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Abstract9

We define the set of paths associated with a rewriting system and equip it with a structure of partial10

algebra, a structure of category, and a structure of Artinian ordered set. Next, we consider an11

extension of the signature associated with the rewriting system and we associate each path with12

a term in the extended signature. This constitutes a Curry-Howard type mapping. After that we13

prove that the quotient of the set of paths by the kernel of the Curry-Howard mapping is equipped14

with a structure of partial algebra, a structure of category, and a structure of Artinian ordered set.15

Following this we identify a subquotient of the free term algebra in the extended signature that16

is isomorphic to the algebraic, categorical, and ordered structures on the quotient of paths. This17

constitutes a Curry-Howard type isomorphism. Additionally, we prove that these two structures18

are isomorphic to the free partial algebra on paths in a variety of partial algebras for the extended19

signature.20
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1 Introduction26

The theory of single-sorted term rewriting systems (which for words has its origins in the27

works of Thue [23], Dehn [12] and Post [19, 20]), changing one term to another according to28

certain rewrite rules or productions, is a fundamental field within computer science. Briefly29

stated, it could be said that rewriting is the root of all computational processes.30

On the other hand, the classical Curry-Howard correspondence explains the direct31

relationship between computer programs and mathematical proofs. More precisely, Curry,32

in [10], was the first to acknowledge the formal analogy between his combinatory logic and the33

axioms of a Hilbert–type deduction system for the positive implicational propositional logic.34

Later on, Howard, in 1969, but published in [17], observed the same formal analogy between35

Church’s λ-calculus and the proof rules of a Gentzen’s system of natural deduction for the36

intuitionistic propositional logic. The Curry-Howard correspondence assigns to each proof in37

the intuitionistic logic a term in Curry’s combinatory logic or in Church’s λ-calculus. In other38

words, the Curry-Howard correspondence consists of the observation that two seemingly39

unrelated families of formalisms—namely, systems of formal deduction, on the one hand, and40

models of computation, on the other—are, essentially, the same kind of mathematical object.41

What we present here is the first part of the ongoing project presented in [9]. This42
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23:2 First-order rewriting systems

work is the preliminary development of a theory aimed at defining the notions of higher-43

order many-sorted rewriting systems and higher-order many-sorted categorial algebras and44

investigating the relationship between them through higher-order many-sorted Curry-Howard45

isomorphisms. Our frequent use of the qualifier Curry-Howard in this paper is due to the46

fact that we have been able to represent paths, that is, syntactic derivations between terms47

for a rewriting system (which have a proof-theoretical flavor) as terms of an algebra relative48

to a signature associated with the rewriting system. The interested reader can consult all49

the proofs appearing in this article in [9]. Next to each result, the reader will find the50

corresponding reference. Recall that our work is framed in the study of syntactic derivation51

systems in the context of many-sorted algebras. Nevertheless, to facilitate comprehension,52

in this paper we have opted to present the single-sorted version of our findings. The only53

prerequisites for reading this work are familiarity with category theory [16, 18], universal54

algebra [1, 4, 5, 6, 7, 14, 15, 15, 21, 22, 24], the theory of ordered sets [2, 11] and set55

theory [3, 13]. Nevertheless, regarding set theory, we have adopted the following conventions.56

An ordinal α is a transitive set that is well-ordered by ∈, thus α = {β | β ∈ α}. The first57

transfinite ordinal ω0 will be denoted by N, which is the set of all natural numbers, and,58

from what we have just said about the ordinals, for every n ∈ N, n = {0, . . . , n − 1}.59

2 Preliminaries60

In this paper, we will use a slight generalization of the notion of algebra.61

▶ Definition 1. For n ∈ N, the category of n-categories will be denoted by nCat. Given two62

n-categories A and B, we will call the morphisms in nCat from A to B n-functors. We will63

denote by nFunc(A, B) the set of all n-functors from A to B. The set of the finitary operations64

on an n-category A is (nFunc(Ak, A))k∈N, where, for every k ∈ N, Ak =
∏

j∈k A (if k = 0,65

then A0 is a final n-category).66

Let Σ be a signature. A structure of n-categorial Σ-algebra on an n-category A is a family67

F = (Fk)k∈N, where, for k ∈ N, Fk is a mapping from Σk to nFunc(Ak, A) (if k = 0 and68

σ ∈ Σ0, then F0(σ), picks out an object of A and its identity morphism). An n-categorial69

Σ-algebra is a pair (A, F ), abbreviated to A, where A is an n-category and F a structure of70

n-categorial Σ-algebra on A. For a pair k ∈ N and a formal operation σ ∈ Σk, in order to71

simplify the notation, the n-functor Fn(σ) from An to A will be written simply as σA.72

An n-categorial Σ-homomorphism from A to B, where B = (B, G), is a triple (A, F, B),73

abbreviated to F : A −→ B, where F is an n-functor from A to B such that, for every k ∈ N,74

every σ ∈ Σk and every family (aj)j∈k ∈ Ak, we have that F (σA((aj)j∈k)) = σB((F (aj))j∈k).75

We will denote the category of n-categorial Σ-algebras and n-categorial Σ-homomorphisms by76

nCatAlg(Σ).77

2.1 Translations78

We next introduce, for a Σ-algebra, the concepts of elementary translation and of translation79

with respect to it.80

▶ Definition 2. Let A be a Σ-algebra. We denote by Etl(A) the subset of Hom(A, A)81

defined as follows: for every mapping T ∈ Hom(A, A), T ∈ Etl(A) if and only if there is82

a natural number n ∈ N − 1, an index k ∈ n, an n-ary operation symbol σ ∈ Σn, a family83

(aj)j∈k ∈ Ak, and a family (al)l∈n−(k+1) ∈ An−(k+1) (recall that k + 1 = {0, 1, . . . , k} and84

that n − (k + 1) = {k + 1, . . . , n − 1}) such that, for every x ∈ A,85

T (x) = σA(a0, . . . , ak−1, x, ak+1, . . . , an−1).86
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We will sometimes use the following presentation of the elementary translations, which87

consists in adding an underlined space to denote where the variable will be88

T = σA(a0, . . . , ak−1, , ak+1, . . . , an−1).89

In this case we will say that T is an elementary translation of type σ. We will call the90

elements of Etl(A) the elementary translations for A.91

We will denote by Tl(A) the subset of Hom(A, A) defined as follows: For every mapping92

T ∈ Hom(A, A), T ∈ Tl(A) if and only if there is an m ∈ N − 1 and a family (Tj)j∈m of93

elementary translations in Etl(A)m for which T = Tm−1 ◦ · · · ◦ T0. For translations, as for94

words on an alphabet, we have the notion of subtranslation of a translation, which is the95

counterpart of that of subword of a word. In particular, for a translation as above we will let96

