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Abstract

Galaxy clusters are the largest and most massive gravitationally bound
structures in the Universe, which continue growing through mergers and accre-
tion of matter from the cosmic web. The physics of accretion onto these objects
has important effects on both dark and baryonic matter dynamics, which will
be able to be probed with forthcoming observational facilities. In this respect,
Numerical Cosmology can serve as a laboratory where to test models of struc-
ture formation and baryonic physics, and provide results that will help to lead
and interpret future observations. In this Master’s Thesis, we aim to investi-
gate in further detail how matter is accreted onto galaxy clusters. In the first
part of the work, the most salient topics on structure formation over a cosmo-
logical background, galaxy clusters’ physical and observational properties and
numerical cosmology are briefly reviewed. Subsequently, we analyse the results
of an Eulerian Adaptive Mesh Refinement (AMR) hydrodynamical+N -Body
full-cosmological simulation of a moderate-size volume domain. We have char-
acterised the evolutionary and accretion histories of a small sample of galaxy
clusters and groups. Additionally, we have further explored the effects of ac-
cretion on the inner structure of clusters and the angular distribution of mass
flows.
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1 | Introduction
Physical Cosmology deals with the origin and the evolution of the structures in the

Universe. The accepted cosmological and structure formation models, grounded on
numerous observational probes, depict a hierarchical –or bottom-up– scenario, where
larger and more massive density fluctuations collapse at later times.

Galaxy clusters occupy a special place in this hierarchy, as they are the largest
objects which have had time to collapse under their own gravity and detach from
the cosmic expansion. In this sense, clusters are the end product of the collapse of
density fluctuations on comoving scales of ∼ 10 Mpc, and they mark the transition
between two dynamical regimes (Borgani and Kravtsov, 2011). On scales above
10 Mpc, dynamics are solely governed by gravity, and therefore are dominated by
dark matter, which accounts for most of the gravitational mass in the Universe. On
smaller (galactic) scales, gas dynamics and the complexity of baryonic physics become
relevant.

From this special position, galaxy clusters emerge as the crossroads of astrophysics
and cosmology (Kravtsov and Borgani, 2012). The abundance and distribution of
clusters keep the imprint of the initial conditions and can, therefore, be used as
cosmological probes to constrain the cosmological parameters (Allen, Evrard, and
Mantz, 2011). At the same time, the deep gravitational wells of clusters act as
veritable astrophysical laboratories, where the complex processes of galaxy formation
and evolution can be tested.

During the last four decades, the understanding of structure formation in the
Universe has turned from a science of order-of-magnitude estimates to a field capable
of providing really precise observations and theoretical predictions, especially due to
the advent of Numerical Cosmology (Bertschinger, 1998; Dolag et al., 2008). Cos-
mological simulations provide a powerful tool to test the current understanding of
structure formation and constrain the associated physical processes.

Despite the enormous progress in the field, important problems, mostly associated
with the complex physics of baryons, remain unsolved (see, e.g., Planelles, Schleicher,
and Bykov, 2015 for a recent review). In this regard, a lot of interest has been recently
triggered on the role of a wide variety of phenomena associated to cosmic flows: shock
waves, turbulence, mergers, accretion and the complex interplay between baryons and
dark matter in such scenarios, etc. As an example, recent works have shown that
accretion can impact the morphological and thermodynamical quantities of clusters
and bias observational determinations of clusters’ masses (H. Chen et al., 2019).

Motivated by the increasing concern of the scientific community on these phe-
nomena, the main aim of this work is to provide a general introduction to the physics
of galaxy clusters and the techniques of Numerical Cosmology, and to apply them
in order to quantitatively analyse how matter is accreted onto galaxy clusters in a
cosmological environment. To achieve this last point, several analyses have been con-
ducted on the outputs of a full-cosmological simulation, providing results that are
consistent with the previous literature and adding some insight on several topics not
yet extensively covered.
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1.1 Organisation of the manuscript

In Sec. 2, the theoretical background for this work is briefly reviewed. This
includes an introduction to the currently accepted cosmological model (Sec. 2.1)
and the physical and observational properties of galaxy clusters (Sec. 2.2 and 2.3,
respectively).

A summary on the modelling of the evolution of inhomogeneities in the Universe
and the numerical tools that are employed in order to track this evolution is presented
in Sec. 3, and the specific tools used in this work are described in Sec. 4.

In Sec. 5, the results of our analyses on the outputs of a cosmological simula-
tion are presented in several subsections. Through them, we highlight their physical
interpretation but also carefully describe the implemented methods and discuss the
underlying assumptions.

Finally, in Sec. 6, we summarise the main findings and conclusions of this work
and point out several continuation lines of these analyses.
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2 | Galaxy Clusters in a Cosmologi-
cal Environment

In Sec. 1, the special place of galaxy clusters in the cosmic hierarchy has already
been motivated, both because of them being the largest objects which have had
time to gravitationally collapse and because of their implications as cosmological
probes and astrophysical laboratories. In Sec. 2.1, the main ingredients for the
description of the cosmological background upon which clusters form are introduced.
The most relevant physical and observational properties of these vast structures are
subsequently discussed in Sec. 2.2 and 2.3, respectively.

2.1 Structure formation over a cosmological background

Structure formation through the history of the Universe is determined by the
initial conditions and by a cosmological model, which together shape the properties
and evolution of the Universe (Planelles, Schleicher, and Bykov, 2015). Currently, the
accepted cosmological paradigm is the ΛCDM or concordance model, also labelled as
the standard model of cosmology by some authors (Hamilton, 2014). The acronym
stands for dark energy (Λ) and cold dark matter (CDM). Through the following
pages, a succinct overview of the model is presented. First, the background Universe
will be motivated and introduced. Then, deviations from such background, which
ultimately lead to the observed cosmic structure, are considered.

2.1.1 A Universe of mean values

The background model of the Universe is that of a homogeneous and isotropic
system. The former means that the Universe looks –statistically– the same when
seen from any point, while the latter implies that it presents equivalent features in
any direction. This assumption is commonly named the Cosmological Principle. Its
motivation is, at least, twofold: from an operational point of view, it is the simplest
physical description of such a complex system; and, even more important, when
sufficiently large scales are considered, these approximations hold to a very good level
of accuracy1. Far from being a groundless hypothesis, numerous cosmological probes
support it. Without entering into further detail, we can mention the distribution of
distant galaxies in large-scale surveys (e.g. SDSS, 2dF) and the extreme isotropy of
the Cosmic Microwave Background (CMB) temperature field, which holds down to
roughly a part in 105. A more thorough review of probes supporting the Cosmological
Principle can be found in Hamilton (2014).

