

A COMPLETE AXIOMATISATION OF ISOMORPHISM of graphs of treewidth 2

Congreso Bienal - RSME Zaragoza 2017

E. Cosme, D. Pous

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon

Allegories	Treewidth	Term extraction	Results

Algebras of relations appear naturally in many contexts in computer science as they constitute a framework well suited to the semantics of imperative programs.

Many objects of interest either are relations or can be seen as relations. A major benefit of a relational approach in computer science is the surprisingly small number of relations needed to express complex notions.

Allegories	Treewidth	Term extraction
ALLEGORIES		

Allegories are algebras of the following type

$$u, v ::= u \cdot v \mid u \cap v \mid u^{\circ} \mid 1 \mid \top \mid a \qquad (a \in \Sigma).$$

Results

ALLEGORIES

Allegories are algebras of the following type

$$u, v ::= u \cdot v \mid u \cap v \mid u^{\circ} \mid 1 \mid \top \mid a \qquad (a \in \Sigma).$$

One model for this algebra is the set of relations on a given set with the usual interpretation of the operators.

Allegories

Term extraction

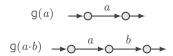
TERMS AS GRAPHS

Allegories

Treewidth

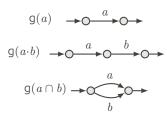
Term extraction

TERMS AS GRAPHS

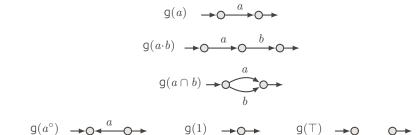


Term extraction

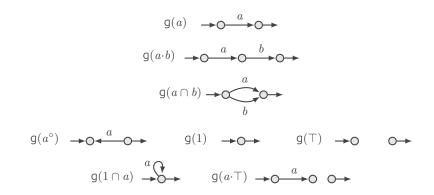
TERMS AS GRAPHS



Allegories Treewidth Term extraction Results



Allegories Treewidth Term extraction TERMS AS GRAPHS



Results

Allegories	Treewidth	Term extraction	Results
TERMS AS GF	RAPHS		

$$g(a) \longrightarrow a \longrightarrow b$$

$$g(a \cdot b) \longrightarrow a \longrightarrow b \longrightarrow b$$

$$g(a \cap b) \longrightarrow a \longrightarrow b$$

$$g(a \cap b) \longrightarrow b \longrightarrow b$$

$$g(a^{\circ}) \longrightarrow a \longrightarrow g(1) \longrightarrow g(T) \longrightarrow 0 \longrightarrow b$$

$$g(1 \cap a) \xrightarrow{a} \bigoplus g(a \cdot T) \longrightarrow a \longrightarrow 0 \longrightarrow b$$

$$g(1 \cap a \cdot T) \xrightarrow{a} \bigoplus g(1 \cap a \cdot T) \longrightarrow b \longrightarrow 0$$

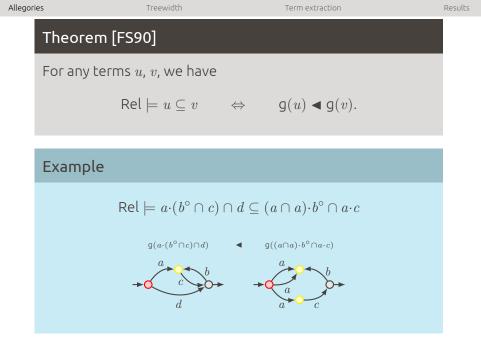
Term extraction

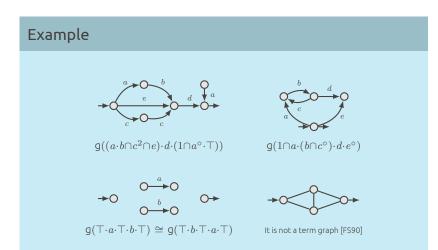
ASSOCIATED GRAPH

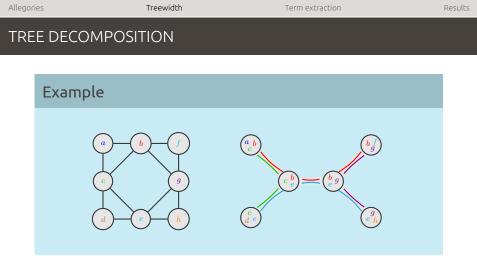
(-) ($g(u \cdot v) \triangleq \longrightarrow \bigcirc \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc 0 \longrightarrow \bigcirc 0 \longrightarrow 0 \longrightarrow$
$g(1) \triangleq \rightarrow \bigcirc \rightarrow$	$g(u \cdot v) \equiv \longrightarrow \bigcirc \longrightarrow$

Allegori	es Treewidth		Term extraction	Results
	Theorem [FS90]			
	For any terms u , v , we have			
	$Rel \models u \subseteq v$	\Leftrightarrow	$g(u) \triangleleft g(v).$	

А

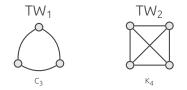




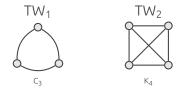


The width of a tree decomposition is the size of the largest set V_t minus one. The treewidth of a graph is the minimal width of a tree decomposition for this graph.

