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Las matemáticas se escriben.

Calcular es reescribir.
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SISTEMAS DE REESCRITURA

Un sistema de reescritura es una tupla ordenada

AAA = (Σ,X ,A) donde

Σ es una signatura;

X es un conjunto de variables;

A es un conjunto de TΣ(X)2.

Los elementos deA se llaman reglas de reescritura.
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PATHS

Un camino enAAA de longitud m ∈ N es

P = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m)

donde, para cada i ∈ m, si pi = (Mi ,Ni), entonces

(1) Ti(Mi) = Pi ; (2) Ti(Ni) = Pi+1.

P : P0
(p0,T0)−−−−→ P1

(p1,T1)−−−−→ · · · (pm−2,Tm−2)−−−−−−−−→ Pm−1
(pm−1,Tm−1)−−−−−−−−→ Pm
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CAMINOS

Ejemplo

P : ⊕ (x,⊕(x, y)) ( (y,z) ,⊕(x,⊕(x, )) )−−−−−−−−−−−−−−−−−−−−→ ⊕(x,⊕(x, z))
( (⊕(x,z),z) ,⊕(x, ) )−−−−−−−−−−−−−−−−−−−−→ ⊕(x, z)

( (⊕(x,z),�(�(z,x),z,�(x,x))) , )−−−−−−−−−−−−−−−−−−−−→ �(�(z, x), z,�(x, x))
( (z,x) ,�(�(z,x), ,�(x,x)) )−−−−−−−−−−−−−−−−−−−−→ �(�(z, x), x,�(x, x))
( (�(z,x),y) ,�( ,x,�(x,x)) )−−−−−−−−−−−−−−−−−−−−→ �(y, x,�(x, x))

( (�(x,x),z) ,�(y,x, ) )−−−−−−−−−−−−−−−−−−−−→ �(y, x, z)
( (�(y,x,z),>) , )−−−−−−−−−−−−−−−−−−−−→ >
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CAMINOS

El problema de la palabra

En G = 〈a, b | ab = ba〉

babb−1ab−1 = baab−1

= abab−1

= a2bb−1

= a2.
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CAMINOS

Transformaciones elementales2 2 18
2 3 23
0 2 11

 f1= 1
2

f1−−−−−−−→

1 1 9
2 3 23
0 2 11


f2=f2−2f1−−−−−−−→

1 1 9
0 1 5
0 2 11


f3=f3−2f2−−−−−−−→

1 1 9
0 1 5
0 0 1


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CAMINOS

Derivadas

∂

∂x
[
cos(x2 + x)

]
= (− sin(x2 + x)) ∂

∂x
[
x2 + x

]
= − sin(x2 + x)

(
∂

∂x
[
x2
]
+

∂

∂x
[x]

)
= − sin(x2 + x)(2x + 1).
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CAMINOS

Demostraciones por Deducción Natural

Q
P ∨ Q P → Q Q → Q

Q Q
¬¬Q [Q]

⊥
P ¬P

[¬Q]

[P]
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CAMINOS

Movimientos de Reidemeister
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LA PREGUNTA PRINCIPAL

¿Bajo qué condiciones pueden dos

sistemas de reescritura considerarse

equivalentes?
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COMPOSICIÓN

Los caminos se pueden componer.

SiP : P −→ Q yQ : Q −→ R, entoncesQ ◦P : P −→ R.

La composición es una operación binaria parcial.

PthAPthA PthATΣ(X)

sc

tg

ip

Denotamos por PthA a la categoría cuyos objetos son términos

y cuyos morfismos son caminos.
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DESCOMPOSICIÓN

Los caminos se pueden descomponer.

Si p = (M ,N ) es una regla de reescritura enA, su escalón

asociado es el camino de longitud 1

Ech(p) : M (p, )−−−→ N

Diremos que un camino tiene escalones si alguno de sus

subcaminos de longitud 1 es un escalón.
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DESCOMPOSICIÓN

Ejemplo

P : ⊕ (x,⊕(x, y)) → ⊕(x,⊕(x, z))
→ ⊕(x, z)

escalón → �(�(z, x), z,�(x, x))
→ �(�(z, x), x,�(x, x))
→ �(y, x,�(x, x))
→ �(y, x, z)

escalón → >

Proposición. Los caminos sin escalones son caminos entre

términos complejos y homogéneos.
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DESCOMPOSICIÓN

Ejemplo

�(

�(

�(

�(

�(z, x)

�(z, x)

y

y

=
=

,

,

,

,

z

x

x

x
=

=

,

,

,

,

�(x, x)

�(x, x)

�(x, x)

z

=
=

)

)

)

)

Proposición. En un camino sin escalones podemos extraer

tantos subcaminos como la aridad de la operación.
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DESCOMPOSICIÓN

Denotamos por≺ a la relación binaria en PthA definida por

Q ≺ P si

i. P tiene longitud estrictamente mayor a 1, tiene su primer

escalón en la posición i yQ es el subcamino inicial

precediendo estrictamente al escalón o el subcamino final

conteniendo al escalón; o

ii. P es una camino no-identidad sin escalones yQ es uno de

los subcaminos extraídos deP.

Denotamos por≤ a la clausura reflexivo-transitiva de≺.

Proposición.≤ es un orden Artiniano en PthA cuyos

elementos minimales son caminos identidad y escalones.
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DESCOMPOSICIÓN

Ejemplo

�������

�� �����

x ��

� �

x �

� ����

��� �

� � �
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SIGNATURA CATEGORIAL

Definimos la signatura categorial determinada por el sistema

de reescrituraAAA como la signatura que amplía Σ con

i. las reglas de reescritura enA como constantes;

ii. dos operaciones unarias sc y tg;
iii. una operación binaria ◦.

