HIGHER-ORDER REWRITING SYSTEMS, CATEGORIAL ALGEBRAS, AND CURRY-HOWARD ISOMORPHISMS

Nantong University Nantong, 2025

Enric Cosme Llópez

Departament de Matemàtiques Universitat de València School of Mathematics and Statistics Nantong University

Synthetic topology

Mathematics are **written**. To calculate is to **rewrite**.

REWRITING SYSTEM

A **rewriting system** is an ordered tuple $\mathcal{A} = (\Sigma, X, \mathcal{A})$ where

 Σ is a signature; X is a set of variables; A is a subset of $T_{\Sigma}(X)^2$.

The elements of $\mathcal A$ are called **rewriting rules**.

A **path in** \mathcal{A} of length $m \in \mathbb{N}$ is

$$\mathfrak{P} = ((P_i)_{i \in m+1}, (\mathfrak{p}_i)_{i \in m}, (T_i)_{i \in m})$$

where, for every $i \in m$, if $\mathfrak{p}_i = (M_i, N_i)$, then

(1) $T_i(M_i) = P_i$; (2) $T_i(N_i) = P_{i+1}$.

$$\mathfrak{P}: P_0 \xrightarrow{(\mathfrak{p}_0, T_0)} P_1 \xrightarrow{(\mathfrak{p}_1, T_1)} \cdots \xrightarrow{(\mathfrak{p}_{m-2}, T_{m-2})} P_{m-1} \xrightarrow{(\mathfrak{p}_{m-1}, T_{m-1})} P_m$$

PATHS

Example		
$\mathfrak{P}: \oplus (x, \oplus (x, y))$	$((y,z),\oplus(x,\oplus(x,_)))$	$\oplus(x,\oplus(x,z))$
$\boldsymbol{\gamma} \cdot \oplus (x, \oplus (x, g))$	$((\oplus(x,z),z),\oplus(x,_))$	$\oplus(x,z)$
	$\underbrace{\left(\left(\oplus(x,z),\odot(\boxdot(z,x),z,\boxdot(x,x))\right),_\right)}$	$\bigcirc(\boxdot(z,x),z,\boxdot(x,x))$
	$((z,x), \odot(\boxdot(z,x),_,\boxdot(x,x))))$	$\bigcirc (\boxdot(z, x), x, \boxdot(x, x))$
	$\overbrace{((\bigcirc(z,x),y),\odot(_,x,\boxdot(x,x))))}^{((\bigcirc(z,x),y),\odot(_,x,\boxdot(x,x)))}$	$\bigcirc (\underline{u} \ (\underline{x}, \underline{w}), \underline{u}, \underline{u}(\underline{u}, \underline{w}))$ $\bigcirc (\underline{u} \ \underline{x} \ \Box (\underline{x}, \underline{x}))$
	$((\boxdot(x,x),z),\odot(y,x,_)) \longrightarrow$	$\odot(y, x, \underline{z})$
	$((\odot(y,x,z),\top),_)$	Τ

PATHS

Word problem

$$\ln G = \langle a, b \mid ab = ba \rangle$$

$$babb^{-1}ab^{-1} = baab^{-1}$$
$$= abab^{-1}$$
$$= a^2bb^{-1}$$
$$= a^2.$$

Higher-order 00000000 Synthetic topology 0000000

PATHS

Elementary transformations

Higher-order 00000000 Synthetic topology 0000000

PATHS

Derivatives

$$\frac{\partial}{\partial x} \left[\cos(x^2 + x) \right] = (-\sin(x^2 + x)) \frac{\partial}{\partial x} \left[x^2 + x \right]$$
$$= -\sin(x^2 + x) \left(\frac{\partial}{\partial x} \left[x^2 \right] + \frac{\partial}{\partial x} \left[x \right] \right)$$
$$= -\sin(x^2 + x)(2x + 1).$$

Paths 00000	0000000000	Curry-Howard 000000000	Higher-order 0000000	Synthetic topology
PAT	HS			
	Proof by Natural	Deduction		
		$ \begin{bmatrix} P \\ \hline [\neg Q] \\ \hline P \\ \neg P \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		

$$P \lor Q \qquad \begin{array}{c} - \\ \hline \neg \neg Q \\ \hline Q \\ \hline P \rightarrow Q \end{array} \qquad \begin{array}{c} \left[\begin{array}{c} [Q] \\ \hline Q \\ \hline Q \\ \hline Q \\ \hline \end{array} \right] \\ Q \end{array}$$

Higher-order 00000000 Synthetic topology 0000000

PATHS

Reidemeister moves

Higher-order

Synthetic topology

MAIN QUESTION

Under what conditions can two rewriting systems be considered **equivalent**?