T ′ stand for the composition Tm−2 ◦ · · · ◦ T0 and we will call it the maximal prefix of T , and97

we will represent T as Tm−1 ◦ T ′ or under the form:98

T = σA (a0, . . . , ak−1, T ′, ak+1, . . . , an−1) ,99

where Tm−1 = σA(a0, . . . , ak−1, , ak+1, . . . , an−1). The underlined space notation can be100

extended to translations as well. We will say that T is a translation of type σ if the elementary101

translation Tm−1 is of type σ. We will call m the height of T and we will denote this fact by102

|T | = m. In this regard, elementary translations have height 1 and, if T is a translation of103

height m, i.e., |T | = m, then its maximal prefix has height m − 1, i.e., |T ′| = m − 1. We will104

call the elements of Tl(A) the translations for A. Besides the identity mapping idA will be105

viewed as an element of Tl(A). The identity translation has no associated type and we will106

consider that it has height 0, i.e., |idA| = 0. Moreover, since the identity mapping idA is a107

translation, we agree that an elementary translation T has the identity as maximal prefix.108

The following are characterizations of the congruences on a Σ-algebra.109

▶ Proposition 3 (Prop. 2.7.4). Let A be a Σ-algebra and Φ an equivalence relation on A.110

Then the following conditions are equivalent:111

1. Φ is a congruence on A.112

2. Φ is closed under the elementary translations on A, i.e., for every every x, y ∈ A, and113

every T ∈ Etl(A), if (x, y) ∈ Φ, then (T (x), T (y)) ∈ Φ.114

3. Φ is closed under the translations on A, i.e., for every every x, y ∈ A, and every115

T ∈ Tl(A), if (x, y) ∈ Φ, then (T (x), T (y)) ∈ Φ.116

3 Paths on terms117

In this section we begin by defining the notion of rewriting system.118

▶ Definition 4. A rewriting system is an ordered triple (Σ, X, A), often abbreviated to A,119

where Σ is a signature, X a set and A a subset of Rwr(Σ, X) = TΣ(X)2, the set of the120

rewrite rules with variables in X, where TΣ(X) is the underlying set of TΣ(X), the free121

Σ-algebra on X. We will call the elements of Rwr(Σ, X) rewrite rules and we will denote122

them with lowercase Euler fraktur letters, with or without subscripts, e.g., p, pi, q, qi, etc.123

We next define the notion of path in A from a term to another.124

▶ Definition 5. Let P , Q be terms in TΣ(X) and m ∈ N. Then a m-path in A from P to Q125

is an ordered triple P = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m) in TΣ(X)m+1 × Am × Tl(TΣ(X))m,126

such that127

CVIT 2016
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1. P0 = P , Pm = Q, and,128

2. for every i ∈ m, if pi = (Mi, Ni), then Ti(Mi) = Pi and Ti(Ni) = Pi+1.129

That is, at each step i ∈ m, we consider a rewrite rule pi, and a translation for TΣ(X),130

Ti, and we require that the translation by Ti of Mi is Pi, whilst the translation by Ti of Ni131

is Pi+1. This statement can also be understood through the use of substitutions. We will132

be say that Pi contains Mi as a subterm and that Pi+1 results from substituting one of its133

subterms Mi for Ni in Pi. This justifies the name rewriting rules for the elements in the134

family (pi)i∈m. On the other hand, we could think of the translations in the family (Ti)i∈m135

as the contexts in which the rewriting rules are applied.136

These paths will be variously depicted as P : P −→ Q or137

P : P0
(p0,T0)−−−−→ P1

(p1,T1)−−−−→ . . . Pm−2
(pm−2,Tm−2)−−−−−−−−−→ Pm−1

(pm−1,Tm−1)−−−−−−−−−→ Pm138

For every i ∈ m, we will say that Pi+1 is (pi, Ti)-directly derivable or, when no confusion139

can arise, directly derivable from Pi. For every i ∈ m + 1, the term Pi will be called a140

0-constituent of the m-path P. The term P0 will be called the (0, 1)-source of the path P,141

the term Pm will be called the (0, 1)-target of the path P, and we will say that P is a path142

from P0 to Pm. The length of a m-path P in A, denoted by |P|, is m and we will say143

that P has m steps. If |P| = 0, then we will say that P is a (1, 0)-identity path. This144

happens if, and only if, there exists a term P in TΣ(X) such that P = ((P ), λ, λ), identified145

to (P, λ, λ), where, by abuse of notation, we have written (λ, λ) for the unique element of146

A0 × Tl(TΣ(X))0. This path will be called the (1, 0)-identity path on P . If |P| = 1, then we147

will say that P is a one-step path. We will denote by PthA the set of all possible paths in A.148

We define the mappings149

1. ip(1,X) the mapping from X to PthA that sends x ∈ X to the (1, 0)-identity path on x; by150

2. sc(0,1) the mapping from PthA to TΣ(X) that sends a path to its (0, 1)-source; by151

3. tg(0,1) the mapping from PthA to TΣ(X) that sends a path to its (0, 1)-target; and by152

4. ip(1,0)♯ the mapping that sends a term P to the (1, 0)-identity path on P .153

These mappings are depicted in the diagram of Figure 3a.154

We next define the partial operation of 0-composition of paths.155

▶ Definition 6. Let P, Q be paths in PthA, where, for a unique m ∈ N, P is a path in A156

of the form P = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m) , and, for a unique n ∈ N, Q is a path in A157

of the form Q = ((Qj)j∈n+1, (qj)j∈n, (Uj)j∈n) , such that sc(0,1)(Q) = tg(0,1)(P).158

Then the 0-composite of P and Q, denoted by Q ◦0 P, is the ordered triple159

Q ◦0 P = ((Rk)k∈m+n+1, (rk)k∈m+n, (Vk)k∈m+n) ,160

where161

Rk =
{

Pk,

Qk−m,

if k ∈ m + 1;
if k ∈ [m + 1, m + n + 1],162

rk =
{
pk,

qk−m,

if k ∈ m;
if k ∈ [m, m + n],163

Vk =
{

Tk,

Uk−m,

if k ∈ m;
if k ∈ [m, m + n].164

165

When defined, Q◦0P is a (m+n)-path in A from sc(0,1)(P) to tg(0,1)(Q). Moreover, when166

defined, the partial operation of 0-composition is associative and, for every term P ∈ TΣ(X),167
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the (1, 0)-identity path on P is, when defined, a neutral element for the operation of 0-168

composition. The above definition gives rise to a category whose objects are terms in TΣ(X)169

and whose morphisms are paths P between terms.170

We next define the notion of subpath of a path.171

▶ Definition 7. Let m ∈ N, and k, l ∈ m with k ≤ l. Let P be a m-path in PthA of172

the form P = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m). Then we will denote by Pk,l the ordered triple173

