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Las matematicas se escriben.
Calcular es reescribir.
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Caminos
SISTEMAS DE REESCRITURA

Un sistema de reescritura es una tupla ordenada
A= (%, X, A) donde

3 es una signatura;
X es un conjunto de variables;

Aes un conjunto de Ty (X)2.

Los elementos de A se llaman reglas de reescritura.
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PATHS

Un camino en A de longitud m € N es

B = ((Pi)iem+1, (Pi)iem, (Ti)iem)

donde, para cada i € m, sip; = (M;, N;), entonces

(1) T;(M;) = Py; (2) Ti(N;) = Pij1.

(p07T0) (pl 7Tl) (pm72~,Tm72) (mehTmfl)
oo %

q3: P() P1 Pm,1 Pm
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CAMINOS
Ejemplo

((9,2) , ©(z,0(2,)))

P: & (z8(z, )) &l@, ©(1.2))
((&(x,2),2), &(x,_)) & (z, 2)
((®(2,2),0(8(2,2),2E(z,2))) ,,): (@2, 2), 2, B(z, 7))
((2,2), 0(@(22),_B(2,2))) o(E(z ), z, D(z, x))
((@(2,2),9) , ©(,z,8(z,2)) ) o (y, z, 0(z, 7))
((B(z,2),2),O(y,) ) o(y, z, 2)
((O(y,2,2),T),_) T
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CAMINOS

El problema de la palabra
En G = (a,b| ab = ba)

babb~ lab™! = baab™!
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CAMINOS

Transformaciones elementales

2 2 18 y 11 9
2 3 23 i 3 23
0 2 11 0 2 11
o 1 1 9]

fo=f—2f1 01 5

0 2 11]

o 19

f3=f—2f2 01 5

00 1
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CAMINOS
Derivadas

0 . 0
e [cos(z® + z)] = (—sin(2® + x))% [2° + 2]

= —sin(z? + 1) (aam [2%] + 51 M)

= —sin(z® 4 z)(2z + 1).
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CAMINOS

Demostraciones por Deduccién Natural
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CAMINOS

Movimientos de Reidemeister

&-®)- Q-0
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LA PREGUNTA PRINCIPAL

;Bajo qué condiciones pueden dos
sistemas de reescritura considerarse
equivalentes?
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COMPOSICION

Los caminos se pueden componer.
SifP: P— QyQ: Q@ — R, entoncesQoP: P — R.
La composicién es una operacién binaria parcial.

SC

Pthg +—ip

tg

Ts(X)

Denotamos por Pth 4 a la categoria cuyos objetos son términos
y cuyos morfismos son caminos.
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DESCOMPOSICION

Los caminos se pueden descomponer.

Sip = (M, N)esunaregla de reescritura en A4, su escalén
asociado es el camino de longitud 1

Ech(p): M &= N

Diremos que un camino tiene escalones si alguno de sus
subcaminos de longitud 1 es un escalén.
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DESCOMPOSICION

Ejemplo
L & (z,®(z, ))
escalén —
__}
__}
__}
escalon —

Proposicion. Los caminos sin escalones son caminos entre
términos complejos y homogéneos.
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DESCOMPOSICION
Ejemplo
o((@za) ( z ) (B(=2))
[ 1 [
o(\@(zz) [ = - |B(z2)]|)
1 [ [
o(f v ) x v \B(z,z)))

O Y ’\x)7(z))

Proposicion. En un camino sin escalones podemos extraer
tantos subcaminos como la aridad de la operacién.
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DESCOMPOSICION

Denotamos por < a la relacién binaria en Pth 4 definida por
Q < Psi

i. P tiene longitud estrictamente mayor a 1, tiene su primer
escalén en la posicion iy Q es el subcamino inicial
precediendo estrictamente al escalén o el subcamino final
conteniendo al escalén; o

ii. B es una camino no-identidad sin escalonesy 9 es uno de
los subcaminos extraidos de 3.

Denotamos por < a la clausura reflexivo-transitiva de <.

Proposicion. < es un orden Artiniano en Pth 4 cuyos
elementos minimales son caminos identidad y escalones.
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DESCOMPOSICION

Ejemplo

(
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SIGNATURA CATEGORIAL

Definimos la signatura categorial determinada por el sistema
de reescritura A como la signatura que amplia 3 con

i. lasreglas de reescritura en A como constantes;
ii. dos operaciones unarias scy tg;
iii. una operacion binaria o.

