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Summary

Flow cytometry (FCM) allows the simultaneous measurement
of multiple fluorescences and light scatter induced by illumination
of single cells or microscopic particles in suspension, as they flow
rapidly through a sensing area. In some systems, individual cells
or particles may be sorted according to the properties exhibited.
By using appropriate fluorescent markers, FCM is unique in that
multiple structural and functional parameters can be quantified si-
multaneously on a single-particle basis, whereas up to thousands of
biological particles per second may be examined. FCM is increas-
ingly used for basic, clinical, biotechnological, and environmental
studies of biochemical relevance. In this critical review, we summa-
rize the main advantages and limitations of FCM for biochemical
studies and discuss briefly the most relevant parameters and ana-
Iytical strategies. Graphical examples of the biological information
provided by multiparametric FCM are presented. Also, this review
contains specific sections on flow cytoenzymology, FCM analysis of
isolated subcellular organelles, and cell-free FCM.
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INTRODUCTION

Flow cytometry (FCM) allows the simultaneous measure-
ment of multiple fluorescences and light scatter induced by illu-
mination of single cells or microscopic particles in suspension,
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as they flow rapidly through a sensing area (/, 2). In some sys-
tems (cell sorters), individual cells or particles may be physically
separated according to their properties (Fig. 1). Thus, FCM is
unique in that multiple biological parameters can be quantified
simultaneously on a single-particle basis, while up to thousands
of events per second may be examined. As a result, large and
heterogeneous cell populations are described based on the bio-
metric properties of their individuals (Table 1).

Because of its historical development (/) and its important
clinical implications, the largest body of current applications is
diagnostic/prognostic, based on immunophenotyping and DNA
content assays (3, 4). However, FCM is now a choice methodol-
ogy in basic and applied studies, including cellular and molec-
ular biology (5, 6), biotechnology (7), toxicology (8), microbi-
ology (9), plant physiology (/0), and oceanography/limnology
(11). On the other hand, clinical FCM increasingly implements
biochemical assays to improve sensitivity of abnormal cell iden-
tification (/2) and to provide functional information about patho-
genetic mechanisms involved in disease conditions (/3).

FCM Analysis of Cell Biochemistry: Parameters
and Probes

Individual cells, bearing multiple markers on their surface,
contain intracellular compartments with their own metabolic
environment. Functional integrity of membranes is necessary
for the regulation of such compartments that, in turn, condition
metabolic pathways within them. In many cases, homeostasis of
cell compartments requires regulated transport across cell mem-
branes. On the other hand, plasma membrane is deeply involved
in biochemical responses that mediate cell activation triggered
by multiple stimuli. Many of these responses are dependent on
specific receptors and trigger consistent changes in ionic status
and enzyme activities in signal transduction pathways, leading
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FLOW CYTOMETRY IN BIOCHEMICAL ANALYSIS

Table 1
Biochemical assays by flow cytometry: samples
and probes

Type of biological samples
o Pluricellular organisms e Isolated nuclei
e Cell spheroids e Subcellular elements
e Hybridomas e Chromosomes
e Cell fusions e Liposomes
e Human cells e Mallory bodies
e Animal cells e Amyloid plaque fibers
e Plant protoplasts e Membrane fractions
e Prokaryotic cells e Viral particles
e Yeasts e Soluble antigens'
e Microalgae e DNA sequences'

Type of fluorochromes and fluorescent markers

e Fluorochromes reacting e Fluorescent pH indicators
with specific chemical o Fluorescent ion chelators
groups e Membrane-potential

e Fluorochrome pairs for sensitive distribution
resonance energy transfer  fluorescent dyes

o Fluorescent antibodies o Fluorogenic substrates of

o Fluorescent lectins intracellular enzymes

o Fluorescent nucleic acid e Fluorescent macromolecules
sequences o Fluorescent synthetic

o Fluorescent lipids particles

e Endogenous fluorescent
molecules

''Using fluorescent microspheres as capture reagents and fluores-
cent ligands as reporter molecules.

ultimately to regulation of gene expression, cell diferentiation,
and/or proliferation.

FCM is applied successfully to study each step of this vast
complexity of cellular biochemistry. For most applications, cells
must be stained with fluorescent markers of defined optical and
biological properties (Table 1), but FCM takes also advantage
of endogenous fluorochromes related to intracellular functions
(1). In this way, as summarized in Table 2, the range of param-
eters available for the FCM evaluation of cell biochemistry has
been extended from broad assessment of cell behaviour to quan-
tification of single molecules undergoing or regulating specific
biochemical reactions.