Denotaremos esta signatura por ΣA.
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LA APLICACIÓN DE CURRY-HOWARD

La aplicación de Curry-Howard se define por recursión

Artiniana

CH : PthA −→ TΣA(X)

1. Para caminos minimales

CH(ip(P)) = P; CH(Ech(p)) = p.

2. Para caminos no-minimales

CH(P) =

{
CH(Pi,|P|−1) ◦ CH(P0,i−1);
σ((CH(Qj))j∈n).
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LA APLICACIÓN DE CURRY-HOWARD

Ejemplo

P : ⊕ (x,⊕(x, y)) → ⊕(x,⊕(x, z))
→ ⊕(x, z)
→ �(�(z, x), z,�(x, x))
→ �(�(z, x), x,�(x, x))
→ �(y, x,�(x, x))
→ �(y, x, z)
→ >

CH(P) = ((� ◦ (�(�,�,�))) ◦�) ◦ (⊕(x,� ◦ ⊕(x,�))
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EL ÁLGEBRA DE CAMINOS

Proposición. El conjunto PthA tiene estructura de ΣA-álgebra

parcial, que denotaremos por PthA, donde las operaciones

están dadas por

sc(P) = ip(sc(P)); tg(P) = ip(tg(P));

ppp = Ech(p); Q ◦◦◦P = Q ◦P.
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EL ÁLGEBRA DE CAMINOS

Si σ ∈ Σn y (Pj)j∈n ∈ Pthn
A, entonces

σσσ((Pj)j∈n) :

σ(

σ(

σ(

σ(

sc(P0)

tg(P0)

...

tg(P0)

P0

=
=

,

,

,

,

sc(P1)

sc(P1)

tg(P1)

tg(P1)

=
=

P1

,

,

,

,

· · ·

· · ·

. . .

· · ·

,

,

,

,

sc(Pn−1)

...

sc(Pn−1)

tg(Pn−1)

Pn−1

=
=

)

)

)

)

Proposición. σ((Pj)j∈n) es un camino sin escalones.
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EL NÚCLEO DE LA APLICACIÓN DE CURRY-HOWARD

Proposición. Ker(CH) es una ΣA-congruencia cerrada.

El cociente PthA/Ker(CH) será denotado por [PthA] y la clase
de un caminoP será denotada por [P].
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EL COCIENTE DE CAMINOS

El cociente [PthA] tiene estructura de ΣA-álgebra parcial,
conjunto parcialmente ordenado, y categoría.

Además, las operaciones σ ∈ Σ de aridad n son funtores de

[PthA]n en [PthA], ya que

sc
(
σ
(
([Pj ])j∈n

))
= σ

(
(sc ([Pj ]))j∈n

)
tg

(
σ
(
([Pj ])j∈n

))
= σ

(
(tg ([Pj ]))j∈n

)
σ
(
([Qj ] ◦◦◦ [Pj ])j∈n

)
= σ

(
([Qj ])j∈n

)
◦◦◦ σ

(
([Pj ])j∈n

)
Esto es lo que en el trabajo llamamos Σ-álgebra categorial y
que denotamos por [PthA].
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EL COCIENTE DE CAMINOS
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UN RESULTADO DE TIPO CURRY-HOWARD

Teorema. Existen un par de aplicaciones mútuamente inversas

[PthA][Θ] [Θ][PTA]∼=

CH

ipfc

• isomorfismos de ΣA-álgebras;

• isomorfismos de órden;

• isomorfismos de categorías.
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CAMINOS DE SEGUNDO ORDEN

Este proceso se puede iterar.

Un camino de segundo ordenP(2) tiene la forma

P Q

P

Q

P(2)

Recuperamos los resultados anteriores en orden dos.
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RESULTADOS DE SEGUNDO ORDEN
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RESULTADOS DE ORDEN n
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TRABAJO FUTURO

1. Morfismos entre sistemas de reescritura.

2. Torres de sistemas de reescritura

3. Límites proyectivos de sistemas de reescritura

4. Espacios de clasificación

5. Algebroides fundamentales.
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MORFISMOS DE SISTEMAS DE REESCRITURA
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Dos sistemas de reescritura

S1 =


X = {?}
Σ = ∅
A = {(?, ?)}

SI =


Y = {N,S}
Γ = ∅
B = {(N,S), (S,N)}

?

N

S
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Una simulación de S1

cos(x)

− sin(x)

− cos(x)

sin(x) ∂
∂x

∂
∂x

∂
∂x

∂
∂x
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Una especificación para T2

T2 =


X = {x, y, z}
Σ = ∅
A = {p, q, r, s}

A(2) = {((s ◦ r) ◦ (q ◦ p), (q ◦ p) ◦ (s ◦ r))}

x
y

z
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Una simulación de T2

1 0
0 1


[
2 0
0 1

]

[
1 0
0 −1

]

(−f2◦−f2)◦
(
1
2

f1◦2f1
)
=
(
1
2

f1◦2f1
)
◦(−f2◦−f2)
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¿Podemos demostrar propiedades

topológicas utilizando sistemas de

reescritura?

• T2 ∼= S1 × S1.
• π1

(
T2

)
= Z⊕ Z.

• T2 es orientable.

• . . .
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La possibilité de la traduction implique l’existence d’un

invariant. Traduire, c’est précisément dégager cet invariant.

—H. Poincaré.

Gracias!
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