Pk,l =
(
(Pi+k)i∈(l−k)+1, (pi+k)i∈(l−k), (Ti+k)i∈(l−k)

)
. We will call Pk,l the subpath of P174

beginning at position k and ending at position l + 1. In particular, subpaths of the form175

P0,k will be called initial subpaths of P, and subpaths of the form Pl,m−1 will be called final176

subpaths of P.177

We introduce the notion of echelon, a key concept in the development of our theory.178

▶ Definition 8. We denote by ech(1,A) the mapping from A to PthA defined as follows:179

ech(1,A)
{

A −→ PthA
p = (M, N) 7−→ ((M, N), p, idTΣ(X))

180

This mapping associates to each rewrite rule p = (M, N) in A the one-step path from M to181

N that uses the rewrite rule p in the identity translation, see Figure 3a. This definition is182

sound because (1) idTΣ(X)(M) = M and (2) idTΣ(X)(N) = N . We will call ech(1,A)(p) the183

echelon associated to p. Moreover, we will say that a path P ∈ PthA is an echelon if there184

exists a rewrite rule p ∈ A such that ech(1,A)(p) = P. Finally, we will say that a path P is185

echelonless if |P| ≥ 1 and none of its one-step subpaths is an echelon.186

From the above it follows that the translations of an echelonless path must be non-identity187

translations. We next introduce the notion of a head-constant echelonless path.188

▶ Definition 9. Let P = ((Pi)i∈m+1, ((pi)i∈m, (Ti)i∈m) be an echelonless path in PthA. We189

will say that P is a head-constant echelonless path if (Ti)i∈m, the family of translations190

occurring in it, have the same type, i.e., they are associated to the same operation symbol.191

The importance of echelonless paths is that they can only traverse complex terms (terms192

in TΣ(X) that are neither variables nor constants) and force homogeneity in this structure.193

That is, an echelonless path is forced to traverse complex terms associated to a non-constant194

operation symbol σ ∈ Σn of arity n ∈ N − {0}.

P : σTΣ(X)((P0,j)j∈n) (p0,T0)−−−−→ σTΣ(X)((P1,j)j∈n) (p1,T1)−−−−→ . . .
(pm−1,Tm−1)−−−−−−−−−→ σTΣ(X)((Pm,j)j∈n)

Figure 1 An echelonless path.
195

The following lemma states that every echelonless path is head-constant.196

▶ Lemma 10 (Lemma 6.1.4). Let P be an echelonless path in PthA. Then P is head-constant.197

This homogeneity allows us to understand the echelonless paths as a sequence of paths,198

possibly fragmented, acting in parallel in each of the components according to the arity199

of the operation symbol. Therefore, for an echelonless path, we propose a process of path200

extraction in each component that returns the family of paths that result from joining the201

fragments in each of the components. We will refer to it as the path extraction algorithm.202

CVIT 2016
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P0

P

−→

Pm

= σ(

= σ(

P0,0

P0 . . .

−→

Pm,0

, · · · ,

, · · · ,

P0,j

Pj . . .

−→

Pm,j

, · · · ,

, · · · ,

P0,n−1)

Pn−1

−→

Pm,n−1)

Figure 2 The path extraction algorithm.

▶ Lemma 11 (Lemma 6.1.5). Let P = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m) be an echelonless path203

in PthA. Let σ be the unique n-ary operation symbol in Σn for which, in virtue of Lemma 10,204

each of the translations of the family (Ti)i∈m is of type σ. Then there exists a unique pair205

((mj)j∈n, (Pj)j∈n) ∈ Nn × Pthn
A such that, for every j ∈ n, Pj is a mj-path in PthA and206

there exists a unique bijective mapping i :
∐

j∈n mj −→ m such that, for every (j, k) in207 ∐
j∈n mj, pj,k = pi(j,k).208

3.1 Algebraic structure on PthA209

We next define a structure of Σ-algebra in the set PthA. In this regard, Lemma 11 gives us210

different insights on how a path can be performed. Different strategies can be selected at211

this point. In our case, we have decided to follow a leftmost innermost strategy.212

▶ Proposition 12 (Prop. 7.0.1). The set PthA is equipped with a structure of Σ-algebra.213

Proof. Let us denote by PthA the Σ-algebra defined on PthA as follows. For every n-ary214

operation symbol σ ∈ Σn, the operation σPthA , from Pthn
A to PthA, assigns to a family of215

paths (Pj)j∈n ∈ Pthn
A where, for every j ∈ n, Pj is a mj-path in A from Pj,0 to Pj,mj of216

the form Pj =
(
(Pj,k)k∈mj+1, (pj,k)k∈mj

, (Tj,k)k∈mj

)
,, precisely the m-path in A given by217

σPthA ((Pj)j∈m) = ((Pi)i∈m+1, (pi)i∈m, (Ti)i∈m, ), where m =
∑

j∈n mj is the sum of the218

family of natural numbers (mj)j∈n.219

Let us point out the following facts. By construction, the i-th element of m will be the220

k-th element of the addend mj , for a unique j ∈ n and a unique k ∈ mj . We will write221

i = (j, k) to denote this dependency.222

Returning to the definition of σPthA((Pj)j∈n), for i ∈ n with i = (j, k), we define the223

0-constituent at step i of σPthA((Pj)j∈n) to be the term224

Pi = σTΣ(X) (
P0,m0 , · · · , Pj−1,mj−1 , Pj,k, Pj+1,0, · · · , Pn−1,0

)
.225

That is, if i ∈ m and i = (j, k), then we have that, to the left of position j, every subterm226

is equal to the last term of the corresponding path, and, to the right of position j, every227

subterm is equal to the initial term of the corresponding path. The j-th subterm of Pi228

is the k-th term appearing in the path Pj . In particular, since 0 = (0, 0), we have that229

P0 = σTΣ(X)((Pj,0)j∈n). Finally, for the case i = m, we define Pm = σTΣ(X)((Pj,mj )j∈n).230

For i ∈ m with i = (j, k), we define the rewrite rule pi to be equal to pj,k. That is, the231

i-th rewrite rule of σPthA((Pj)j∈n) is equal to the k-th rewrite rule of the path Pj .232

Finally, for i ∈ m with i = (j, k), we define the translation at step i of σPthA((Pj)j∈n)233

to be equal to Ti = σTΣ(X) (
P0,m0 , · · · , Pj−1,mj−1 , Tj,k, Pj+1,0 · · · , Pn−1,0