A significant part of FCM studies involves analysis of these
parameters in relation to cell activation (/4, 15) and prolifera-
tion (16), cell sensitivity (17, 18) or resistance to drug action
(19), and cell death by apoptosis or necrosis in a wide range of
experimental settings (20-22). Although most of these studies
fall within the scope of basic research, the development of sim-
ple assays for these parameters has allowed their application to
different clinical situations (3, 23).
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Specific Features, Strategies and Limitations
of Functional FCM

Because of the unique feature of FCM, i.e., the multipara-
metric examination (and physical separation) of single cells or
particles at very fast rate, this particular technique of biochem-
ical analysis has evident advantages over other conventional
methodologies. Thus, the large number of cells analyzed and
the instrumental settings of current cytometers provide multi-
ple strategies to obtain primary information, and allow a large
number of general applications, as Table 3 attempts to cover.
From a practical point of view, the main assets of FCM can be
summarized as follows:

Multiparametric Data Acquisition. Most standard biochem-
ical procedures determine a single parameter per assay and are
not sensitive enough for single-cell analysis. FCM instruments
allow routinely two morphology-related parameters (forward-
and side-light scatter) and 3-5 fluorescence signals per single
particle. In this way, in a single-tube assay, one or more param-
eters may be used to identify and select (“gated analysis”) cell
subsets in heterogeneous populations (e.g., live, apoptotic, or
necrotic cells; cells of different origin or lineage; cells in dif-
ferent cell cycle stage and so on), whereas other signals may
be assigned to analyze specific structures or functions in these
selected populations. An example of this concept is illustrated
in the single-tube assay shown in Fig. 2. The number of avail-
able parameters per single cell increases when multiple-laser cy-
tometers are used. Obviously, the analysis of multiple aliquots
per sample allows to expand indefinitely the number of param-
eters by combining separately fluorescent markers of different
biological properties but similar optical properties. An example
of this concept is illustrated in the integrated analysis shown
in Fig. 3. This type of FCM analysis (panel analysis) is the
hallmark of immunohematology, where typically more than 20
fluorescent monoclonal antibodies against epitopes in leukocyte
plasma membrane may be used for typing leukemias and lym-
phomas (4, 24).

Multivariate Data Analysis. Due to the hardware and soft-
ware design of modern cytometers, multiparametric acquisition
is interfaced to multivariate data analysis. In this way, a cell
population is not described by mere enumeration of the individ-
ual properties measured but by their correlation on a single-cell
basis, thus increasing the discriminating power. Moreover, the
possibility of storing FCM data as an uncorrelated data matrix for
each analyzed cell (“list mode files”) allows one to define, if nec-
essary, new parametric correlations and population selection by
replaying (off-line) those electronic files. This is an invaluable
tool especially when small or infrequent samples are studied.

Fast Analysis of Large Number of Live Cells. FCM may be
performed on a large variety of biological material in different
conditions of vitality (e.g., intact fresh cells, fixed and/or per-
meabilized cells), as indicated in Table 3. The use of live cells
allows one to probe multiple biochemical parameters in mini-
mally perturbed intracellular environments, as well as in near-
physiological extracellular conditions.
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Table 2

Biochemical assays by flow cytometry: parameters

Cell surface parameters

Cytosolic parameters

Nuclear parameters

Subcellular elements

Membrane integrity

Membrane potential

Membrane recycling

Receptor expression

Receptor interactions

Receptor modulation

Surface glycoconjugates

Ligand binding to surface receptors
Cell-cell adhesion

Membrane fluidity

Cholesterol content

Loss of lipid assimetry
Permeability to fluorescent probes
Membrane peroxidation
Membrane shedding

Endocytosis

Phagocytosis

Pynocytosis

Efflux pumps

Bacterial cell wall

General protein
Mitochondrial activity
Mitochondria content
Cytosolic pH
Lysosomal pH
Tyrosine phosphorylation
Cytosolic Ca**
ROS and NOS
Enzyme activity:
Oxidases
Dehydrogenases
Esterases
Proteases
Transferases
Protein modification
Free soluble thiols
Glutathione
Protein thiols
Nonpolar lipids
Polar lipids

DNA content

RNA content

Nuclear total proteins
Nuclear specific proteins
Chromatin conformation
Cyclins and CDks
Proliferation-related antigens
DNA synthesis

DNA strand breaks
DNA oxidation

DNA repair

Nuclear receptors

Gene expression

Gene reporting

Normal mitochondria
Megamitochondria
Cis-Golgi vesicles
Trans-Golgi vesicles
Endosomes
Phagosomes
Chloroplasts
Thylakoids
Extracellular analytes

Yeast cell wall Cytoskeletal proteins

Granule content

The fast rate of data acquisition and the possibility of ex-
amining millions of individual particles in a reasonable time
allows the detection and accurate analysis of infrequent or rare
cells, down to 1 event per 108 cells (25). Such a possibility is in
contrast with bulk standard fluorimetric determinations in which
millions of cells (or their extracts) are analyzed at the same time,
yielding a single mean concentration value.