Under the assumptions of homogeneity and isotropy, the mathematical description
of the geometry of space-time is the Friedmann-Lamâitre-Robertson-Walker (FLRW)
metric, which can be given in spherical coordinates adapted to the cosmological ob-
server (u ≡ ∂t) by the arc element:

1Such a characteristic length to regard the Universe as homogeneous can be established in the
order of ∼ 100 Mpc (Ntelis, 2016). Below this scale, gravity and other physical processes have
produced the collapse of structures, naturally breaking both homogeneity and isotropy.
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ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.1)

where k is the –constant– scalar curvature of FLRW space-time and a(t) is the scale
factor. The scalar curvature can only take the values k = −1, 0, +1, corresponding
to open, flat and closed universes, respectively. The scale factor, a(t), accounts for
the cosmic expansion. In a flat (k = 0) Universe, the scale factor can be normalised
so that a(t = t0) ≡ a0 = 1, where t0 stands for the present time. A radial distance
Dc ≡

´
dr will be referred to as a comoving distance, while the proper length

´
a(t)dr

will be regarded as the physical distance.
The dynamical description of such an isotropic and homogeneous background uni-

verse is complete once a(t) is known. In order to do so, one needs to solve Einstein
equations, Gµν + Λgµν = 8πG

c4
Tµν , being Gµν the Einstein tensor (depending on the

metric tensor, gµν , and its space-time derivatives up to second order), Λ the cos-
mological constant and Tµν the energy-momentum tensor. The cosmological fluid is
assumed to be a perfect fluid, and hence its energy-momentum tensor can be written
as Tµν =

(
ρB + pB

c2

)
uµuν + pBgµν , being ρB the density of the cosmic fluid, pB its

pressure and uµ its 4-velocity. Using this explicit form for the energy-momentum
tensor and the FLRW metric, Einstein equations yield two independent equations for
the three unknowns (namely a(t), ρB and pB). These equations can be rearranged to
yield Friedmann equations in their most usual form (Peebles, 1993):(

ȧ(t)

a(t)

)2

=
8πG

3
ρB(t) +

Λ

3
− kc2

a(t)2
(2.2)

ρ̇B + 3
ȧ

a

(
ρB +

pB

c2

)
= 0 (2.3)

To solve the system, an equation of state for the background is required to elim-
inate one of the variables. In cosmology, the equation of state is often written as2
pB = wρBc

2. Different components of the Universe have different equations of state,
i.e., different values of the dimensionless parameter w.

The ΛCDM cosmological model is a particularisation of the FLRW models, with
a well-defined selection of the components of the Universe (Hamilton, 2014). These
are:

• Almost 70% of the energy content of the Universe is in the form of an elu-
sive Dark Energy component, whose fundamental nature remains yet unknown.
It drives the accelerated expansion of the Universe and is consistent with a
cosmological constant (Λ) term in Eq. (2.2). Hence, its equation of state is
w = −1.

• Roughly 25% of the Universe is composed of some kind of gravitational matter
which cannot be electromagnetically detected: the so-called dark matter (DM).
Although its fundamental nature is not yet understood, it certainly interacts
very little with baryonic matter (besides gravitationally). It is assumed to be

2As an abuse of terminology, the parameter w by itself is often referred to as «the equation of
state» of the species.
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cold, i.e., non-relativistic and hence pressureless, (w = 0). By not feeling the
electromagnetic interaction (and thus being a collisionless component), DM
was allowed to collapse before regular matter did, creating DM haloes which
would then lead to the formation of galaxies and larger structures (Bertschinger,
1998).

• Only around 5% of the energy budget is due to regular, baryonic matter, forming
the stars and gas clouds that can be directly detected. Most of this matter is in
the form of a hot thermal plasma, observable in the X-Ray band, filling galaxy
clusters: the intracluster medium (ICM). Cold baryons, the ones giving rise to
structures like stars and galaxies, only account for around a quarter of the total
regular matter content. The physics of this apparently subdominant material
component is fundamental to provide a faithful description of the formation of
the structures in the Universe (Planelles, Schleicher, and Bykov, 2015).

Radiation components are completely negligible in the present Universe, but they
were dominant during the first tens of thousands of years. By being relativistic
species, with w = 1

3
, Eq. (2.3) predicts a faster decline in their densities, scaling as

ρB ∝ a−4 (instead of ρB ∝ a−3 for cold matter).

2.1.2 Inhomogeneities in the Universe

Up to this point, a Universe of homogeneous, background quantities has been
described. This model settles the bases upon which structure formation occurs. The
seeds for this cosmological structure formation are the tiny fluctuations that appear
imprinted on the CMB temperature field (with a rms relative amplitude in the order
of ∼ 10−5), which correspond to density fluctuations of the same order in the surface
of last scattering.

The origin of these fluctuations, however, traces back to a much more primordial
Universe: they are thought to have appeared during the inflationary era, a period of
accelerated expansion in the very early Universe, which solves several open problems
in early-Universe cosmology (Peebles, 1993; Tanabashi et al., 2018, §22). After the
decoupling of radiation and matter (zdec ≈ 1100), these perturbations grow hierarchi-
cally, forming larger and more massive structures at later times. The mathematical
description of the evolution of such inhomogeneities is left to be discussed in more
detail in Sec. 3.1.

2.1.3 Cosmological parameters

From Eq. (2.2), the density of a flat (k = 0) universe with no cosmological
constant (Λ = 0) can be obtained. This density is known as the critical density,
and its value equates to ρc(t) = 3H(t)2

8πG
, where H(t) ≡ ȧ

a
is the Hubble parameter.

The matter density can be split in its baryonic and DM contributions, ρm(t) =
ρb(t) + ρDM(t). The cosmological constant can be assigned a density as well, by
defining ρΛ = Λ

8πG
.

These densities are often given in terms of their corresponding density parameters,
ΩX ≡ ρX0

ρc0
, where X stands for any of the considered species and the subindex 0

indicates that the quantities are measured in the present. It is customary to define
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Table 1: Latest values reported by Planck Collaboration (2018) of the most relevant cosmological
parameters.

Name Symbol Value
Density parameter of baryonic matter3 Ωb 0.04897± 0.00068

Density parameter of matter Ωm 0.3111± 0.0056
Density parameter of dark energy ΩΛ 0.6889± 0.0056
Hubble dimensionless parameter h 0.6766± 0.0044
Index of the power spectrum ns 0.9665± 0.0038

Amplitude of the power spectrum 109As 2.105± 0.030
Age of the Universe4 t0 13.787± 0.020 Gyr

a curvature density parameter as Ωk = −H2
0
kc2

a2
0
. It is easy to see that Eq. (2.2) is

then rewritten as 1 = Ωm + ΩΛ + Ωk. The previously mentioned k = −1, 0, +1 cases
correspond to Ωm+ΩΛ <, =, > 1, respectively. Ωm, Ωb and ΩΛ (or any combination)
are, therefore, fundamental parameters of the cosmological model.

Another relevant quantity is the Hubble constant (the value of Hubble parameter
in the present, H0 ≡ H(t0)), usually given via the dimensionless Hubble constant
h ≡ H0

100 km/s/Mpc
. Further parameters that we may introduce without too much depth

are the amplitude, As, and spectral index, ns, of the power spectrum of the primordial
density fluctuations (P (k) = Ask

ns), which fully determine the statistical properties
of the initial conditions for structure formation. Some additional quantities, like
the optical depth of reionisation, τ , are not intrinsically fundamental, but are not
currently derivable from the former ones with a good level of accuracy, and are added
as free parameters instead (Liddle, 2004).

Determining the cosmological parameters is a non-trivial task, since most of the
times individual probes can only provide constraints among different parameters, up
to some degeneracy. In order to effectively constrain all the parameters, statistical
analyses are performed combining the confidence regions in the parameter space for
a variety of different probes (see, e.g., Planck Collaboration, 2018). Amongst the
many cosmological probes, we can count the observation of standard candles (like
supernovae explosions (SNe) of type Ia), primary anisotropies in the CMB (like the
ones due to baryon acoustic oscillations (BAO)), galaxy clustering, weak gravitational
lensing, etc. (recent reviews can be found in Hamilton, 2014; Tanabashi et al., 2018,
§24). The latest values of these parameters, as reported by Planck Collaboration
(2018), are shown in Table 1.