)
. That is, if i ∈ m234

and i = (j, k), then we have that, to the left of position j, every subterm is equal to the term235

of the last 0-constituent of the corresponding path, and, to the right of position j, every236

subterm is equal to the term of the initial 0-constituent of the corresponding path. The j-th237

subterm of Ti is the k-th translation appearing in the path Pj . ◀238
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It can be shown that σPthA((Pj)j∈n) is a path in A of the form239

σPthA((Pj)j∈n) : σTΣ(X)((sc(0,1)(Pj))j∈n) −→ σTΣ(X)((tg(0,1)(Pj))j∈n).240

Moreover, if the family of paths contains at least a non-identity path, then the path241

σPthA((Pj)j∈n) is an echelonless path. Furthermore, the path extraction algorithm applied242

to it retrieves the original family (Pj)j∈n. Let us note that the set ip(1,0)♯[TΣ(X)], of (1, 0)-243

identity paths, becomes a Σ-subalgebra of PthA, the mappings sc(0,1) and tg(0,1) become244

Σ-homomorphisms and the mapping ip(1,0)♯ is a Σ-homomorphism that can be obtained by245

the universal property of TΣ(X) on ip(1,X), see Figure 3a.246

3.2 Order structure on PthA247

In this subsection we define on PthA an Artinian order, which will allow us to justify both248

proofs by Artinian induction and definitions by Artinian recursion.249

▶ Definition 13. We let ≺PthA denote the binary relation on PthA consisting of the ordered250

pairs (Q,P) ∈ Pth2
A for which one of the following conditions holds251

1. P and Q are (1, 0)-identity paths of the form P = ip(1,0)♯ (P ), Q = ip(1,0)♯ (Q), for some252

terms P ∈ TΣ(X) and Q ∈ TΣ(X) and the inequality Q <TΣ(X) P holds, where ≤TΣ(X)253

is the subterm preorder on TΣ(X).254

2. P is a path of length m strictly greater than one containing at least one echelon, and if255

its first echelon occurs at position i ∈ m, then256

a. if i = 0, then Q is equal to P0,0 or P1,m−1,257

b. if i > 0, then Q is equal to P0,i−1 or Pi,m−1;258

3. P is an echelonless path and Q is one of the paths extracted from P in virtue of Lemma 11.259

We will denote by ≤PthA the reflexive and transitive closure of ≺PthA , i.e., the preorder on260

PthA generated by ≺PthA .261

For the preordered set (PthA, ≤PthA) it can be shown that the minimal elements are the262

identity paths on minimal elements in TΣ(X), i.e., variables and constants, and the echelons.263

The most important feature of this relation is that it is antisymmetric and there is not any264

strictly decreasing ω0-chain.265

▶ Proposition 14 (Prop. 8.0.12). (PthA, ≤PthA) is an Artinian ordered set.266

4 The Curry-Howard mapping267

In this section we define a new signature, the categorial signature determined by A.268

▶ Definition 15. The categorial signature determined by A on Σ, denoted by ΣA, is the269

signature defined, for every n ∈ N, as follows:270

ΣA
n =


Σn, if n ̸= 0, 1, 2;
Σ0 ⨿ A, if n = 0;
Σ1 ⨿ {sc0, tg0}, if n = 1;
Σ2 ⨿ {◦0}, if n = 2.

271

That is, ΣA is the expansion of Σ obtained by adding, (1) as many constants as there are272

rewrite rules in A, (2) two unary operation symbols sc0 and tg0, which will be interpreted as273

total unary operations, and (3) a binary operation symbol ◦0 which will be interpreted as a274

partial operation.275
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Let η(1,X) denote the standard insertion of generator from X to TΣA(X). This extension276

allows us to view all terms in TΣ(X) as terms in TΣA(X). Let η(1,0)♯ denote the embedding277

from TΣ(X) to TΣA(X). Furthermore, every rewrite rule in A can also be seen as a constant278

in TΣA(X). Let η(1,A) denote the embedding from A to TΣA(X), see Figure 3a.279

We next show that the set PthA has a natural structure of partial ΣA-algebra.280

▶ Proposition 16 (Prop. 9.1.1). The set PthA is equipped with a structure of partial ΣA-281

algebra.282

Proof. Let us denote by PthA the partial ΣA-algebra defined on PthA as follows. The283

operations from Σ are defined as in Proposition 12. Every constant operation symbol p ∈ A284

is interpreted as the echelon ech(1,A)(p) introduced in Definition 8. The 0-source operation285

symbol is interpreted as the unary operation that maps a path P in PthA to the (1, 0)-286

identity path ip(1,0)♯(sc(0,1)(P)), see Definition 5. The 0-target is interpreted analogously.287

The 0-composition is the partial operation defined in Proposition 6. ◀288

The previous results, will allow us to consider paths in the rewriting system A as terms289

relative to ΣA and X. To do this, we will define, by Artinian recursion, a mapping from290

PthA to TΣA(X). In this way, every path in A will be denoted by a term in TΣA(X). Since291

this mapping reminds us of the classical Curry-Howard correspondence (see [10] and [17]),292

we have decided to denote it by CH(1).293

▶ Definition 17. The Curry-Howard mapping is the mapping CH(1) : PthA −→ TΣA(X)294

defined by Artinian recursion on (PthA, ≤PthA) as follows.295

Base step of the Artinian recursion.296

Let P be a minimal element of (PthA, ≤PthA). Then the path P is either (1) an297

(1, 0)-identity path or (2) an echelon.298

If (1), then P = ip(1,0)♯(P ) for some term P ∈ TΣ(X). We define CH(1)(P) to be the299

term in TΣA(X) given by the lift of the term P by η(1,0)♯, i.e., CH(1)(P) = η(1,0)♯(P ).300

If (2), if P is an echelon associated to p ∈ A, then we define CH(1)(P) = pTΣA (X).301

Inductive step of the Artinian recursion.302

Let P be a non-minimal element of (PthA, ≤PthA). We can assume that P is a not a303

(1, 0)-identity path, since those paths already have an image for the Curry-Howard mapping.304

Let us suppose that, for every every path Q ∈ PthA, if Q <PthA P, then the value of the305

Curry-Howard mapping at Q has already been defined. We have that P is either (1) a path of306

length m strictly greater than one containing at least one echelon or (2) an echelonless path.307

If (1), let i ∈ m be the first index for which the one-step subpath Pi,i of P is an echelon.308

We consider different cases for i according to the cases presented in Definition 13.309