Individual Cell Sorting. Some FCM systems are able to
separate physically individual cell or particles according to their
cytometric properties. The most advanced cell sorters are based
on electromagnetic deflection of individual droplets generated
by high-frequency vibration of the flow chamber (/). In such
systems, up to four different subpopulations can be sorted simul-
taneously or, on the other hand, one single cell can be deposited
in a given position of a microwell array. Cell sorting allows the
combination of the intrinsic capabilities of FCM results with
information obtained by image (conventional and confocal mi-
croscopy) and molecular (polymerase chain reaction, in situ hy-
bridization) techniques, and provides a preparative tool for rapid
isolation of living rare cells of biochemical relevance, such as
stem cells (26), transfectants (27), or hybridomas producing a
given antibody (/). It is worth mentioning the contribution of
flow sorting of chromosomes to the sequencing of the human
genome (28, 29).

Asindicated in Table 4, there are also critical points and diffi-
culties when performing adequate functional analysis by FCM,

which mostly depend on the maintenance of adequate viability
or metabolic capacity of cells and subcellular elements as well
as avoiding the interference of fluorescent probes with cellular
functions.

FCM Approach to Classic Biochemistry:
Flow Cytoenzymology

Currently, a wide range of fluorescent substrates or their fluo-
rogenic precursors are available for FCM analysis (/, 2, 30). On
the other hand, flow cytometers incorporate time as a parameter
to follow the kinetics of fluorescence variations on the specific
modification of substrates (14, 31). For these reasons, flow cy-
toenzymology (30) appears as a promising application of FCM
for analysis of metabolism. Flow cytoenzymology is applied to
a growing number of enzymatic activities in multiple biochem-
ical pathways (32-34) and these studies may have a direct clin-
ical impact (35, 36). Thus, they are currently applied to assess
leukocyte function, to correlate cell metabolism and malignant
capacity in fresh tumor cells, and to evaluate drug metabolism
and therapy monitorization in pharmacological studies (37).

Flow Cytometric Analysis of Isolated
Subcellular Compartments

The use of flow cytometers to analyze functional properties of
isolated subcellular particles is less frequent than its application
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Biochemical assays by flow cytometry: strategies, information, and applications

Assay strategies

Primary information

Main general applications

a) According to the biological
material:
e Assays using fresh cells
e Assays using fixed cells
e Assays using subcellular elements
e Multiplexed assays

b) According to specific cell selection:
e Nongated assays
e Gated assays

¢) According to assay duration:
e Single end-point assays
e Sequential end-point assays
o Kinetic assays with unperturbed
cells
o Kinetic assays following cell
stimulation with ligands

o Intensity of expression of multiple
parameters within homogeneous
cell populations

e Heterogeneity of expression of multiple
parameters in cell subpopulations

e Correlation between different parameters
in cell populations

e Ratio between multiple parameters
in single cells

e Evolution of fast and/or transient
dynamic parameters

e Evolution of slow and/or sustained
dynamic parameters

e Detection and analysis of rare
cells/particles

e Correlation with parameters analyzed
with other techniques following

o Identification/characterization of
cells based upon multiple
biochemical parameters

e Diagnostic applications, including
detection of rare pathological cells

e Analysis of cell activation,
including receptor biology and
signal transduction

e Analysis of gene expression,
including gene engineering

e Analysis of cell cycle and
proliferation-related events

e Analysis of differentiation

e Flow cytoenzymology

e Analysis of cell viability
and cell death, including
apoptosis and necrosis

d) According to data analysis:
e On-line analysis (real time)
e Off-line (Listmode analysis)

cell sorting

e Analysis of microbial biochemistry,
including sensitivity to drugs

e Control of biotechnological
processes, including growth
conditions and productivity

e Environmental biochemistry

in whole cell studies. However, most current instruments are
adequately sensitive for subcellular analyses, which have always
been a hallmark of biochemistry.