Paths can be composed.

 $\mathsf{lf}\,\mathfrak{P}\colon P \longrightarrow Q \, \mathsf{and}\, \mathfrak{Q}\colon Q \longrightarrow R \text{, then } \mathfrak{Q}\circ \mathfrak{P}\colon P \longrightarrow R.$

Composition is a partial binary operation.

$$\operatorname{Pth}_{\mathcal{A}} \xrightarrow[\operatorname{tg}]{\operatorname{sc}} T_{\Sigma}(X)$$

We denote by $\mathbf{Pth}_\mathcal{A}$ to the category whose objects are terms and whose morphisms are paths.

Paths can be decomposed.

If $\mathfrak{p} = (M, N)$ is a rewriting rule in \mathcal{A} , its associated **echelon** is the path of length 1

$$\operatorname{Ech}(\mathfrak{p}): M \xrightarrow{(\mathfrak{p}, _)} N$$

We will say that a path has echelons if any of its subpaths of length 1 is an echelon.

Higher-order

DECOMPOSITION

Example

$\mathfrak{P}\colon\oplus(x,\oplus(x,y)) o \oplus(x,\oplus(x,z))$	
$ ightarrow \oplus (x,z)$	
echelon $\rightarrow \odot(\boxdot(z,x),z,\boxdot)$	$\Box(x,x))$
\rightarrow $\odot(\mathbf{I}(z,x),x,\mathbf{Z})$	$\mathbf{I}(x,x)$
$\rightarrow \odot(y, x, \boxdot(x, x))$))
$ ightarrow \ \odot(y,x,z)$	
echelon \rightarrow \top	

Proposition. Paths without echelons are paths between complex and homogeneous terms.

Higher-order

DECOMPOSITION

Example

Proposition. In a path without echelons, we can extract as many subpaths as the arity of the operation.

Let \prec be the binary relation on $\operatorname{Pth}_{\boldsymbol{\mathcal{A}}}$ defined by $\mathfrak{Q}\prec\mathfrak{P}$ if

- i:
 \Phi has length strictly greater than 1, has its first echelon in position *i* and
 Ω is the prefix subpath strictly preceding the echelon or the suffix subpath containing the echelon; or
- ii. \$\mathcal{P}\$ is a non-identity echelonless path and \$\mathcal{L}\$ is one of the subpaths extracted from \$\mathcal{P}\$.

We denote by \leq to the reflexive transitive closure of \prec .

Proposition. \leq is an Artinian order on $Pth_{\mathcal{A}}$ whose minimal elements are identity paths and echelons.

CATEGORIAL SIGNATURE

We define the **categorial signature** determined by the rewriting system \mathcal{A} to be the signature that enlarges Σ with

- i. the rewriting rules in ${\mathcal A}$ as constants;
- ii. two unary operations sc and $\operatorname{tg};$
- iii. a binary operation \circ .

We will denote this signature with $\Sigma^{\mathcal{A}}$.

The Curry-Howard mapping is defined by Artinian recursion

$$CH\colon Pth_{\mathcal{A}} \longrightarrow T_{\Sigma^{\mathcal{A}}}(X)$$

1. For minimal paths

 $\operatorname{CH}(\operatorname{ip}(P)) = P;$ $\operatorname{CH}(\operatorname{Ech}(\mathfrak{p})) = \mathfrak{p}.$

2. For non-minimal paths

$$CH(\mathfrak{P}) = \begin{cases} CH(\mathfrak{P}^{i,|\mathfrak{P}|-1}) \circ CH(\mathfrak{P}^{0,i-1}); \\ \sigma((CH(\mathfrak{Q}_j))_{j \in n}). \end{cases}$$

Higher-order

THE CURRY-HOWARD MAPPING

Example

$$\mathfrak{P} \colon \oplus (x, \oplus(x, y)) \to \oplus (x, \oplus(x, z)) \to \oplus (x, z) \to \odot (\boxdot (z, x), z, \boxdot (x, x)) \to \odot (\boxdot (z, x), x, \boxdot (x, x)) \to \odot (y, x, \boxdot (x, x)) \to \odot (y, x, z) \to \top$$

 $\operatorname{CH}(\mathfrak{P}) = ((\blacksquare \circ (\odot(\blacksquare,\blacksquare,\blacksquare))) \circ \blacksquare) \circ (\oplus(x,\blacksquare \circ \oplus(x,\blacksquare))$

