12 of 47

Definition

Given a set of atomic propositions Prop and an arbitrary set A, the set of all *multimodal formulas* \mathcal{ML} is defined inductively by:

$$\begin{array}{ccc} p \in \mathsf{Prop} & \Rightarrow & p \in \mathcal{ML} \\ \bot \in \mathcal{ML} \\ \varphi, \psi \in \mathcal{ML} & \Rightarrow & \varphi \rightarrow \psi \in \mathcal{ML} \\ \varphi \in \mathcal{ML}, \ a \in A & \Rightarrow & \Box_{\mathsf{a}} \varphi \in \mathcal{ML} \end{array}$$

As usual, \top , \neg , \land , \lor , can be defined from \bot , \rightarrow . The modal operator \diamondsuit_a for each $a \in A$ is defined as $\neg \Box_a \neg$.

Definition

A *Kripke Model* is a triple $\mathbb{X} = (X, (R_a)_{a \in A}, V)$ consisting on a set X, a relation $R_a \subseteq X \times X$ for each $a \in A$ and a valuation $V : X \to \mathcal{P}(\mathsf{Prop})$.

Elements of X are called *states*. R_a is called the *accesibility relation* according to *a*. As usual we think of V as a mapping assigning to each possible state the set of atomics propositions holding in x.

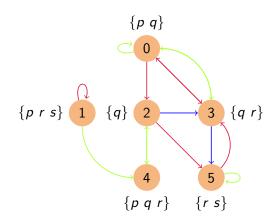
Remark

For A = 1 we reduce that construction for the case of the usual modal logic.

We think of A as a set of agents and of $\Box_a \varphi$ as 'agent a knows φ '. Atomic propositions describe the facts agents can know.

3. Example: Kripke Models

Example



15 of 47

Definition

Given a Kripke Model $\mathbb{X} = (X, (R_a)_{a \in A}, V)$ and $x \in X$ we define:

When the model \mathbb{X} is clear from the context, we will write $x \models \varphi$ instead of $(\mathbb{X}, x) \models \varphi$. We say that φ holds in a model \mathbb{X} , written $\mathbb{X} \models \varphi$ if and only if $\forall x \in X \ x \models \varphi$. Finally, φ is *valid*, written $\models \varphi$ if and only if φ holds in all models.

3. Example: Kripke Models

Theorem

Given two Kripke Models $\mathbb{X} = (X, (R_a)_{a \in A}, V)$, $\mathbb{X}' = (X', (R'_a)_{a \in A}, V')$ and $x \in X$ and $x' \in X'$.

x, x' are bisimilar \Rightarrow for all $\varphi \in \mathcal{ML} (x \models \varphi \Leftrightarrow x' \models \varphi)$

Theorem

Given two Kripke Models $\mathbb{X} = (X, (R_a)_{a \in A}, V)$, $\mathbb{X}' = (X', (R'_a)_{a \in A}, V')$ and $x \in X$ and $x' \in X'$.

x, x' are bisimilar \Rightarrow for all $\varphi \in \mathcal{ML} (x \models \varphi \Leftrightarrow x' \models \varphi)$

Theorem (Hennesy and Milner)

Let *K* be the class of *image-finite Kripke Models*, i.e., for all $\mathbb{X} = (X, (R_a)_{a \in A}, V) \in K$ and each $x \in X$, the set $\{y : xR_ay\}$ is finite for each $a \in A$. Then in the class *K*, the converse hold:

For all
$$\varphi \in \mathcal{ML} \ (x \models \varphi \Leftrightarrow x' \models \varphi) \Rightarrow x, \ x'$$
 are bisimilar

UNIVERSITAT DE BARCELONA

3. Pullbacks

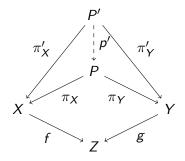
Definition

A *weak pullback* of two mappings $f : X \to Z$ and $g : Y \to Z$ in the category **Set** is a triple (P, π_X, π_Y) such that P is a set, $\pi_X : P \to X$ and $\pi_Y : P \to Y$ are such that:

- $f \pi_X = g \pi_Y$
- For each triple (P', π'_X, π'_Y) with $\pi'_X : P' \to X$ and $\pi'_Y : P' \to Y$ and $f\pi'_X = g\pi'_Y$, there is a *mediating mapping* $p' : P' \to P$ such that $\pi_X p' = \pi'_X$ and $\pi_Y p' = \pi'_Y$

Note that the mediating mapping p' need not to be unique; adding this requirement to the definition it would give the more familiar, and stronger, notion of *pullback*.