If i = 0, we have that the paths P0,0 and P1,m−1, s ≺PthA-precede the path P. In this310

case, we set CH(1) (P) = CH(1)(P1,m−1) ◦0TΣA (X) CH(1)(P0,0).311

If i ̸= 0, we have that the paths P0,i−1 and Pi,m−1 ≺PthA-precede the path P. In this312

case, we set CH(1)(P) = CH(1)(Pi,m−1) ◦0TΣA (X) CH(1)(P0,i−1).313

If (2), i.e., if P is an echelonless path in PthA, then the conditions for the path extraction314

algorithm, as stated in Lemma 11, are fulfilled. Then, by Lemma 10, there exists a unique315

n-ary operation symbol σ ∈ Σn associated to P. Let (Pj)j∈n be the family of paths in Pthn
A316

which we can extract from P. In this case, we set CH(1)(P) = σTΣA (X)((CH(1)(Pj))j∈n).317

It can be shown that the Curry-Howard mapping is a Σ-homomorphism. However, it318

is not a ΣA-homomorphism. It is enough to consider the case of identity paths, which319

are idempotent in PthA, but this idempotence is not conserved in TΣA(X), since the320

0-composition operation remains purely syntactic. However, the study of its kernel proves to321
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be interesting. A pair of paths P and Q is in Ker(CH(1)) if they basically have the same322

nature. In fact, if (P,Q) is a pair in Ker(CH(1)) and one of them is a (1, 0)-identity path,323

then they are equal. For a pair (P,Q) in Ker(CH(1)), if one of the paths has echelons, then324

so does the other (and in the same position). If one of the paths has no echelons, then neither325

does the other, and it is also associated with the same operation symbol σ ∈ Σn. In general,326

it can be shown that for a pair of paths in Ker(CH(1)), their length, source and target are327

equal. The most interesting property of the mapping CH(1) is that its kernel, Ker(CH(1)), is328

a closed ΣA-congruence on PthA. This proof is achieved by induction on (PthA, ≤PthA).329

▶ Proposition 18 (Prop. 10.1.1). Ker(CH(1)) is a closed ΣA-congruence on the partial330

ΣA-algebra PthA.331

4.1 The quotient of paths332

The last results opens up a new object of study, the quotient of paths by Ker(CH(1)). For333

a path P ∈ PthA, we will let [P] stand for [P]Ker(CH(1)), the Ker(CH(1))-equivalence class334

of P, and we will call it the path class of P. Moreover, the quotient PthA/Ker(CH(1)) will335

simply be denoted by [PthA]. In this subsection we investigate the algebraic, categorial and336

order structures that we can define on [PthA].337

As an immediate consequence of the fact that Ker(CH(1)) is a closed ΣA-congruence we338

have that [PthA] inherits a structure of partial ΣA-algebra.339

▶ Proposition 19 (Prop. 11.1.1). The set [PthA] is equipped with a structure of partial340

ΣA-algebra, that we denote by [PthA].341

The set [PthA] is equipped with a structure of categorial Σ-algebra.342

▶ Proposition 20 (Prop. 11.2.9). The set [PthA] is equipped with a structure of categorial343

Σ-algebra, that we denote by [PthA].344

Proof. We begin by showing that the partial ΣA-algebra [PthA] satisfies the defining345

equations of a category. Following Definition 1, the interpretation of operations from Σ346

need to be functors. In particular we prove that, for every n ∈ N, σ ∈ Σn and every family347

([Pj ])j∈n in [PthA]n, the following equalities holds348

σ[PthA]((sc0[PthA]([Pj ]))j∈n) = sc0[PthA](σ[PthA](([Pj ])j∈n));349

σ[PthA]((tg0[PthA]([Pj ]))j∈n) = tg0[PthA](σ[PthA](([Pj ])j∈n)).350
351

Furthermore, for every n ∈ N, σ ∈ Σn and ([Pj ])j∈n, ([Qj ])j∈n families in [PthA]n, such352

that, for every j ∈ n, sc0[PthA]([Qj ]) = tg0[PthA]([Pj ]). Then the following equality holds353

σ[PthA](([Qj ] ◦0[PthA] [Pj ])j∈n) = σ[PthA](([Qj ])j∈n) ◦0[PthA] σ[PthA](([Pj ])j∈n). ◀354

Furthermore, the set [PthA] is equipped with an Artinian order.355

▶ Definition 21. Let ≤[PthA] be the binary relation defined on [PthA] containing every pair356

([Q], [P]) in [PthA]2 for which there exists a pair of representatives Q′ ∈ [Q] and P′ ∈ [P]357

satisfying that Q′ ≤PthA P′.358

▶ Proposition 22 (Prop. 11.3.8). ([PthA], ≤[PthA]) is an Artinian ordered set.359
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5 Path terms360

Following ideas of Burmeister and Schmidt [4, 5, 6, 21, 22, 8], we consider, for a signature Γ361

and a partial Γ-algebra A, its free Γ-completion, denoted by FΓ(A). This is constructed362

using A, the domain of A, as a set of generators for the free Γ-algebra TΓ(A), in which363

we interpret the operations of Γ as the operations on A whenever they are defined and364

as purely syntactic operations on a term algebra in case they are not defined. The free365

completion is the best possible solution to the problem of having fully defined operations366

in a partial algebra. Therefore, this total Γ-algebra has the following universal property;367

for every partial Γ-algebra B and every Γ-homomorphism f from A to B, there exists a368

unique Γ-homomorphism, f fc, the free completion of f , from FΓ(A) to B extending the369

Γ-homomorphism f as usual, i.e., satisfying that f fc ◦ ηA = f , where ηA, from A to FΓ(A),370

is the standard insertion of generators.371

With the aforementioned ideas we consider the partial ΣA-algebra PthA.372

▶ Definition 23. Consider the mapping ip(1,X) from the set of variables X to PthA, in-373

troduced in Definition 5. If we consider DΣA(X), the discrete ΣA-algebra on X, i.e., no374

operation in ΣA is defined, the application ip(1,X) becomes a ΣA-homomorphism of the form375

ip(1,X) : DΣA(X) −→ PthA. By the universal property of the free completion, there exists a376

unique ΣA-homomorphism (ηPthA ◦ ip(1,X))fc, simply denoted ip(1,X)@, from TΣA(X), the377

free completion of the discrete ΣA-algebra DΣA(X), to FΣA(PthA), the free ΣA-completion378

of the path algebra PthA, such that ip(1,X)@ ◦ η(1,X) = ηPthA ◦ ip(1,X).379

At this point we begin to study the ΣA-homomorphism ip(1,X)@. The following proposition380

is fundamental for the rest of this work. It states that ip(1,X)@ acting on the value of CH(1)
381

at a path P is always another path, not necessarily equal to the input P, but which belongs382

to the equivalence class [P].383

▶ Proposition 24 (Prop. 12.1.4). The mapping ip(1,X)@ ◦ CH(1) : PthA −→ FΣA(PthA)384

sends every path P in PthA to a path in the class [P].385

It can be shown that the element ip(1,X)@(CH(1)(P)) is a normalised version of P, since386

the derivations follow a leftmost innermost derivation strategy, reflecting the definition of387

the operations in PthA.388

We next define a binary relation on TΣA(X) with the objective of matching different389

terms that, by ip(1,X)@, are sent to paths in the same equivalence class relative to Ker(CH(1)).390