Bounded treewidth can be described by minor exclusion.

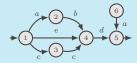


Bounded treewidth can be described by minor exclusion.



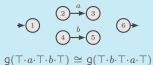
Proposition

Every term graph has treewidth bounded by 2 with one node containing input and output.

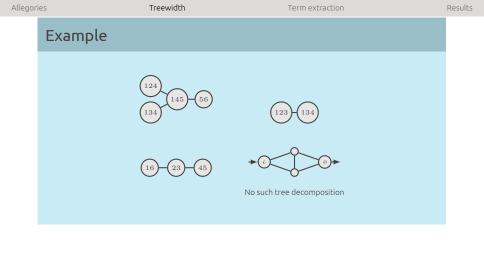


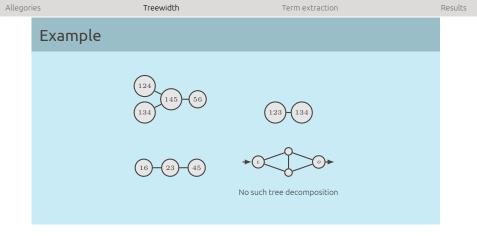
 $\mathtt{g}((a{\cdot}b{\cap}c^2{\cap}e){\cdot}d{\cdot}(1{\cap}a^\circ{\cdot}{\top}))$

 $\mathsf{g}(1 {\cap} a {\cdot} (b {\cap} c^\circ) {\cdot} d {\cdot} e^\circ)$

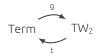


It is not a term graph [FS90]





Extract a term from a graph with compatible input and output.

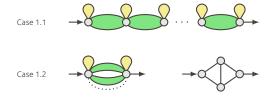


Allegories

CASE 1: CONNECTED WITH INPUT DIFFERENT FROM OUTPUT

Example





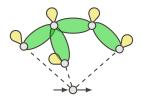
Allegories

Term extraction

Results

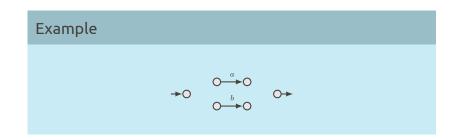
CASE 2: CONNECTED WITH INPUT EQUALS OUTPUT

Example



 $1 \cap u \cdot \top$

CASE 3: DISCONNECTED



 $\begin{array}{ll} \top \cdot u & \mbox{Disconnects the input.} \\ u \cdot \top & \mbox{Disconnects the output.} \end{array}$

Allegor	ies	Treewidth	Term extraction	Results
	Theorem			
	For any 2-pointed graph G with compatible input and output,			:put,
		g(t($G))\cong G.$	

Allegor	es Treewidth	1	Term extraction	Results
	Theorem			
	For any 2-pointed gra	ph G with comp	atible input and output	t,
		$g(t(G))\cong G.$		

Corollary

Let G be a graph. The following statements are equivalent.

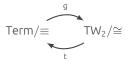
- 1. G is a term graph.
- 2. G has treewidth bounded by 2.
- 3. G is K₄ minor free.

In the definition of the associated term, some choices were made. Up to these choices, the term we extracted represents the same graph up to isomorphism. In the definition of the associated term, some choices were made. Up to these choices, the term we extracted represents the same graph up to isomorphism.

1.
$$G \cong H$$
 implies $t(G) \equiv t(H)$

2. $u \equiv t(g(u))$

In the definition of the associated term, some choices were made. Up to these choices, the term we extracted represents the same graph up to isomorphism.



The reduct (\cap, \top) is a commutative monoid, the reduct $(\cdot, 1)$ is a monoid. The converse ° is an involution.

$$1 \cap 1 \equiv 1$$

$$u \cdot (1 \cap v) \equiv u \cap \top \cdot (1 \cap v)$$

$$1 \cap u \cdot v \equiv 1 \cap (u \cap v^{\circ}) \cdot \top$$

$$u \cdot \top \cap v \equiv (1 \cap u \cdot \top) \cdot v$$

The reduct (\cap, \top) is a commutative monoid, the reduct $(\cdot, 1)$ is a monoid. The converse ° is an involution.

$$1 \cap 1 \equiv 1$$

$$u \cdot (1 \cap v) \equiv u \cap \top \cdot (1 \cap v)$$

$$1 \cap u \cdot v \equiv 1 \cap (u \cap v^{\circ}) \cdot \top$$

$$u \cdot \top \cap v \equiv (1 \cap u \cdot \top) \cdot v$$

Theorem

The axioms listed above give a complete axiomatisation of isomorphism of graphs of treewidth bounded by 2.

 $TW_2/\cong~is$ a free algebra.

BIBLIOGRAPHY

- Andréka, H. and Bredikhin, A. The equational theory of union-free algebras of relations, Algebra Universalis, 33(4):516--532, 1995.
- Bodlaender, H.L. Classes of graphs with bounded tree-width, Technical report, Universiteit Utrecht, 1986.
- Freyd, P. and Scedrov, A. Categories, Allegories, North-Holland Mathematical Library, 1990.