3. Pullbacks



3. Pullbacks

Definition

Let *F* be an endofunctor over **Set**. We say that it *preserves (weak) pullbacks*, written *pwp*, if for any (weak) pullback (P, π_X, π_Y) of (f, g), the triple $(FP, F\pi_X, F\pi_Y)$ is a (weak) pullback of (Ff, Fg).

3. Pullbacks

Definition

Let *F* be an endofunctor over **Set**. We say that it *preserves (weak) pullbacks*, written *pwp*, if for any (weak) pullback (P, π_X, π_Y) of (f, g), the triple $(FP, F\pi_X, F\pi_Y)$ is a (weak) pullback of (Ff, Fg).

Proposition

All endofunctors inductively defined upon:

- The Identity Functor ${\cal I}$
- The Constant Functor C
- The Coproduct Functor \amalg
- \bullet The Product Functor \times
- The Exponent Functor $(\cdot)^C$
- The Power Set Functor ${\cal P}$

preserve weak pullbacks.

Let *F* be a *pwp* endofunctor over **Set**. Let (X, α) , (Y, β) , (W, δ) be three *F*-coalgebras.

Theorem

Let Z_1 be a bisimulation between X and Y and let Z_2 be a bisimulation between Y and W. Then the composition $Z_1 \circ Z_2$ is a bisimulation between X and W.

Let *F* be a *pwp* endofunctor over **Set** and let (X, α) be a *F*-coalgebra, then:

Corollary

• $X \[0.5mm] X$ is a bisimulation equivalence on X.

Let (Y,β) be another *F*-coalgebra, let $f: X \to Y$ be a *F*-coalgebra homomorphism, then:

Corollary

• *Kerf* is a bisimulation equivalence on *X*.

Kerf = {
$$\langle x_1, x_2 \rangle$$
 : $f(x_1) = f(x_2)$ }

3. Idempotent Semirings

Definition

An *idempotent semiring*, or *dioid*, is a 5-tuple, $\mathbb{S} = (S, \oplus, \otimes, \varepsilon, e)$ where:

UNIVERSITAT DE BARCELONA

B

- (S, \oplus, ε) is a commutative monoid.
- (S, \otimes, e) is a monoid.
- \otimes distributes over \oplus , i.e., $\forall s, t, u \in S$

$$egin{aligned} & s \otimes (t \oplus u) = (s \otimes t) \oplus (s \otimes u) \ & (t \oplus u) \otimes s = (t \otimes s) \oplus (u \otimes s) \end{aligned}$$

• \oplus is idempotent, i.e., $\forall s \in S$

$$s \oplus s = s$$

Let *F* be a *pwp* endofunctor over **Set** and let (X, α) be a *F*-coalgebra, then:

Theorem

The set B(X) togheter with the union of bisimulations and the composition of bisimulations forms an idempotent semiring:

 $(B(X), \cup, \circ, \emptyset, \Delta_X)$

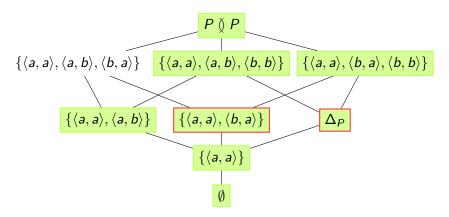
Definition

We say that $(B(X), \cup, \circ, \emptyset, \Delta_X)$ is the *associated diod* of X, and we denote it by $\pi(X, \alpha)$.

UNIVERSITAT DE BARCELONA

3. Associated Dioid

Example



3. Associated Dioid

Proposition

Let *F* be a *pwp* endofunctor over **Set**. Let (X, α) and (Y, β) be two *F*-coalgebras. Let $f : X \to Y$ be a *F*-coalgebra homomorphism. It holds:

- $Z \in B(X) \Rightarrow f(Z) \in B(Y)$
- $Z \in B(Y) \Rightarrow f^{-1}(Z) \in B(Y)$

Remark

- $f(\Delta_X) = \Delta_{f(X)}$
- For each Z bisimulation on X holds that $f(Z^{-1}) = f(Z)^{-1}$
- If f is a F-coalgebra embedding, for each Z_1, Z_2 bisimulations on X holds that $f(Z_1 \circ Z_2) = f(Z_1) \circ f(Z_2)$

Universal Coalgebra

Enric Cosme Llópez

Master research supervised by Ramon Jansana

Barcelona, February 2012

27 of 47

UNIVERSITAT DE BARCELONA

Contents

0. Introduction

- 1. Coalgebras for an endofunctor
- 2. Coalgebra Homomorphisms
- 3. Bisimulations
- 4. Subcoalgebras
- 5. Quotients
- 6. Isomorphism Theorems
- 7. Simple Coalgebras
- 8. Final Coalgebras

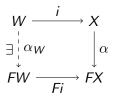
UNIVERSITAT DE BARCELONA

4. Subcoalgebras

Definition

Let *F* be an arbitrary functor over **Set**. Let (X, α) be a *F*-coalgebra. Let $W \subseteq X$ be any subset of *X*.