2.2 Physical properties of galaxy clusters

In Sec. 1, the special place of galaxy clusters as crossroads of cosmology and
astrophysics has been introduced. Through the following pages, the main physical
properties of these objects are briefly reviewed. Most of the topics mentioned here

3Ωb is not explicitly given in Planck Collaboration (2018). Instead, Ωbh
2 is. The value of Ωb

presented here has been obtained using the value of h; and its error has been estimated using the
error propagation formula and assuming no correlations.

4Although this is not a free parameter (as it can be easily computed from the ones above), it is
added for the sake of completeness.
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are covered in further detail in recent reviews, like Borgani and Kravtsov (2011);
Kravtsov and Borgani (2012); Planelles, Schleicher, and Bykov (2015); Walker et al.
(2019).

2.2.1 General features of clusters

Galaxy clusters are the largest and most massive gravitationally bound structures
in the Universe. Typical masses for these objects lie in the range of 1014 to 1015M�.
Their spatial extension can reach a few Mpc, and the largest ones contain up to thou-
sands of galaxies. Aggregations of a small number of galaxies (in the order of tens),
with masses around 1013M� and radii of ∼ 1 Mpc, are called groups. Nevertheless,
there is not a well-defined boundary between groups and galaxy clusters. Clusters are
interconnected amongst themselves through a network of filaments and walls, which
are characteristic of the large-scale structure (LSS), with typical separations of tens
of Mpc (Borgani and Kravtsov, 2011).

Despite the previous description, stars and gas in galaxies only account for a few
percents of the clusters’ masses. The bulk of baryonic matter in galaxy clusters is in
the form of a hot, thermal, fully-ionised plasma: the ICM. Typical particle number
densities in such plasma range between 10−1 and 10−4 cm−3. The emission properties
of this ICM will be covered in more detail in Sec. 2.3. Yet including this diffuse
component, baryons only make for around 15− 20% of the mass in clusters. The rest
corresponds to DM, which was already found in these cosmic structures by Zwicky
(1933) almost a century ago.

The abundance of gas, stars and baryons in cosmic structures is often quantified
in the bibliography (e.g., Planelles et al., 2013) through their respective fractions, fg,
f∗ and fb:

fg ≡
Mg

Mtot

, f∗ ≡
M∗
Mtot

, fb ≡ fg + f∗, (2.4)

where Mtot = Mg + M∗ + MDM. In these fractions, the masses are measured inside
some defined radius, according to the definitions that will be introduced in Sec. 2.2.2.
Although these quantities present important uncertainties, both in simulations and
observations, as a general trend5 baryons account for a mass fraction fb ∼ 0.15 for a
fairly wide mass interval. The stellar fraction depends noticeably on cluster’s mass,
decreasing from f∗ ∼ 0.05 for 1014M� to f∗ ∼ 0.03 for 1015M�. However, these values
are strongly dependent on the physics of baryons and, therefore, huge uncertainties
regarding their determination remain present.

The shape of galaxy clusters is mostly determined by the shape of the DM halo
which gives rise to it. The simplest models for the collapse of density perturbations on
cosmic scales assume these haloes to be spherical (e.g., the top-hat model; Gunn and
Gott, 1972). However, since the 1980s, N -Body and, more recently, hydrodynamical
simulations have shown that they are generally triaxial (Bertschinger, 1998; Kravtsov
and Borgani, 2012). The major axis is generally aligned with the filament connecting
the cluster to its nearest massive neighbour, as mergers preferentially occur along
this direction (Lee and Evrard, 2007; Kravtsov and Borgani, 2012).

5The quantities presented here, taken from Planelles et al. (2013), are measured inside R500c.
This definition of radius is presented in Sec. 2.2.2.
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Closely connected to shape, it is worth mentioning the dynamical state of clus-
ters. Virial (for the dark component) and/or hydrostatic equilibrium (for the gas) are
common assumptions in order to observationally estimate the mass of clusters. After
its collapse, an isolated cluster would gradually relax to an equilibrium state. How-
ever, hydrodynamical simulations have recently pointed out significant departures
from that equilibrium (Biffi et al., 2016). Mergers are an important source of ener-
getic feedback, as they transform gravitational energy to thermal energy (Planelles
and Quilis, 2009). Mergers and smooth accretion onto galaxy clusters impact the
dynamical state of clusters, and the overall accretion phenomena correlate with the
ellipticity of the ICM (H. Chen et al., 2019).

2.2.2 Masses and radii definitions

Even though the shape of DM haloes and their baryonic counterpart, the ICM, is
generally triaxial, in the literature it is customary to measure the mass distribution
in spherically averaged profiles (Kravtsov and Borgani, 2012). Despite this simplifi-
cation, defining clusters’ radii and masses is not a trivial issue, due to the absence of
any well-defined boundary.

The most common practice in the clusters’ studies is to set a boundary defined
by a radius, R∆, which encloses a mean overdensity ∆ with respect to some reference
density, ρref . Usual reference densities are either the critical density of the Universe,
ρc(z), or the background matter density, ρB(z) = Ωm(z)ρc(z). Note, however, that
these two densities evolve differently with redshift. While ρB(z) = ρB0(1 + z)3, as
derived from Eq. (2.3), ρc(z) = ρc0E(z)2, where E(z) = H(z)

H0
=
√

Ωm(1 + z)3 + ΩΛ

for a ΛCDM cosmology. In any case, with these definitions, the radius, R∆, and its
corresponding mass, M∆ = M(< R∆), can be simultaneously found by solving the
integral equation

M∆c =
4π

3
∆cρc(z)R3

∆c
or M∆m =

4π

3
∆mρB(z)R3

∆m
. (2.5)

For instance, the most recent X-Ray observations with Chandra or XMM-Newton
can accurately resolve the density and temperature profiles of clusters inside R500c

(Walker et al., 2019). In simulations, many works choose R200m as the boundary of
the cluster (e.g., H. Chen et al., 2019), but this election is, to some extent, arbitrary
and there is not a unique criterion for defining cluster boundaries in the literature.

Motivated by the spherical collapse model, another widely used physical scale of
clusters is the virial radius. This radius is obtained from the study of the collapse
of a homogeneous, spherically symmetric overdensity in an expanding universe. In
an Einstein-de Sitter cosmology (Ωm = 1, ΩΛ = 0), this radius corresponds to an
overdensity ∆vir,c = 18π2 ≈ 178. In a flat, ΛCDM cosmology (Ωm + ΩΛ = 1), the
virial overdensity can be approximated by (Bryan and Norman, 1998):

∆vir,c = 18π2 + 82x− 39x2 (2.6)

where x = Ωm(z)− 1 and Ωm(z) = Ωm
(1+z)3

E(z)2 . For example, for the parameters given
in Table 1, ∆vir,c ≈ 103 and ∆vir,m ≈ 330 at z = 0.