▶ Definition 25. We let Θ(1) stand for the binary relation on TΣA(X) consisting exactly of391

the following pairs of terms:392

For every path P in PthA, (CH(1)(sc0PthA(P)), sc0TΣA (X)(CH(1)(P))) ∈ Θ(1);393

For every path P in PthA, (CH(1)(tg0PthA(P)), tg0TΣA (X)(CH(1)(P))) ∈ Θ(1);394

For every pair of paths Q,P in PthA, if sc(0,1)(Q) = tg(0,1)(P),395

(CH(1)(Q ◦0PthA P), CH(1)(Q) ◦0TΣA (X) CH(1)(P)) ∈ Θ(1).396

Finally, we denote by Θ[1] the smallest ΣA-congruence on TΣA(X) containing Θ(1).397

We next provide two lemmas to understand the usefulness of the ΣA-congruence Θ[1].398

The first lemma proves that if a term is such that its image under ip(1,X)@ is a path, then it399

is related, with respect to the ΣA-congruence Θ[1] with a term in CH(1)[PthA]. Actually, we400

prove that such a term is related with its image under the action of CH(1) ◦ ip(1,X)@.401
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▶ Lemma 26 (Lemma 13.1.7). Let P be a term in TΣA(X). If ip(1,X)@(P ) is a path in402

PthA then (P, CH(1)(ip(1,X)@(P ))) ∈ Θ[1].403

The next lemma proves that if two terms are Θ[1]-related and one of them, when mapped404

under ip(1,X)@, returns a path, then the other term has a similar behaviour. Moreover, if405

this situation happens, then these two paths will have the same image under CH(1).406

▶ Lemma 27 (Lemma 13.1.8). Let P, Q ∈ TΣA(X) be such that (P, Q) ∈ Θ[1], then407

ip(1,X)@(P ) ∈ PthA if, and only if, ip(1,X)@(Q) ∈ PthA;408

If ip(1,X)@(P ) or ip(1,X)@(Q) is a path in PthA then409

CH(1)(ip(1,X)@(P )) = CH(1)(ip(1,X)@(Q)).410

We next introduce the notion of path term.411

▶ Definition 28. We let PTA stand for [CH(1)[PthA]]Θ[1] =
⋃

P∈PthA
[CH(1)(P)]Θ[1] , the412

Θ[1]-saturation of the subset CH(1)[PthA] of TΣA(X). We call PTA the set of path terms.413

It can be shown that a term in TΣA(X) is a path term if, and only if, it can be interpreted414

as a path in PthA by means of ip(1,X)@. Following this, some already known mappings415

have nice restrictions, corestrictions or birestrictions to the set of path terms. Indeed, the416

embeddings η(1,X) and η(1,A) from, respectively, X and A to TΣA(X) corestrict to PTA.417

Also, the embedding η(1,0)♯, from TΣ(X) to TΣA(X), corestricts to PTA. Furthermore, the418

restriction of ip(1,X)@ to the set of path terms corestricts to PthA. Finally, the Curry-Howard419

mapping, also corestricts to PTA. When possible, we will use these refinements instead of420

the original mappings, see Figure 3b.421

5.1 Algebraic structure on PTA422

We next show that PTA is equipped with a structure of partial ΣA-algebra.423

▶ Proposition 29 (Prop. 14.1.1). The set PTA is equipped with a structure of partial424

ΣA-algebra, which is a ΣA-subalgebra of TΣA(X).425

Proof. Let us denote by PTA the partial Σ-algebra defined on PTA as follows. All the426

operations from ΣA have the same interpretation as in TΣA(X), except the operation of427

0-composition. For two path terms P, Q ∈ PTA, the 0-composition Q ◦0 P is defined if, and428

only if, sc(0,1)(ip(1,X)@(Q)) = tg(0,1)(ip(1,X)@(P )). In the positive case, the 0-composition429

operation is interpreted as in TΣA(X). ◀430

5.2 Order structure on PTA431

We next define an Artinian order on PTA. The following definition is sound because the432

subterms of path terms are also path terms.433

▶ Definition 30. Let ≤PTA be the binary relation on PTA containing every pair (Q, P ) in434

PT2
A such that Q ≤TΣA (X) P . Thus, Q ≤PTA P if, and only if, Q is a subterm of P .435

▶ Proposition 31 (Prop. 14.2.3). (PTA, ≤PTA) is an Artinian ordered set.436
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5.3 The quotient of path terms437

In this subsection we define the set of path term classes as the quotient of PTA by the438

restriction of Θ[1] to it. From this point on, to simplify the notation, for a path term439

P ∈ PTA, we will let [P ] stand for [P ]Θ[1] , the Θ[1]-equivalence class of P , and we will call it440

the path term class of P .441

▶ Definition 32. We denote by [PTA] the image of PTA under prΘ[1] , the canonical projection442

from TΣA(X) to TΣA(X)/Θ[1], i.e., [PTA] = prΘ[1] [PTA]. We call it the set of path term443

classes. Let us note that [PTA] is a subset of the quotient TΣA(X)/Θ[1], i.e., that [PTA] is444

a subquotient of TΣA(X). Actually, we have that [PTA] = PTA/Θ[1] ↾PTA.445

The projection, from TΣA(X) to TΣA(X)/Θ[1], birestricts to PTA and [PTA].446

We investigate the algebraic, categorial and order structures that we can define on [PTA].447

As an immediate consequence of the definition, the set of path term classes inherits a structure448

of partial ΣA-algebra.449

▶ Proposition 33 (Prop. 14.4.1). The set [PTA] is equipped with a structure of partial450

ΣA-algebra, that we denote by [PTA].451

The set [PTA] is equipped with a structure of categorial Σ-algebra.452

▶ Proposition 34 (Prop. 14.5.10). The set [PTA] is equipped with a structure of categorial453

Σ-algebra, that we denote by [PTA].454

Finally, we define an Artinian order on [PTA].455

▶ Definition 35. We let ≤[PTA] stand for the binary relation on [PTA] which consists456

of those ordered pairs ([Q], [P ]) in [PTA]2 for which there exists a pair of representatives457