Some methodological aspects become critical when analyz-
ing single subcellular particles by FCM because of their small
size, the different permeability or uptake rate of dyes by iso-
lated organelles, and their usually increased lability. However,
FCM analysis of isolated organelles provides insight of subcel-

Table 4
Biochemical assays by flow cytometry: difficulties

Critical points
e Preparation of single-cell suspensions from adherent cell
populations
e Maintenance of cell viability along the experimental period
e Isolation of subcellular elements from cells and tissues
e Readjusting conditions for subcellular analysis
o Identification of small cells and particles from background
noise
e Adequate access of probes to intracellular sites or processes
e Adequate retention of substrates and probes
e Noninterference of probes with cell functions
e Adequate selection of time-windows for kinetic assays
e Assay calibration for data expression in absolute units

lular functions and structures in experimental models where a
higher degree of metabolic control can be achieved (Table 1 and
Table 2).

Rhodamine 123 and other membrane-potential (MP)-sensitive
dyes (15, 31, 38 ) have been used for functional analysis of iso-
lated mitochondria, whereas other MP-independent mito-
chondrial dyes can be applied to determine the mitochondrial
contentin whole cells (39). Manipulation of membrane potential
in isolated mitochondria induced predictable changes in Rh123
fluorescence and revealed mitochondrial heterogeneity in liver
cells and heterogeneous responses to physiological and
nutritional conditions (40, 41). Isolated mitochondria have been
used also for toxicological and pharmacological studies, which
yielded data complementary to those obtained using whole cells
(42).

FCM has been applied also to analyze the binding of fluo-
rescent lectins to isolated chloroplasts (43) and Golgi vesicles
(44) for the study of their oligosaccharide content. The data thus
obtained may be of relevance to the study of the normal and
altered mechanisms of glycoprotein maturation and sorting.

Cell-Free Cytometry: Quantifying Soluble Analytes

FCM is not limited to the analysis of biochemical compo-
nents in suspensions of cellular or subcellular particles. On the
contrary, a recently developed strategy known as multiplexed
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analysis allows simultaneous quantification of multiple analytes
in solution. The basis for each measurement consists of a set of
microspheres identifiable by embedded fluorophores. Individual
sets of microspheres are modified with reactive components such
as antigens, antibodies, or oligonucleotides, and then mixed to
allow multiple independent reactions to be analyzed simultane-
ously. The use of microspheres with different ratios of red and
orange fluorescence provides the multiplexed format, and FCM
analysis simultaneously identifies both the microsphere type and
the fluorescent green signal, revealing the capture of the partic-
ular analyte (45). This measurement system can analyze up to
64 analytes in a single sample.

With the microsphere-associated technology, the applica-
tions for basic and clinical flow cytometry in the future are
enormous. For instance, the system has been used to perform
simultaneous detection of multiplex-amplified human immu-
nodeficiency virus type 1 RNA, hepatitis C virus RNA, and
hepatitis B virus DNA (46). This approach has been found
to be more accurate, sensitive, and reproducible than the con-
ventional microtitre ELISA for qualitative and quantitative
immunoassays for several proteins. For instance, this assay can
accurately quantitate 15 cytokines in 100 pwL-samples, whereas
the same analysis by ELISA requires 1.5 mL (100 uL for
each cytokine assay) (47). Also, multiplexed flow cytometric
analyses have been developed to measure simultaneously
cytokine receptor expression, internal cytokine expression,
and cytokine secretion by activated T-cells in vitro (48), thus
opening an interesting approach to the study of cell activation
responses.

A series of novel applications illustrates the potential of ge-
nomic analysis with microsphere arrays and FCM using sub-
nanomolar concentrations of sample in small volumes at rates
of one sample per minute or faster, without a wash step. Thus, the
system has been used to perform DNA sequence analysis by mul-
tiplexed competitive hybridization of sequence-specific oligonu-
cleotide probes (49) and for multiplexed analysis of dozens of
single nucleotide polimorfisms (50). These results demonstrate
the sensitivity and accuracy of flow cytometry-based minise-
quencing, a powerful new tool for genome- and global-scale
SNP analysis.

There is a significant number of websites dedicated to ba-
sic FCM that should be visited to obtain further information as
well as related links and FCM freeware. For the sake of brevity,
readers are encouraged to bookmark http://www.biochem.mpg.
de/valet/cytorel.html (Cytorelay, Max-Planck Institut for Bio-
chemistry); http://flowcyt.cyto.purdue.edu/ (Purdue University
Cytometry Laboratories), and http://www.bio.umass.edu/
mcbfacs/flowhome.html (Flow Cytometry Facility, University
of Massachussets at Amherst).
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