Last, let us introduce two additional radii definitions for the sake of completeness.
Recent works (More, Diemer, and Kravtsov, 2015) show that a natural boundary for
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DM haloes can be defined by considering the apocenter of DM particles’ orbits after
their first infall to the cluster. This process is reflected as a sharp drop in density
profiles, from which the splashback radius, Rsp, can be measured. As for the baryonic
component, as low-density matter is accreted, an external shock (the accretion shock)
is formed. This shock radius, Rsh, can be regarded as a physical boundary of the
gaseous component. Typical orders of magnitude of the aforementioned radii yield
an approximate relation R500c : R200m : Rsp : Rsh = 1 : 3 : 4 : 6 (Walker et al., 2019),
although this depends on the inner structure of the objects.

2.2.3 Formation of clusters

Formation and evolution of galaxy clusters is an active topic of research. While
some areas are well understood, either via theoretical models or numerical simula-
tions, important uncertainties remain, especially those due to the physics of galaxy
formation and feedback. Here, we shall only present a succinct overview of the most
general features of galaxy cluster formation, while more detailed reviews can be found
in Kravtsov and Borgani (2012); Planelles, Schleicher, and Bykov (2015).

Current understanding of structure formation in the Universe favours a hierarchi-
cal (or bottom-up) scenario, in which larger and more massive structures form at later
stages. This evolution is mainly governed by gravity, through a series of mergers and
accretion of smaller systems. In this respect, clusters occupy a special position in the
cosmic hierarchy, as they are the largest structures which have had time to collapse
(Borgani and Kravtsov, 2011).

The gravitational collapse of such structures is primarily driven by the dark com-
ponent: DM starts collapsing at early redshifts, creating a complex network of cosmic
filaments. Massive haloes are usually located at the intersections of such filaments,
resulting in deep potential wells which will give rise to clusters. These potential wells
get deeper as haloes undergo mergers and accrete smaller systems, mainly through
the cosmic filaments. The gaseous component roughly traces the shape of the DM
halo, although its collisional nature (as opposed to the collisionless nature of DM)
makes the gas distribution smoother due to the pressure support. Regions which are
dense enough and can cool efficiently start forming stars since relatively early red-
shifts. Thus, the distribution of stars is more clumpy than its gaseous counterpart.
As a realisation of this, Fig. 1 presents the evolution of DM, gas and stellar densities
for four redshifts in a cosmological simulation.

Due to the large masses involved in the process of cluster formation, these events
are amongst the most energetic ones in the history of the Universe (involving energies
up to 1065 erg; Borgani and Kravtsov, 2011). The strong gravitational field of the
forming cluster can accelerate both, dark and baryonic matter, to high speeds (in
the order of ∼ 1000 km/s). Gas flows soon become supersonic, giving rise to shock
waves, which are ubiquitous in the process of cluster formation. These shocks play an
important role in thermalizing and reheating the ICM, as they convert kinetic energy
into internal energy (Planelles and Quilis, 2013).

Cluster formation is a process extended in time (with timescales in the order of
Gyr), maintained by frequent mergers and accretion. The accretion pattern is com-
plex, resulting in aspherical shocks. Most of the accretion of gas takes place around
the LSS filaments, where the surrounding gas has higher density and lower temper-
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Figure 1: Evolution of the DM density (left), gas density (central) and stellar density (right), at
z = 4, 2, 1 and 0 (from top to bottom), from the cosmological simulation presented in Sec. 4.3. Each
panel is a projection along the third axis, for the central 10 comoving Mpc. x and y coordinates are
comoving (the side of the box is 40 Mpc at z = 0). The colour scale shown at the bottom of each
column applies to each panel in the column.

ature (and therefore lower entropy). Thus, accretion to galaxy clusters turns out to
be a complex process, due to the interaction of the system with its surroundings.

2.2.4 Inner structure

During the 1990s, an important effort was devoted to study the structure of
collapsed DM haloes from N -Body simulations. As a result, Navarro, Frenk, and
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White (1997) found a universal density profile for DM haloes, characterised by a
gradual steepening of the profile from ρ ∝ r−1 at small radii to ρ ∝ r−3 at large radii.
The Navarro, Frenk & White (NFW) profile is usually given as

ρNFW(r) = ρc
δc

(r/rs) (1 + r/rs)
2 , (2.7)

where δc is a characteristic density contrast and rs is the scale radius, where the log-
arithmic slope of the profile is −2. Because of it being universal, as gravity does not
have preferred scales, these DM density profiles are said to be self-similar. However,
density profiles of the baryonic component are fairly more diverse, due to hydrody-
namical phenomena and the complex physics of baryons.

The scatter in the radial profiles of several quantities (density, pressure, etc.)
has been used in the bibliography to define three radial regions in galaxy clusters
(Kravtsov and Borgani, 2012; Walker et al., 2019):

• Cluster cores (r . R2500c). In these regions, thermodynamical quantities de-
part significantly from self-similarity. The uncertain physics of baryons (like
feedback mechanisms from star evolution, active galactic nuclei (AGN), etc.)
are dominant and impact importantly the thermodynamical properties of the
ICM. A complete theoretical understanding has not yet been established.

• Intermediate radii (R2500c . r . R500c). These regions show the most regular
behaviour. A number of scaling relations amongst different thermodynamical
quantities and the mass show very small scatter in these intermediate radii.
We shall not cover such scaling relations in this text, as they fall beyond the
scope of the work, but their importance is crucial, both from the theoretical
and the observational point of view. A recent review on the topic can be found
in Giodini et al. (2013).

• Cluster outskirts (r & R500c). Because of instrumental limitations, these regions
have not yet been extensively observed. However, the situation is likely going to
change in the next decade, due to the forthcoming observational facilities. Clus-
ter outskirts are dynamically active regions, which have suffered the effects of
recent mergers and strong accretion. Departures from hydrostatic equilibrium,
turbulence and clumpiness are expected to be present at these radii. These
out-of-equilibrium phenomena have important effects on observational deter-
minations of physical properties of clusters. A recent review on these clusters’
regions can be found in Walker et al. (2019).

In any case, these boundaries are just approximate limits, which may vary depending
on the particular study which is being performed or other instrumental limitations.

2.3 Observations of galaxy clusters

Clusters were first observed in the optical band in the late eighteenth century by
astronomers Charles Messier and William Herschel. However, as already discussed in
Sec. 2.2.1, the stellar component is subdominant in terms of mass. Accordingly, an
important part of the emission of clusters does not come in the form of optical light,
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from the stars and galaxies, but in X-Ray, from the hot ICM. In this section, the
main observable bands for clusters’ studies, namely optical, X-Ray and microwaves
are succinctly described; while a more extensive review on the topic can be found in
Voit (2005).

• In the optical band, set aside the historical observations of Messier and Herschel,
some of the most influential catalogues have been the ones due to George Abell
and collaborators, which contain most of the nearby galaxy clusters. Many of
the optical cluster survey techniques used nowadays are extensions based on
those originally developed by Abell (1958)6. Information about the mass and
the dynamics can then confirm the true status of clusters of these candidates.
One proxy for the cluster mass is its total optical luminosity. In Abell’s cata-
logues, this is quantified in 5 categories of «optical richness», depending on the
number of constituent galaxies. However, this method can suffer from projec-
tion effects. Other, more robust ways of determining the mass in optical studies
are the measurement of member galaxy velocities (which allows measuring the
mass using the virial theorem) and the shear distortion on background galaxies
due to weak gravitational lensing.