We say that W is a *subcoalgebra* of X, written $W \leq X$, if there exists an structure map α_W on W such that it turns the inclusion mapping $i: W \to X$ into a F-coalgebra homomorphism.



4. Basic Properties

Properties for arbitrary functors

- $W \leq X \Leftrightarrow \Delta_W \in B(X)$
- $B(W) \subseteq B(X)$

Properties for pwp functors

•
$$\Delta_W \circ B(X) \circ \Delta_W = B(W)$$

Let $f: X \to Y$ be a coalgebra homomorphism, then:

•
$$W \leq X \Rightarrow f(W) \leq Y$$

•
$$W \leq Y \Rightarrow f^{-1}(W) \leq X$$

Theorem

Let F be a *pwp* endofunctor over **Set** and let (X, α) be a F-coalgebra. The collection of all subcoalgebras of X is a complete lattice in which least upper bounds and greatest lower bounds are given by union and intersection.

Definition

Let $Y \subseteq X$ be any subset of X. We define:

The subcoalgebra generated by Y, denoted by $\langle Y \rangle$,

•
$$\langle Y \rangle = \bigcap \{ W : W \le X \text{ and } Y \subseteq W \}$$

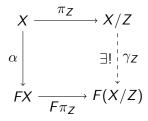
The greatest subcoalgebra contained in Y, denoted by [Y],

•
$$[Y] = \bigcup \{ W : W \le X \text{ and } W \subseteq Y \}$$

5. Quotients

Theorem

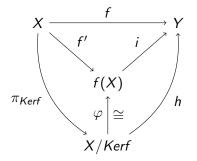
Let *F* be an arbitrary endofunctor over **Set**. Let (X, α) be a *F*-coalgebra. Let *Z* be a bisimulation equivalence on *X*. Then there exists a unique map structure $\gamma_Z : X/Z \to F(X/Z)$ that turns $\pi_Z : X \to X/Z$ (the quotient mapping), into a *F*-coalgebra homomorphism.



6. Isomorphism Theorems

1st Isomorphism Theorem

Let *F* be a *pwp* endofunctor over **Set**, let (X, α) and (Y, β) be two *F*-coalgebras and let $f : X \to Y$ be a *F*-coalgebra homomorphism. Then there is the following factorization of *f*:



Where:

- *i* is the inclusion morphism.
- *h* is a monomorphism.
- f' is a epimorphism with f(x) = f'(x) for each $x \in X$.

UNIVERSITAT DE BARCELON

B

• π_{Kerf} is the quotient morphism.

6. Isomorphism Theorems

2nd Isomorphism Theorem

Let *F* be a *pwp* endofunctor over **Set**, let (X, α) be a *F*-coalgebra, let $W \leq X$ and let *Z* be a bisimulation equivalence on *X*. Let W^Z be defined as

$$W^Z = \{x \in X : \exists w \in W(\langle x, w \rangle \in Z)\}$$

The following facts hold:

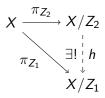
- $W^Z \leq X$.
- $Z \cap (W \times W)$ is a bisimulation equivalence on W.
- $W/(Z \cap (W \times W)) \cong W^Z/Z$.

6. Isomorphism Theorems

3rd Isomorphism Theorem

Let *F* be a *pwp* endofunctor over **Set**. Let (X, α) be a *F*-coalgebra and let Z_1 and Z_2 be two bisimulation equivalences on *X* such that $Z_2 \subseteq Z_1$. It holds:

• There is a unique *F*-coalgebra homomorphism $h: X/Z_2 \rightarrow X/Z_1$ such that $h\pi_{Z_2} = \pi_{Z_1}$. That is to say that the following diagram commutes:



6. Isomorphism Theorems

3rd Isomorphism Theorem

• Let Z_2/Z_1 denote Kerh. It holds that Z_2/Z_1 is a bisimulation equivalence on X/Z_2 and induces a *F*-coalgebra isomorphism $h': (X/Z_2)/(Z_2/Z_1) \rightarrow X/Z_1$ such that $h = h'\pi_{Z_2/Z_1}$. That is to say that the following diagram commutes:

Definition

Let *F* be a *pwp* endofunctor on **Set**. We say that a *F*-coalgebra, (X, α) , is *simple* if it has no proper quotients. That is to say, if *Z* is a bisimulation equivalence on *X*, then $X/Z \cong X$.