Q′ ∈ [Q] and P ′ ∈ [P ] satisfying that ip(1,X)@(Q′) ≤PthA ip(1,X)@(P ′).458

▶ Proposition 36 (Prop. 14.6.2). ([PTA], ≤[PTA]) is an Artinian ordered set.459

6 First-order isomorphisms460

In this section we are in position to prove the main results of the paper, that the algebraic,461

categorial and order structures that we have defined on path classes and on path terms462

are isomorphic. The isomorphisms are constructed using refinements of the Curry-Howard463

mapping and the free completion of the identity path mapping.464

▶ Theorem 37 (Th. 15.1.1, 15.2.1, 15.3.3). The partial ΣA-algebras [PthA] and [PTA]465

are isomorphic. The categorial Σ-algebras, [PthA] and [PTA] are isomorphic. The Artinian466

ordered sets ([PthA], ≤[PthA]) and ([PTA], ≤[PTA]) are isomorphic.467

Proof. We let ip([1],X)@ stand for the mapping from [PTA] to [PthA] that maps a path term468

class [P ] in [PTA] to the path class [ip(1,X)@(P )] in [PthA]. This mapping is well-defined469

because two path terms P, Q in PTA such that [Q] = [P ] satisfy that [ip(1,X)@(Q)] =470

[ip(1,X)@(P )]. We let CH[1] stand for the mapping from [PthA] to [PTA] that maps a path471

class [P] in [PthA] to the path term class [CH(1)(P)] in [PTA].472

This two mappings constitute a pair of inverse ΣA-isomorphisms, a pair of inverse functors,473

i.e., of categorial Σ-isomorphisms. Finally, we show that the mappings also form a pair of474

inverse order-preserving mappings, see Figure 3b. ◀475
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A Diagrams525

The following figure collects all the mappings considered in this work.526

X

A

TΣ(X)

TΣA(X)

PthA

η(0,X)

ip(1,X)

ech(1,A)

η(1,A)

ip
(1

,0
)♯

tg
(0

,1
)

sc
(0

,1
)

CH(1)

(a) Mappings at layers 0 & 1.
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(b) Quotient mappings at layers 0 & 1.

Figure 3 Mappings considered in this work.

B Freedom527

For a specification EA associated to the rewriting system A, whose defining equations EA
528

are QE-equations, we define a QE-variety of partial ΣA-algebras V(EA).529

▶ Definition 38. For the rewriting system A, we will denote by (ΣA, V, EA), written EA for530

short, the specification in which ΣA is the signature introduced in Definition 15, V a fixed531

set with a countable infinity of variables, and EA the subset of QE(ΣA)V , consisting of the532

following equations:533

For every n ∈ N, every n-ary operation symbol σ ∈ Σn, and every family of variables534

(xj)j∈n ∈ V n, the operation σ applied to the family (xj)j∈n is always defined. Formally,535

σ((xj)j∈n) e= σ((xj)j∈n). (A0)536
537

For every variable x ∈ V , the 0-source and 0-target of x is always defined. Formally,538

sc0(x) e= sc0(x); tg0(x) e= tg0(x). (A1)539
540

For every every variable x ∈ V , we have the following equations:541

sc0(sc0(x)) e= sc0(x); sc0(tg0(x)) e= tg0(x);542

tg0(sc0(x)) e= sc0(x); tg0(tg0(x)) e= tg0(x). (A2)543
544

In other words, sc0 and tg0 are right zeros. In particular, sc0 and tg0 are idempotent.545

For every pair of variables x, y ∈ V , x ◦0 y is defined if and only if the 0-target of y is546

equal to the 0-source of x. Formally,547

x ◦0 y
e= x ◦0 y → sc0(x) e= tg0(y);548

sc0(x) e= tg0(y) → x ◦0 y
e= x ◦0 y. (A3)549

550
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For every pair of variables x, y ∈ V , if x ◦0 y is defined, then the 0-source of x ◦0 y is that551

of y and the 0-target of x ◦0 y is that of x. Formally,552

x ◦0 y
e= x ◦0 y → sc0(x ◦0 y) e= sc0(y);553

x ◦0 y
e= x ◦0 y → tg0(x ◦0 y) e= tg0(x). (A4)554

555

For every variable x ∈ V , the compositions x ◦0 sc0(x) and tg0(x) ◦0 x are always defined556

and are equal to x, i.e., sc0(x) is a right unit element for the 0-composition with x and tg0(x)557

is a left unit element for the 0-composition with x. Formally,558

x ◦0 sc0(x) e= x; tg0(x) ◦0 x
e= x. (A5)559

560

For every triple of variables x, y, z ∈ V , if the 0-compositions x ◦0 y and y ◦0 z are defined,561

then the 0-compositions x ◦0 (y ◦0 z) and (x ◦0 y) ◦0 z are defined and they are equal, i.e., the562

0-composition, when defined, is associative. Formally,563

(x ◦0 y
e= x ◦0 y) ∧ (y ◦0 z

e= y ◦0 z) → (x ◦0 y) ◦0 z
e= x ◦0 (y ◦0 z). (A6)564

565

A model of axioms A1–A6 is a category.566

For every n ∈ N, every n-ary operation symbol σ ∈ Σn, and every family of variables567

(xj)j∈n ∈ V n, the 0-source of σ((xj)j∈n) is equal to σ applied to the family ((sc0(xj))j∈n),568

and the 0-target of σ((xj)j∈n) is equal to σ applied to the family ((tg0(xj))j∈n). Formally,569

sc0(σ((xj)j∈n)) e= σ((sc0(xj))j∈n); tg0(σ((xj)j∈n)) e= σ((tg0(xj))j∈n). (A7)570
571

For every n ∈ N, every n-ary operation symbol σ ∈ Σn, and every pair of families of572

variables (xj)j∈n, (yj)j∈n ∈ V n, if, for every j ∈ n, the 0-compositions xj ◦0 yj are defined,573

then the 0-composition σ((xj)j∈n) ◦0 σ((yj)j∈n) is defined and it is equal to σ applied to the574

family (xj ◦0 yj)j∈n. Formally,575 ∧
j∈n(xj ◦0 yj

e= xj ◦0 yj) → σ((xj ◦0 yj)j∈n) e= σ((xj)j∈n) ◦0 σ((yj)j∈n) (A8)576
577

For every rewrite rule p ∈ A, p is always defined. Formally,578

p
e= p. (A9)579

580

We will let PAlg(EA) stand for the category canonically associated to the QE-variety581

V(EA) determined by the specification EA.582

Another fundamental result of this work is that the two partial ΣA-algebras TEA(PthA),583

which is the free partial ΣA-algebra in the category PAlg(EA), and [PthA] are isomorphic.584