• Galaxy clusters are powerful X-Ray emitters due to the inefficiency of galaxy
formation (Voit, 2005). As already mentioned in Sec. 2.2.1, most of the baryons
do not belong to any galaxy, but rather form the diffuse ICM. In general, diffuse
gas is difficult to detect, unless it is compressed and heated by a deep potential
well. There are two main sources of emission from such a hot gas: thermal
bremsstrahlung and emission lines. The former contribution has a dependence
on gas density as LX ∝ ρ2

g, as can be intuitively understood from the fact that
the rate of interactions depends on the probability of encounter of an ion and an
electron. Typical X-Ray luminosities of clusters range LX ∼ 1043 − 1045 erg/s.
As for line emission, X-Ray space observatories (Chandra, XMM-Newton or,
more recently, Suzaku) allow the determination of individual element abun-
dances, provided that enough photons can be collected. On average, metallici-
ties of clusters are around 0.3 times the solar ratios.

• In the microwave region of the electromagnetic spectrum, hot gas from clus-
ters is observed from the effect it originates on the CMB. The main of these
effects is the thermal Sunyaev-Zel’dovich (S-Z) effect. Inside the potential well
of clusters, there is a thermal population of electrons which produce inverse
Compton scattering on the CMB photons, shifting them to higher energies.
Macroscopic movement of the cluster produces an additional kinetic S-Z effect.
One important feature of this effect is the fact that it is nearly independent of
the distance to the cluster. Thus, S-Z effect arises as a powerful tool to discover
clusters. However, projection effects can originate confusion between different
objects along the line of sight.

6In the original approach by Abell, once a circular region in the sky was identified as a cluster
candidate, its distance was estimated from the assumption that the tenth brightest galaxy had the
same absolute magnitude for all clusters. Then, the number of galaxies brighter than a limiting
magnitude, set to two magnitudes fainter than the third brightest member, were counted inside a
fixed radius of 2 Mpc.
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3 | Numerical Simulations
In Sec. 2.1, the homogeneous and isotropic Universe has been introduced. This

section deals with the mathematical description of the perturbations over this back-
ground model. The basic equations used to model the evolution of the non-linear
density perturbations of both, the dark and the gaseous components, are presented
in Sec. 3.1. Because of their strong nonlinearity, these equations need to be solved nu-
merically in virtually all situations. Thus, in Sec. 3.2, the main families of numerical
schemes that are employed in cosmological simulations are described.

3.1 Modelling the content of the Universe

Owing to their different nature, the gaseous and the dark components receive
different mathematical treatments. The latter, because of its pressureless and colli-
sionless nature and the fact that it only feels gravity, is studied as a set of particles
which sample its phase space (see Sec. 3.1.1); while the former, by being a collisional
component, can be modelled by means of a hydrodynamical treatment (Sec. 3.1.2).
As already described, cold baryons (like the ones forming stars) have only a sub-
dominant contribution, in terms of mass. Besides, the typical scales involving this
component are much smaller than the ones resolved by cosmological numerical sim-
ulations. That is why they are added as phenomenological parametrisations, briefly
covered in Sec. 3.1.3. Last, the initial conditions are succinctly discussed in Sec.
3.1.4.

Through all the discussion in this section, comoving coordinates will be used.
The comoving (or peculiar) position is denoted7 by x, and the comoving velocity by
v ≡ a(t)dx

dt
. Note that, being the physical coordinate r = ax, the physical velocity

is u ≡ ṙ = v + ȧx. The additional term, ȧx, is known as the Hubble flow. The
differential operator ∇ is also referred to derivatives with respect to the comoving
coordinate.

3.1.1 Dynamics of dark matter

The direct and exact approach to solving the dynamics of any material component,
DM in particular, would involve solving the Boltzmann equation for its distribution
function, f(x,p, t):

∂f

∂x
ẋ +

∂f

∂p
ṗ +

∂f

∂t
=

(
δf

δt

)
col

, (3.1)

where the dot implies differentiation with respect to time and the right-hand side term
is the collision term, depending on the interaction properties of the species. In the
case of DM, the collision term is identically null and the resulting equation is called

7In Sec. 2.1, the comoving radial coordinate of the FLRW metric is denoted r ≡ |x|, and should
not be confused with the magnitude of the physical position vector, |r|. Unfortunately, this slightly
misleading notation is quite widespread in the literature (e.g., Peebles, 1993), and we keep it in
order not to add further confusion. Unless explicitly staten, whenever we use a radial distance r in
this text, we will be referring to a comoving distance.
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Vlasov equation. In any practical application, because of the high dimensionality of
the phase space, a direct numerical solution to this equation is prohibitively expensive
(Borgani and Kravtsov, 2011). Instead, as it is often done with high-dimensional
equations, a Monte-Carlo technique is used. The most common of these approaches
are the N -Body simulations.

In these techniques, a set of N particles sample the –discretised– phase space
of the DM distribution. Individual particles are evolved in time according to the
Newtonian laws of motion in comoving coordinates8, which are a set of Ordinary
Differential Equations (ODEs) (Peebles, 1980):

v = a(t)
dx

dt
≡ a(t)ẋ (3.2)

dv

dt
= − 1

a(t)
∇φ−H(t)v (3.3)

In these equations, φ(t,x) is the peculiar Newtonian gravitational potential, which
is defined from the usual gravitational potential (Φ) as φ = Φ + 1

2
aäx2. The pecu-

liar potential is generated by the total overdensity through the comoving Poisson’s
equation, which is an elliptic Partial Differential Equation (PDE),

∇2φ = 4πGa2ρBδT =
3

2
H2a2δT , (3.4)

where δT ≡ δ + δ∗ + δDM + 2 is the total density contrast, and δi ≡ ρi−ρB
ρB

is the
density contrast of the material component i (either DM, stars, or gas; for the latter,
conventionally no subindex is used). Note that only gravity couples the dark and the
baryonic components.

3.1.2 Hydrodynamics in an expanding frame

The gaseous component, which constitutes the bulk of baryonic mass, is highly
collisional and can be described as a non-viscous, self-gravitating fluid. Let us con-
sider an Eulerian description and denote by ∂

∂t
the Eulerian time derivative9. As it

was the case for the dark component, relativistic corrections are unimportant at the
scales resolved by cosmological simulations. Thus, the evolution of inhomogeneities in
the gaseous component over a homogeneous and isotropic cosmological background is
governed by the equations of classical hydrodynamics in an expanding frame (Peebles,
1980):

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0 (3.5)

8Formally, these equations are identical to the characteristic equations which represent the Vlasov
equation. The characteristic curves are the curves in phase-space along which f remains constant.
However, in this approach, a finite subset of the infinite characteristic lines is followed (Borgani and
Kravtsov, 2011). In any case, Newtonian equations are used as, at the scales resolved by cosmological
simulations, densities, velocities and distances are sufficiently small for Newtonian physics to be an
excellent approximation (Peebles, 1993).