Theorem

The following statements are equivalent:

• (X, α) is a simple *F*-coalgebra.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.
- Let Z be a bisimulation on X, then $Z \subseteq \Delta_X$.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.
- Let Z be a bisimulation on X, then $Z \subseteq \Delta_X$.
- Δ_X is the only bisimulation equivalence on X.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.

UNIVERSITAT DE BARCELON

- Let Z be a bisimulation on X, then $Z \subseteq \Delta_X$.
- Δ_X is the only bisimulation equivalence on X.
- Let $f: Y \to X$ and $g: Y \to X$ be two *F*-coalgebra homomorphisms, then f = g.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.

UNIVERSITAT DE BARCELON

- Let Z be a bisimulation on X, then $Z \subseteq \Delta_X$.
- Δ_X is the only bisimulation equivalence on X.
- Let $f: Y \to X$ and $g: Y \to X$ be two *F*-coalgebra homomorphisms, then f = g.
- The quotient homomorphism $\pi_{\check{\mathbb{Q}}}: X \to X/(X \check{\mathbb{Q}} X)$ is a *F*-coalgebra isomorphism.

Theorem

The following statements are equivalent:

- (X, α) is a simple *F*-coalgebra.
- Every epimorphism $f: X \to Y$ is an isomorphism.

UNIVERSITAT DE BARCELON

- Let Z be a bisimulation on X, then $Z \subseteq \Delta_X$.
- Δ_X is the only bisimulation equivalence on X.
- Let $f: Y \to X$ and $g: Y \to X$ be two *F*-coalgebra homomorphisms, then f = g.
- The quotient homomorphism $\pi_{\check{\mathbb{Q}}}: X \to X/(X \check{\mathbb{Q}} X)$ is a *F*-coalgebra isomorphism.
- Any *F*-coalgebra homomorphism, $f : X \rightarrow Y$, is injective.

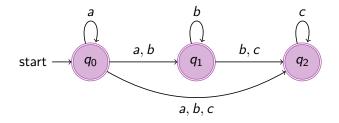
Definition

A *nondeterministic finite automaton* or *NFA* is a quintuple $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of *states*.
- Σ is a finite set of symbols, known as *alphabet*. The elements of Σ are called *letters*.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ is a partial function named *transition function*.
- $q_0 \in Q$ is the *initial* state.
- $F \subseteq Q$ is the set of *final* states.

Example

Let $\mathbb{M} = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0, q_1, q_2\})$ be a NFA with the corresponding transition diagram given by:



Definition

In order to define the behaviour of a NFA on a string it is necessary to extend the transition function to a function acting on states and strings. Therefore, we define the *extended transition function* $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ in the following way:

• $\forall q \in Q, x \in \Sigma^{\star}, a \in \Sigma$:

•
$$\hat{\delta}(q,\lambda) = \{q\}$$

•
$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Item 2. means that a NFA can not change its state until it gets a symbol; The 3rd item states the recursive definition of $\hat{\delta}$ on non-empty strings.

Definition

Let $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ be a NFA, and let $x \in \Sigma^*$ be a string. We say that x is *accepted* by \mathbb{M} whenever $\delta(q_0, x) \cap F \neq \emptyset$ holds. We define the *accepted language* of the NFA \mathbb{M} as:

$$L(\mathbb{M}) = \{x \in \Sigma^{\star} : \ \delta(q_0, x) \cap F \neq \emptyset\}$$

Definition

Let $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ be a NFA, and let $x \in \Sigma^*$ be a string. We say that x is *accepted* by \mathbb{M} whenever $\delta(q_0, x) \cap F \neq \emptyset$ holds. We define the *accepted language* of the NFA \mathbb{M} as:

$$L(\mathbb{M}) = \{x \in \Sigma^{\star} : \ \delta(q_0, x) \cap F \neq \emptyset\}$$

Definition

Let $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ be a NFA. The mapping $N : Q \to \mathcal{P}(2)$ is defined for each $p \in Q$ as:

- $0 \in N(p)$ if and only if $p = q_0$.
- $1 \in N(p)$ if and only if $p \in F$.