Higher-order

THE ALGEBRA OF PATHS

Proposition. The set $Pth_{\mathcal{A}}$ has structure of partial $\Sigma^{\mathcal{A}}$ -algebra, that we will denote by $Pth_{\mathcal{A}}$, where the operations are given by

$$\begin{split} \mathbf{sc}(\mathfrak{P}) &= \mathrm{ip}(\mathrm{sc}(\mathfrak{P})); & \mathbf{tg}(\mathfrak{P}) = \mathrm{ip}(\mathrm{tg}(\mathfrak{P})); \\ \mathbf{p} &= \mathrm{Ech}(\mathfrak{p}); & \mathfrak{Q} \circ \mathfrak{P} = \mathfrak{Q} \circ \mathfrak{P}. \end{split}$$

Higher-order

Synthetic topology 0000000

THE ALGEBRA OF PATHS

If $\sigma \in \Sigma_n$ and $(\mathfrak{P}_j)_{j \in n} \in \operatorname{Pth}^n_{\mathcal{A}}$, then

$$\sigma(\underbrace{\operatorname{sc}(\mathfrak{P}_{0})}_{\operatorname{\mathsf{I}}\oplus n}), \underbrace{\operatorname{sc}(\mathfrak{P}_{0})}_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{1})}_{\operatorname{\mathsf{I}}\oplus 0}, \cdots, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{1})}_{\operatorname{\mathsf{I}}\oplus 0}, \cdots, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{1})}_{\operatorname{\mathsf{I}}\oplus 1}, \cdots, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0}, \underbrace{\operatorname{sc}(\mathfrak{P}_{n-1})}_{\operatorname{\mathsf{I}}\oplus 0})$$

Proposition. $\sigma((\mathfrak{P}_j)_{j \in n})$ is an echelonless path.

THE KERNEL OF THE CURRY-HOWARD MAPPING

Proposition. CH is a Σ -homomorphism but not necessarily a $\Sigma^{\mathcal{A}}$ -homomorphism.

 $CH(ip(P)) = CH(ip(P) \circ ip(P)) \neq CH(ip(P)) \circ CH(ip(P)).$

Proposition. Ker(CH) is a closed $\Sigma^{\mathcal{A}}$ -congruence.

The quotient $Pth_{\mathcal{A}}/Ker(CH)$ will be denoted by $[Pth_{\mathcal{A}}]$ and the class of a path \mathfrak{P} will be denoted by $[\mathfrak{P}]$.

THE QUOTIENT OF PATHS

The quotient $[Pth_A]$ has structure of **partial** Σ^A -algebra, partially ordered set, and category.

Furthermore, the operations $\sigma \in \Sigma$ of arity n are **functors** from $[Pth_{\mathcal{A}}]^n$ to $[Pth_{\mathcal{A}}]$, since

$$\begin{split} & \mathbf{sc}\left(\sigma\left(([\mathfrak{P}_{j}])_{j\in n}\right)\right) = \sigma\left((\mathbf{sc}\left([\mathfrak{P}_{j}]\right))_{j\in n}\right) \\ & \mathbf{tg}\left(\sigma\left(([\mathfrak{P}_{j}])_{j\in n}\right)\right) = \sigma\left((\mathbf{tg}\left([\mathfrak{P}_{j}]\right))_{j\in n}\right) \\ & \sigma\left(([\mathfrak{Q}_{j}]\circ[\mathfrak{P}_{j}])_{j\in n}\right) = \sigma\left(([\mathfrak{Q}_{j}])_{j\in n}\right)\circ\sigma\left(([\mathfrak{P}_{j}])_{j\in n}\right) \end{split}$$

This is a **categorial** Σ -algebra that we denote it by $[\mathbf{Pth}_{\mathcal{A}}]$.

THE QUOTIENT OF PATHS

Theorem. The quotient $[\mathbf{Pth}_{\mathcal{A}}]$ is the free partial $\Sigma^{\mathcal{A}}$ -algebra generated by $\mathbf{Pth}_{\mathcal{A}}$ for a variety of partial $\Sigma^{\mathcal{A}}$ -algebras $\mathbf{PAlg}(\mathcal{E}^{\mathcal{A}})$.

Equations relative to the categorical structure.

Existence of productions.

Relationship between the operations and the composition.

$$\left[\bigwedge_{j\in n} (x_j \circ y_j \stackrel{\mathrm{e}}{=} x_j \circ y_j)\right] \to \sigma((x_j \circ y_j)_{j\in n}) \stackrel{\mathrm{e}}{=} \sigma((x_j)_{j\in n}) \circ \sigma((y_j)_{j\in n}).$$

Higher-order 00000000 Synthetic topology

THE QUOTIENT OF PATHS

A CURRY-HOWARD RESULT

Theorem. There exists a pair of inverse mappings

- isomorphisms of partial $\Sigma^{\mathcal{A}}$ -algebras;
- order isomorphisms;
- isomorphisms of categories.

Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul. Give up geometry and you will have this marvellous machine. —M. Atiyah.

SECOND-ORDER REWRITING SYSTEMS

This process can be **iterated**.

- 1. We introduce the notion of first-order translation T.
- 2. For every term class $[M] \in [PT_{\mathcal{A}}]$, and every $M' \in [M]$.

[T(M)] = [T(M')].

3. We introduce the notion of second-order rewriting rules as pairs $\mathfrak{p}^{(2)}=([M],[N])$ with the condition

$$\operatorname{sc}\left(\operatorname{ip}^{\operatorname{fc}}(M)\right) = \operatorname{sc}\left(\operatorname{ip}^{\operatorname{fc}}(N)\right); \quad \operatorname{tg}\left(\operatorname{ip}^{\operatorname{fc}}(M)\right) = \operatorname{tg}\left(\operatorname{ip}^{\operatorname{fc}}(N)\right).$$

4. We introduce the notion of **second-order paths**.

A second-order path $\mathfrak{P}^{(2)}$ has the form

Mutatis mutandis we recover the previous results.

Higher-order 000€0000 Synthetic topology

SECOND-ORDER RESULTS

Paths	Curry-Howard	Higher-order	Synthetic topology
oooooooooooooooo	000000000	0000●000	0000000
N-TH ORDER RESULTS			

Higher-order

Synthetic topology

SIMULATION MORPHISMS

SIMULATION MORPHISMS

To determine a **simulation morphism** from $\mathcal{A}^{(n)}$ to $\mathcal{B}^{(n)}$ we will assign

- to every variable in X a term in $T_{\Gamma}(Y)$
- to every operation in Σ a **derived operation** in $T_{\Gamma}(Y)$
- to every k-th rewriting rule in A^(k) a k-th order path in Pth_{B^(k)} respecting sources and targets

The final mapping $f^{(k)@}: [\![\mathbf{Pth}_{\mathcal{A}^{(k)}}]\!] \longrightarrow [\![\mathbf{Pth}_{\mathcal{B}^{(k)}}]\!]$, is obtained by **Artinian recursion** and by **universal property** on the quotients.

FUTURE WORK

- 1. Towers of rewriting systems.
- 2. Projective limits of rewriting systems.
- 3. Classifying spaces.
- 4. Fundamental grupoids.

Higher-order

SYNTHETIC TOPOLOGY

In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics.

—H. Weyl.

Higher-order

Synthetic topology o●ooooo

Two rewriting systems

$$\mathbb{S}^{1} = \begin{cases} X = \{\star\} \\ \Sigma = \varnothing \\ \mathcal{A} = \{(\star, \star)\} \end{cases} \quad \mathbb{SI} = \begin{cases} Y = \{\mathrm{N}, \mathrm{S}\} \\ \Gamma = \varnothing \\ \mathcal{B} = \{(\mathrm{N}, \mathrm{S}), (\mathrm{S}, \mathrm{N})\} \end{cases}$$

Higher-order

Synthetic topology

Higher-order 00000000 Synthetic topology

An specification for \mathbb{T}^2

$$\mathbb{T}^{2} = \begin{cases} X = \{x, y, z\} \\ \Sigma = \emptyset \\ \mathcal{A} = \{\mathbf{p}, \mathbf{q}, \mathfrak{r}, \mathfrak{s}\} \\ \mathcal{A}^{(2)} = \{((\mathfrak{s} \circ \mathfrak{r}) \circ (\mathbf{q} \circ \mathbf{p}), (\mathbf{q} \circ \mathbf{p}) \circ (\mathfrak{s} \circ \mathfrak{r}))\} \end{cases}$$

Higher-order

Synthetic topology

A simulation of the \mathbb{T}^2

 $(-f_2 \circ -f_2) \circ (\frac{1}{2}f_1 \circ 2f_1) = (\frac{1}{2}f_1 \circ 2f_1) \circ (-f_2 \circ -f_2)$

What if we could prove **topological properties** using rewriting systems?

- $\mathbb{T}^2 \cong \mathbb{S}^1 \times \mathbb{S}^1$.
- $\pi_1(\mathbb{T}^2) = \mathbb{Z} \oplus \mathbb{Z}$.
- \mathbb{T}^2 is orientable.
- ...

Higher-order

Synthetic topology

La possibilité de la traduction implique l'existence d'un invariant. Traduire, c'est précisément dégager cet invariant.

—H. Poincaré.

Thanks!