9In this text, we take the notation of Landau and Lifshitz (1987). Note, however, that other
authors take different notations for the Eulerian and the Lagrangian (here, d

dt ≡ ∂
∂t + (u · ∇))

derivatives.
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∂v

∂t
+

1

a
(v ·∇)v +Hv = −1

a
∇φ− 1

ρa
∇p (3.6)

∂E

∂t
+

1

a
∇ · [(E + p)v] = −3H(E + p)−Hρv2 − ρv

a
∇φ (3.7)

where ρ is the gas density, δ ≡ ρ−ρB
ρB

is the gas density contrast or gas overdensity, p
is the pressure and E ≡ ρε+ 1

2
ρv2 is the so-called total energy density, defined as the

sum of the internal energy density (ρε; ε being the specific internal energy) and the
comoving kinetic energy density.

Once the background cosmology is solved, and provided that φ (coupled to the rest
of components through Eq. 3.4) is known, the system (3.5)–(3.7) has 5 equations and
6 unknowns (namely, δ, v, E and p). An equation of state, p = p(ρ, E), is required
to close the system. The most common choice is the equation of state of an ideal gas,

p = (γ − 1)ρε, (3.8)

where γ is the adiabatic exponent.
At first glance, Eqs. (3.5)–(3.7) look slightly similar to the regular, classical

equations of fluid dynamics (cf. Landau and Lifshitz, 1987, §1, 2 and 6). Despite
the increased complexity with respect to their classical analogs, they retain the same
meaning: mass conservation (Eq. 3.5), momentum conservation (Eq. 3.6) and energy
conservation (Eq. 3.7). However, they are expressed in terms of excess or peculiar
quantities (density contrast, peculiar velocity, etc.) in the comoving frame.

Formally, the system comprising the 5 hydrodynamic equations can be written
as a hyperbolic system of conservation laws (Quilis, Ibáñez, and Sáez, 1996), what
makes it particularly suitable for its numerical resolution, as it shall be discussed in
Sec. 3.2.

3.1.3 Making simulations more realistic: beyond gravity

Up to this point, only purely gravitational and hydrodynamical processes have
been taken into account in the description of the evolution of cosmic inhomogeneities.
These non-radiative models have provided important insight into structure forma-
tion (see Bertschinger, 1998 for a classical review), but do not suffice to fully explain
galaxy formation (star formation, metal enrichment, etc.) and to correctly describe
the thermodynamical properties of the ICM (e.g., the breaking of self-similarity in
the inner regions of clusters). Therefore, some non-gravitational processes should be
responsible for accounting for these effects. Typically, they are phenomenologically
parameterised and included as source terms in the energy equation (Eq. 3.7). In-
cluding realistic baryonic feedback in cosmological simulations is a vibrant topic of
ongoing research. Here, we shall only briefly mention the basic processes that are
usually accounted for in simulations, while more in-depth reviews cover this topic
extensively (Borgani and Kravtsov, 2011; Planelles, Schleicher, and Bykov, 2015)

For stellar formation, as these processes occur at scales several orders of mag-
nitude below the distances resolved by cosmological simulations, phenomenological
prescriptions capable of describing the overall observed star formation properties are
implemented. Stars are usually included as an additional particle species. However,
it is worth noting that these particles are much more massive than individual stars
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and represent whole single-age stellar populations with average quantities. A first
important byproduct of stellar evolution is the production of metals10, which even-
tually get spread by the cosmic flows and chemically enrich the ICM (Borgani and
Kravtsov, 2011).

In order to explain the breaking of self-similarity in clusters’ inner regions, a com-
bination of cooling and heating mechanisms is usually adopted. The main source
of cooling is radiative cooling. However, including only this process leads to several
undesirable results, amongst which overcooling (which produces excessive star for-
mation rates) and an increased central ICM temperature could be mentioned. To
overcome these problems, some sources of heating need to be accounted for. Linked
to star formation, stellar feedback via SNe injects energy that could, in principle,
offset overcooling and reduce the stellar mass fractions. However, this mechanism
by itself is not efficient enough. The preferential heating mechanism, as of today, is
AGN feedback, resulting from the accretion of matter onto supermassive black holes.
In any case, building these effects in simulations is still a matter of ongoing research
and important uncertainties remain present (Planelles, Schleicher, and Bykov, 2015).

3.1.4 Initial conditions

The previous sections cover how density perturbations evolve with cosmological
time. However, in order to solve the problem, an initial condition has to be given.

Inflation predicts that the primordial density fluctuations are a particular re-
alisation of a Gaussian Random Field (Peebles, 1993), which is statistically fully
described by its primordial power spectrum, P (k) ≡ 〈|δ(k)|2〉 = Ask

ns , where δ(k)
is the Fourier transform of δ(x). In the linear theory of structure formation (appli-
cable while |δ(x)| � 1, i.e., at very high redshifts), a transfer function, T (k), gives
the evolution of the power spectrum. Thus, the shape of the power spectrum after
recombination (z ' 1000) can be determined and written as P (k) = As|T (k)|2kns .
The details about the transfer function will not be covered here, but can be found in
Theuns (2016), for instance.

From this point, initial perturbations can be got at z ' 1000 and evolved in time
using analytical or semi-analytical (e.g., the Zel’dovich approximation; Peebles, 1993)
methods up to a more recent redshift, z ' 50− 100. This sets the initial conditions
for the numerical simulation.

3.2 Numerical techniques implemented in cosmological simu-
lations

In Sec. 3.1, the basic skeleton of the mathematics behind structure formation has
been presented:

• 6N first-order in time, coupled ODEs, i.e., Eqs. (3.2) and (3.3) for each of the
N particles, in order to solve the dynamics of the collisionless component (DM).

• A hyperbolic system of 5 coupled, highly non-linear PDEs, Eqs. (3.5)−(3.7).
The equations are first-order in temporal and spatial derivatives of the variables.

10Heavy elements.
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It can be shown that the system can be rewritten in conservation form, i.e.

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
+
∂h(u)

∂z
= s(u) (3.9)

where u is the vector of unknowns, u ≡ (δ, (1 + δ)vx, (1 + δ)vy, (1 + δ)vz, E);
f , g and h are the fluxes; and s is the source term vector. See Quilis, Ibáñez,
and Sáez (1996) for the explicit expression of these fluxes and sources.

• An elliptic PDE, i.e. Poisson’s equation (3.4), which couples both previous
components. This equation is second order in the spatial derivatives of the
peculiar potential.

Naturally, additional physics (as discussed in Sec. 3.1.3) could introduce new
species (e.g., stellar particles, metals, etc.; which would require additional equations)
or new sources due to feedback phenomena (which would imply adding new source
terms in s(u)).

Through the next pages, we shall present the main families of numerical techniques
used to tackle each of the points listed above.

3.2.1 Basic concepts

Numerical techniques for the resolution of these equations can be split into two
broad families, according to the element which is discretised in the description of the
numerical method (Dolag et al., 2008):

• Grid-based simulations: the computational domain is split in a finite number
of cells (volume discretisation). Each of the volume elements ought to be small
enough to provide the desired resolution, but must still be thermodynamically
macroscopic for the physical description in Sec. 3.1 to be valid.

• Particle-based simulations: discretisation is performed on a mass basis. In order
to recover a continuous field description, a smoothening method is required.

As it will be seen through the following sections, in a real cosmological simulation
both approaches can coexist in the same code, i.e., different components can receive
different numerical treatments.