▶ Theorem 39 (Th. 16.2.9). The partial ΣA-algebras [PthA] and TEA(PthA) are iso-585

morphic. As a consequence of Theorem 37, the partial ΣA-algebras [PTA] and TEA(PthA)586

are isomorphic.587

C An example588

For the sake of illustration, here is an example of the notions defined in this work.589

▶ Example 40. Consider the signature Σ containing a constant operation symbol ⊤ and a590

binary operation σ, i.e., Σ0 = {⊤}, Σ2 = {σ}, and Σn = ∅, for n ̸= 0, 2. Let X = {x, y} be591

a set of variables and let A be the subset of TΣ(X)2 given by592

A = {p = (x, y),q = (σ(y, y), ⊤), r = (σ(⊤, y), x)}593
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Let P be the path in PthA defined as the following sequence of steps594

P : σ(σ(x, y), x) (p, σ(σ( ,y),x))−−−−−−−−−−−−−→ σ(σ(y, y), x) (p, σ(σ(y,y), ))−−−−−−−−−−−−−→ σ(σ(y, y), y)
(q, σ( ,y))−−−−−−−−−−−−−→ σ(⊤, y) (r, )−−−−−−−−−−−−−→ x

595

This is a path in A of length 5 from σ(σ(x, y), x) to x. The final one-step subpath P3,3,596

from σ(⊤, y) to x, is equal to ech(1,A)(r), the echelon associated with r. The initial subpath597

P(0,3) is an echelonless path in A (none of its translations is the identity translation) of598

length 4 from σ(σ(x, y), x) to σ(⊤, y). According to Lemma 10, the initial subpath P0,3 is599

head-constant. Note that all the translations of P0,3 are of type σ. According to Lemma 11,600

the path extraction algorithm applied to it retrieves two paths in A, that we call Q and R.601

See Figure 4a.602

Q : σ(x, y) (p, σ( ,y))−−−−−−−−−−−−−→ σ(y, y) (q, )−−−−−−−−−−−−−→ ⊤
R : x

(p, )−−−−−−−−−−−−−→ y
603

Following Proposition 12, we can consider the path σPthA(Q,R). Note that this path is not604

equal to P0,3. In it, the transformation follows a leftmost innermost derivation strategy. It605

is also an echelonless path associated to the operation symbol σ and the path extraction606

algorithm applied to it retrieves exactly Q and R, see Figure 4b.607

σ( σ(x, y) , x )

σ( σ(y, y) , x )

σ( σ(y, y) , y )

σ( ⊤ , y )

(p, σ( , y))

(p, )

(q, )

=

=

=

(a) The subpath P0,3.

σ( σ(x, y) , x )

σ( σ(y, y) , x )

σ( ⊤ , x )

σ( ⊤ , y )

(p, σ( , y))

(p, )

(q, )

=
=

=

(b) The path σPthA (Q,R).

Figure 4 The path extraction algorithm at use.

Note that R is equal to the echelon associated with p, whilst Q is composed of a608

an echelonless path, namely Q0,0, followed by the echelon associated with q. Following609

Definition 13, the paths in A that are under P with respect to the order ≤PthA are depicted610

in the Hasse diagram of Figure 5a. This process of decomposition ultimately halts, according611

to Proposition 14, until we reach echelons or identity paths on variables or constants, the612

minimal elements of the order ≤PthA .613

Next we consider the extended signature ΣA, enlarging Σ by adding as constant operation614

symbols as many rewrite rules as there are in A, two unary operation symbols of source615

and target, and a new binary operation symbol of composition, i.e., ΣA
0 = {⊤,p,q, r},616

ΣA
1 = {sc0, tg0}, Σ2 = {σ, ◦0}, and ΣA

n = ∅, for n ̸= 0, 1, 2. Following Definition 17 we can617

define CH(1)(P), the image of the Cury-Howard mapping on P by recursion on ≤PthA , as618

seen in Figure 5b.619
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P

P0,3 ech(1,A)(r)

ech(1,A)(p) Q

ech(1,A)(q)Q0,0

ip(1,0)♯(y)ech(1,A)(p)

(a) Paths under P with respect to ≤PthA .

CH(1)(P) = CH(1)(P3,3) ◦0 CH(1)(P0,3)

= r ◦0 σ(CH(1)(Q), CH(1)(R))

= r ◦0 σ(CH(1)(Q1,1) ◦0 CH(1)(Q0,0),p)
= r ◦0 σ(q ◦0 σ(p, y),p).

(b) Recursive definition of CH(1)(P).

Figure 5 The Curry-Howard mapping.

The Curry-Howard mapping at P, i.e., CH(1)(P) = r ◦0 σ(q ◦0 σ(p, y),p) is a term in620

TΣA(X) that contains all the interesting derivation processes occurring in P.621

Now, consider the ΣA-homomorphism ip(1,X)@, from TΣA(X) to FΣA(PthA). Note that622

ip(1,X)@ interprets the operations as in PthA when possible, whilst leaving purely syntactic623

terms when this is not possible. Since CH(1)(P) is, by definition, a path term, the image624

of it under ip(1,X)@ is, according to Proposition 24 a path, not necessarily equal to P but625

in the same Ker(CH(1))-class. In fact, ip(1,X)@(CH(1)(P)) denoted by P@ for simplicity, is626

given by the path627

P@ : σ(σ(x, y), x) (p, σ(σ( ,y),x))−−−−−−−−−−−−−→ σ(σ(y, y), x) (q, σ( ,x)−−−−−−−−−−−−−→ σ(⊤, x)
(p, σ(⊤, ))−−−−−−−−−−−−−→ σ(⊤, y) (r, )−−−−−−−−−−−−−→ x

628

As said above, the paths P and P@ have the same image under the Curry-Howard mapping.629

One can see that in P@ all transformations follow a leftmost innermost derivation strategy.630

Nevertheless, CH(1)(P) is not the unique term to denote paths in [P]. According to631

Definition 25, the following term is Θ[1]-related with CH(1)(P).632

r ◦0 σ(q, y) ◦0 σ(σ(y, y),p) ◦0 σ(σ(p, y), x)633

Thus, following Lemma 27, the above term is a path term, i.e., an alternative term description634

of the path class [P]. In fact, when mapped to a path in PthA under the action of ip(1,X)@,635

the above term retrieves precisely the original path P.636

The isomorphism CH[1], introduced in Theorem 37, maps the path class [P] to the path637

term class [CH(1)(P)], whilst its inverse, i.e., ip([1],X)@ will map [CH(1)(P)] to [P].638
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