We say that N(p) is the *nature of the state p*.

7. Example: NFAs

Theorem

Let $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ and $\mathbb{M}' = (Q', \Sigma, \delta', q'_0, F')$ be two NFA. If q_0 and q'_0 are bisimilar, then $L(\mathbb{M}) = L(\mathbb{M}')$.

7. Example: NFAs

Theorem

Let $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ and $\mathbb{M}' = (Q', \Sigma, \delta', q'_0, F')$ be two NFA. If q_0 and q'_0 are bisimilar, then $L(\mathbb{M}) = L(\mathbb{M}')$.

Theorem

Let L be a regular language, there exists a minimal NFA that accepts L. It is unique up to isomorphism.

Definition

Let *F* be a *pwp* endofunctor on **Set**. We say that a *F*-coalgebra, (X, α) , is *final* if for any other *F*-coalgebra (Y, β) there exists a unique *F*-coalgebra homomorphism $f_Y : Y \to X$.

8. Final Coalgebras

Definition

Let *F* be a *pwp* endofunctor on **Set**. We say that a *F*-coalgebra, (X, α) , is *final* if for any other *F*-coalgebra (Y, β) there exists a unique *F*-coalgebra homomorphism $f_Y : Y \to X$.

Theorem

Let (X, α) be a final *F*-coalgebra, then α is a *F*-coalgebra isomorphism. Final coalgebras if they exist are uniquely determined up to isomorphism.

8. Final Coalgebras

Definition

Let *F* be a *pwp* endofunctor on **Set**. We say that a *F*-coalgebra, (X, α) , is *final* if for any other *F*-coalgebra (Y, β) there exists a unique *F*-coalgebra homomorphism $f_Y : Y \to X$.

Theorem

Let (X, α) be a final *F*-coalgebra, then α is a *F*-coalgebra isomorphism. Final coalgebras if they exist are uniquely determined up to isomorphism.

They are fixed points of the functor, i.e., $F(X) \cong X$.

Definition

Let *F* be a *pwp* endofunctor on **Set**. We say that a *F*-coalgebra, (X, α) , is *final* if for any other *F*-coalgebra (Y, β) there exists a unique *F*-coalgebra homomorphism $f_Y : Y \to X$.

Theorem

Let (X, α) be a final *F*-coalgebra, then α is a *F*-coalgebra isomorphism. Final coalgebras if they exist are uniquely determined up to isomorphism.

They are fixed points of the functor, i.e., $F(X) \cong X$.

Proposition

Let (X, α) be a final *F*-coalgebra, then (X, α) is simple.

44 of 47

8. Coinduction

Example

Let A be an arbitrary set, we define the endofunctor G as:

G :	Set	\longrightarrow	Set
	Х	\mapsto	$A \times X$
	f	\mapsto	$\mathit{id}_A imes f$

Let (X, α) be an arbitrary *G*-coalgebra. The structure map on *X* can be splitted in two functions $X \to A$ and $X \to X$ which we will call value : $X \to A$ and next : $X \to X$. With these operations we can do two things, given an element $x \in X$:

- Produce an element in A, namely value(x).
- Produce a next element in X, namely next(x).

8. Coinduction

Example

Now we can repeat this process and therefore form another element in A, namely value(next(x)). By preceding in this way we can get for each element $x \in X$ an infinite sequence $(a_0, a_1, a_2, \dots) \in A^{\omega}$ of elements $a_n = value(next^{(n)}(x)) \in A$, where $next^{(0)}(x)$ denotes x. This sequence of elements that x gives rise to is what we can observe about x.

8. Coinduction

Example

Now we can repeat this process and therefore form another element in A, namely value(next(x)). By preceding in this way we can get for each element $x \in X$ an infinite sequence $(a_0, a_1, a_2, \dots) \in A^{\omega}$ of elements $a_n = value(next^{(n)}(x)) \in A$, where $next^{(0)}(x)$ denotes x. This sequence of elements that x gives rise to is what we can observe about x.

Proposition

```
(A^{\omega}, \langle head, tail \rangle) is a final G-coalgebra.
```

Bibliography

B. Jacobs,

Introduction to Coalgebra, Draft Copy, Version 1.00, 22nd April 2005.

🚺 A. Kurz,

Coalgebras and Modal Logic, Lecture Notes, Amsterdam, 2001.

J. Rutten,

Universal coalgebra: a theory of systems, Elsevier, Theoretical Computer Science, Amsterdam, 2000.

D. Sangiorgi, J. Rutten, Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, 2012.