3.2.2 Evolving the dark component

Once the peculiar potential, φ, has been solved (see Sec. 3.2.4 for details) and the
global gravitational field (∇φ) is known, Eqs. (3.2) and (3.3) are just a set of 6N
first-order ODEs, coupled in pairs (xiα and viα, for components i = 1, 2, 3 and particles
α = 1, ..., N). For simplicity, let us focus on one of these two-equations subsystems.
The equations can be addressed using regular numerical ODE solvers.

These algorithms can be split into two main groups: explicit and implicit methods.
The former ones only use information about previous time steps in order to find the
state of the system at a later time. Conversely, the latter techniques use previous
and next time steps in order to do so. As a trivial example, the time step rule for an
equation ẏ = f(y) in an explicit and an implicit Euler method would be, respectively:
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yn+1 = yn + f(yn)∆t (3.10)

yn+1 = yn + f(yn+1)∆t (3.11)

In principle, implicit techniques can offer smaller numerical error but, as yn+1

appears on the right-hand side of Eq. (3.11), they would in general require iteratively
solving for yn+1, thus increasing the computational cost. Consequently, N -Body
simulations most usually lean towards explicit implementations (Dolag et al., 2008).

The main limitation of explicit methods is the fact that the derivative is assumed
to be constant over the integration interval ∆t. A broad variety of methods for
higher-order ODE integration exist, many of which are just particular realisations of
Runge-Kutta methods. These techniques use Newton-Cotes formulae to the desired
order to compute the integral

´ t+∆t

t
f(y(t), t)dt using several intermediate points.

Other solutions for this particular problem are found by means of more sophisticated
algorithms (e.g., the leap-frog method, in which velocities and positions are shifted by
half a time step, so that velocities are always computed in the centre of the interval
used for evolving positions and vice-versa), which provide an increase in accuracy
without the need to decrease the timestep. Bertschinger (1998) and Dolag et al.
(2008) compile more complete reviews of the numerical methods for this problem.

The most computationally expensive part in N -Body simulations is solving the
gravitational force, which will be reviewed in Sec. 3.2.4. In some methods, a contin-
uous, grid description needs to be recovered from the particle distribution. In these
cases, smoothening methods are used in order to assign particles to cells. The basic
idea is assigning a kernel W (xi − xm) to each particle, so that the density of cell m
can be written as

ρm =
1

h3

∑
i

miW (xi − xm), (3.12)

where the index i runs over all the particles and h is the cell side length. There
are many schemes, amongst which we could cite Nearest Grid Cell (NGC), Cloud-
in-Cell (CIC) and Triangular-Shaped Cloud (TSC), in increasing order of complexity
(sharing the particles’ mass amongst the nearest 1, 8 and 27 cells), respectively.

3.2.3 Evolving the gas component

Hydrodynamical techniques are usually divided into two blocks, parallel to the
two specifications of the flow field: Lagrangian and Eulerian techniques (Dolag et al.,
2008).

Lagrangian schemes. Even though grid-based Lagrangian methods do exist (see
below, Moving mesh schemes), most of them are particle-based. By abuse of termi-
nology, “Lagrangian” and “particle-based” are very often used interchangeably. We
shall restrict this description to gridless, particle-based codes. The most extended im-
plementations are the Smoothed-Particle Hydrodynamics (SPH) techniques (Borgani
and Kravtsov, 2011).
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In these techniques, fluid elements are represented by particles, which obey some
dynamical equations based on the Lagrangian form of Eqs. (3.5)−(3.7). The ab-
sence of any grid constraining the spatial resolution naturally confers these methods
an adaptive character (in the sense of a huge dynamical range) at a reduced com-
putational cost. However, SPH has some severe limitations. First, these methods
have limited ability to properly describe shocks and strong gradients (although it can
be partially overcome with the use of artificial viscosity; Dolag et al., 2008). Also,
low-density regions (like the cosmic voids) do not get properly described.

Eulerian schemes. The most widely used implementations are the ones using
grid-based High-Resolution Shock-Capturing (HRSC) techniques (Quilis, Ibáñez, and
Sáez, 1994). Physical quantities are assigned to cells’ centres. At each time step,
the fluxes must be computed. In order to accurately describe discontinuities, these
quantities are reconstructed to compute the fluxes at cells’ boundaries (a thorough
description of the possible implementations is described in Dolag et al., 2008). The
main advantage of these methods is that they can correctly resolve shocks and dis-
continuities within a few cells, thus overcoming one of the main limitations of SPH.
With the equations written in conservation form, Eq. (3.9), particularly suitable
techniques are the ones based on Riemann solvers, as they grant the total conserva-
tion of the physical quantities (mass, momenta and energy). However, the Eulerian
nature of the codes, i.e., working on a fixed grid, constrains the spatial resolution and
increases the computational cost when the scenario requires higher resolutions.

The situation has reversed in the last 20 years, due to the adoption of AMR
schemes in cosmological simulations. AMR allows to gain resolution (both in space
and time) in certain regions of interest (e.g., high-density, steep gradients, etc.).
Thus, if only a small fraction of the total volume needs to be refined (as is often the
case in cosmology), a significant enhancement in resolution can be achieved without
a dramatic increase in computational cost, what makes HRSC methods technically
competitive with SPH (Borgani and Kravtsov, 2011).

Moving mesh schemes. These schemes are inherently Lagrangian, but grid-based.
By following the fluid motion, the –initially uniform– grid gets distorted. Moving
mesh –or hybrid– methods bring together the advantages of Eulerian and Lagrangian
schemes. They can provide high spatial resolution as well as an accurate description
of shocks.

As a final remark, it is important noting that, even though all these techniques aim
to solve the same equations, their discretised versions are not necessarily equivalent.
Therefore, systematic differences between different families of codes can arise (Borgani
and Kravtsov, 2011).

3.2.4 Solving for the gravitational force

Gravity couples the different material components in the evolution of cosmic in-
homogeneities and, accordingly, the algorithms to compute such gravitational force
are one of the key ingredients of cosmological simulations.

The most straightforward idea in a particle-based simulation would be directly
computing the force (or the potential) by summing the contributions of all the parti-

19



cles present in the computational domain. However, this approach is computationally
unfeasible for large simulations, as the required time for such calculation scales as
O(N2), being N the number of particles. Several alternatives to this direct summa-
tion procedure exist. Here, a brief overview of the main techniques is presented, while
complete reviews on the topic can be found in the bibliography (e.g., Dolag et al.,
2008).

The particle-mesh (PM) method reduces the computation time by computing the
forces on a grid. As described in Sec. 3.2.2, particles are assigned to the grid using
some of the interpolation methods mentioned above. From the total density defined
on the grid, Poisson’s equation (Eq. 3.4) is solved, either in configuration space (by
performing finite differences) or in Fourier space (by using Fast Fourier Transforms
(FFTs)). Then, ∇φ is computed by finite-differencing the potential and interpolated
back to particles. This algorithm reduces substantially the computational demand,
down to O(N logN). However, in the presence of strong overdensities, the force
resolution gets importantly damaged due to having assigned particles to grid points.

The particle-particle/particle-mesh (P3M) method overcomes this limitation by
splitting the potential into two contributions: a short-range one, which is computed
by direct summation; and a long-range one, for which the PM scheme is used.