Denotaremos esta signatura por DA,
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LA APLICACION DE CURRY-HOWARD

La aplicacién de Curry-Howard se define por recursion
Artiniana
CH: Pthyq — Txa(X)

1. Para caminos minimales
CH(ip(P)) = P; CH(Ech(p)) = p.

2. Para caminos no-minimales

CH(P*HI=1) o CH(P»1);

CH(¥) = { o((CH(Qj))jen)-

20
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LA APLICACION DE CURRY-HOWARD
Ejemplo
B: & (z,8(z, )) ®(z, )

(z,2),2,0(z, ))
(z,2),z,E(z, )
T, E)(ﬂf, z))

Ll 8

S R S S o e

l1ldid
aBONONONO
< <

CH(P) = (Mo (O(N, B, W))) o W) o (&(z, o®(z, ))

21
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EL ALGEBRA DE CAMINOS

Proposicién. El conjunto Pth 4 tiene estructura de ©4-algebra
parcial, que denotaremos por Pth 4, donde las operaciones
estan dadas por

sc(P) = ip(sc(P)); tg('P) = ip(tg(P));
p = Ech(p); QoP =90oP.

22
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EL ALGEBRA DE CAMINOS

Sio € X,V (Bj)jen € Pthy, entonces

o((sc(Po)) + (sc(P1)) - (sc(Ba_1)))
3P0 I I
o((tg(Po)) > \sc(B)) > - o )
o ((Bj)jen) : I R I
o(| C(te(B)) 0 . olse(Ba-1)))
I I IPBn
o({te®o)) » (teB) » - (te(Far)))

Proposicion. o((9;)jc,) €5 un camino sin escalones.

23
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EL NUCLEO DE LA APLICACION DE CURRY-HOWARD

Proposicién. Ker(CH) es una ¥4-congruencia cerrada.

El cociente Pth 4 /Ker(CH) serd denotado por [Pth 4] vy la clase
de un camino 3 serd denotada por [J].

24



Caminos Curry-Howard Orden superior Topologfa sintética
0000000000000 0000 000000800 00000 000000

EL COCIENTE DE CAMINOS

El cociente [Pth 4] tiene estructura de X+4-algebra parcial,
conjunto parcialmente ordenado, y categoria.

Ademds, las operaciones o € ¥ de aridad n son funtores de
[Pth4]™ en [Pth 4], ya que

se (o ((B3),e0)) = ((se (B,
tg (o ((Fi)yen) ) = o ((tg (BD)en)
o (19510 i) en) =7 ((1QUD)e) 0o ((FiD)se)

Esto es lo que en el trabajo llamamos Y-algebra categorial y
que denotamos por [Pth 4].

25
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EL COCIENTE DE CAMINOS

Tt
I I Pt
L IR AR
I I An-1
(|,

o((2; o Bj)jen)

a(?,’?,‘ , (m))

To Il Il

o((m),\m] .- u|)
Il [® Il

n(i,l, u))
2o I I
o((m),(m). . |m|)

HDI I
o(|m|,(m],--, W[

o(|m|,|m|,,(m)

o((m).(mf.(m)

o((Q;)jen) © U((mf).‘r'm)
26
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UN RESULTADO DE TIPO CURRY-HOWARD

Teorema. Existen un par de aplicaciones mituamente inversas

CH
[Pth 4] =~ [PT 4]

fc

~

A

ip

e isomorfismos de X4-3lgebras;
e isomorfismos de 6rden;
e isomorfismos de categorias.

27
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CAMINOS DE SEGUNDO ORDEN

Este proceso se puede iterar.

Un camino de segundo orden B tiene la forma

Y
/ﬂ%

L Q
~_ v

Q

P

Recuperamos los resultados anteriores en orden dos.

28
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RESULTADOS DE SEGUNDO ORDEN

Tx(X)
|
S
S|E |2
3 e B
N4

2)I|

ip2l,x)@

29
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RESULTADOS DE ORDEN n
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TRABAJO FUTURO

U A W N =

Morfismos entre sistemas de reescritura.
Torres de sistemas de reescritura

Limites proyectivos de sistemas de reescritura
Espacios de clasificacion

Algebroides fundamentales.

31
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MORFISMOS DE SISTEMAS DE REESCRITURA

fma

f@e

fme

32
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= {x} = {N,S}
@ @

= {(*,*)} = {(N7 S)v(S’N)}

O

SI =

SRS
I

33
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rl sin(z 9

ox ox
— cos(z) cos(z)

oz = Sin oz

34
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= {z,y,2}
&

{p,a,v, }
) = {((Cov)o(qop),(gop)o(-or))}

B M
|

35
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(- o—f)o(5f102f1)=(3f102f1)o( [ -0—f2)

36
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;Podemos demostrar propiedades
topoldgicas utilizando sistemas de
reescritura?

T2 >~ st x St
m (T?) =Z® Z.
T2 es orientable.

37
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La possibilité de la traduction implique 'existence d'un
invariant. Traduire, c'est précisément dégager cet invariant.

—H. Poincaré.

Gracias!

38
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