Another family of algorithms to numerically solve Poisson’s equation are the grid-
less tree methods. The basic idea behind these algorithms is grouping distant particles
together into a large “macroparticle”, which is accounted for using multipolar expan-
sions.
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4 | Simulation and Analysis Tools
All the analyses described in this work have been performed upon a simulation

carried on with the cosmological code MASCLET. Its main features are explained in Sec.
4.1. The problem of structure finding in full-cosmological simulations is introduced
in Sec. 4.2, where the halo finder ASOHF, which is used in this work, is presented.
Finally, Sec. 4.3 covers the details of the simulation analysed in this text.

4.1 Cosmological simulations with MASCLET

The cosmological code MASCLET (Mesh Adaptive Scheme for CosmologicaL struc-
turE evoluTion; Quilis, 2004) is an Eulerian hydrodynamical coupled to N -Body code
primarily designed for cosmological applications. Below, we review its main features.

The AMR strategy. One of the main features of MASCLET is the AMR scheme,
which provides an increased resolution wherever it is required (in practical terms,
the refinement criteria can be varied depending on the application). The code han-
dles several levels of refinement, so that the resulting mesh structure consists on a
hierarchy of nested patches.

The hierarchy is recomputed every global time step. This procedure comprises
several tasks. First, refinable cells at level ` are identified and patches are generated
and grown around them according to some criteria until all refinable cells are covered
by patches. Second, patches are remapped with a finer grid at level `+1. In MASCLET,
the resolution increase between consecutive levels is ∆x`

∆x`+1
= 2. Last, the quantities

on the finer grid (only for the newly refined cells) are reconstructed from the coarser
grid by trilinear interpolation.

This process is repeated for all the refinable levels (` = 0, . . . , n` − 1, where n`
is the number of refinement levels). See §5.3 in Planelles (2011) for a more detailed
summary of this process. Note that overlaps between the different patches, i.e., cells
at the same position belonging to different patches, can be produced by this process.

The hydro solver. The hydro solver is based on HRSC techniques, briefly treated
in Sec. 3.2.3 (see Quilis, Ibáñez, and Sáez, 1994 and Quilis, Ibáñez, and Sáez, 1996 for
more details on this particular implementation), which exploit the fact that the sys-
tem can be written in conservation form (Eq. 3.9). Amongst its most basic features,
it uses parabolic reconstruction in order to compute the values of the quantities, u,
at the interfaces from the cell-averaged quantities. From these values, the Riemann
solver computes the fluxes. Once the fluxes at each interface are known, advancing
in time only requieres solving ODEs, which, in this implementation, is done with a
third-order Runge-Kutta method (see Sec. 3.2.2).

Advancing DM particles in time. DM particles are evolved in time according
to Eqs. (3.2) and (3.3) using a second-order Lax-Wendroff scheme, which uses an
intermediate step tn+ 1

2 = tn + ∆t
2

as follows:
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1. The intermediate step, n+ 1
2
, is computed:

xn+ 1
2 = xn +

1

2

vn

an
∆t (4.1)

vn+ 1
2 = vn − 1

2

[
∇φn

an
+Hnvn

]
∆t (4.2)

2. Then, step n+ 1 is reached by:

xn+1 = xn +
vn+ 1

2

an+ 1
2

∆t (4.3)

vn+1 = vn −
[
∇φn+ 1

2

an+ 1
2

+Hn+ 1
2vn+ 1

2

]
∆t (4.4)

The potential at tn+ 1
2 , φn+ 1

2 , is computed by linear extrapolation from φn−1 and
φn. Finally, after each position update, the code uses a TSC scheme to recover the
grid description for the DM density. Note that, because of the nested hierarchy of
the grid, the same particle can contribute to several patches at different levels of
refinement (with different cloud sizes, depending on the level).

Gravity solver. The gravitational force is computed from the total density field
using a PM implementation which benefits of the AMR structure of the grid. For the
coarse grid (` = 0), the gravitational potential is found by computing the FFT of the
total overdensity field, δT (k), and solving Poisson’s equation in Fourier space, where
it reduces to a product with the Green’s function (which ought to be computed each
time the grid is rebuilt). Another FFT yields the potential in configuration space.

For the refinement levels (` > 0), the potential has to be solved taking into
account the boundary conditions imposed by the parent grid. Although a complete
discussion falls beyond the scope of this work, MASCLET addresses this problem using
a successive overrelaxation method, which solves for the potential iteratively. A more
detailed specification of these procedures can be accessed in Dolag et al. (2008).

Other elements. The code includes a battery of additional physics, besides gravity
and hydrodynamics. Because of space limitations, we only mention them without
entering into too much depth. More details can be found in Quilis (2004); Planelles
(2011); Quilis, Martí, and Planelles (2020), following the historical development of
the code. A phenomenological parametrisation of stellar formation, which includes
feedback from SNe, is incorporated. Stars produce metals, which get advected with
the gas. Several cooling and heating mechanisms are included in the energy equation
(Eq. 3.7). AGN feedback is also implemented.

Recently, a new version of the code which includes the description of a cosmological
magnetic field has been presented (Quilis, Martí, and Planelles, 2020).
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4.2 Structure identification

A crucial step in our analyses has been the identification of galaxy clusters. As
DM is the dominant material component and it leads the collapse of clusters (see
Sec. 2.2.3), the most common way to look for clusters focuses on identifying their
underlying DM haloes (e.g. Planelles and Quilis, 2009).

4.2.1 The problem of halo finding

Simulations generate enormous amounts of raw information, which has to be pro-
cessed and interpreted in order to make their results directly comparable to obser-
vations. In this respect, faithfully finding and describing DM haloes in a N -Body
simulation is a fundamental, yet not completely closed issue (Knebe et al., 2011). The
basic idea behind halo finders, when applied to N -Body simulations, is to identify
gravitationally bound groups of DM particles and, potentially, their substructure and
assembly history.

There are two fundamentally different approaches to the problem, which are briefly
discussed below:

Friends of Friends (FoF). These were the first algorithms to emerge (Davis et al.,
1985). The basic idea consists in grouping DM particles which are closer than some
linking length together. This linking length is usually set to some fraction of the
mean particle separation in the whole simulation domain. The resulting collection of
neighbours of neighbours is considered a halo, whose mass can be estimated by simply
adding up the masses of all the constituent particles. Amongst the main drawbacks
of these implementations are the need to –manually– specify a linking length and
the possibility for nearby haloes to get spuriously linked through the so-called linking
bridges.

Spherical Overdensity (SO). The basic implementation of this method (Lacey
and Cole, 1994) consideres the mean overdensity in spherical regions as the criterion to
detect haloes, and compares it to the virial overdensity given by the top-hat collapse
model (Eq. 2.6). The main weakness of this scheme is the fact that it enforces
spherical symmetry on the objects, while real haloes are more often triaxial or even
irregular (see Sec. 2.2.1). Nevertheless, this algorithm has the important advantage
of not requiring to fix a linking length.

During the late 1990s and the 2000s, a flourishing amount of new algorithms arose,
further extending the ideas of one or both of the previously reviewed. Although we
may not cover them in this text, Knebe et al. (2011) shows the results of a comparison
project amongst a number of halo finders.

4.2.2 The halo finder ASOHF

ASOHF (Adaptive Spherical Overdensity Halo Finder; Planelles and Quilis, 2010)
is a SO halo finder especially designed to take advantage of the AMR structure of
MASCLET (although a standalone version, which can be coupled to the outputs of a
general N -Body simulation, also exists).
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The basic procedure relies on the idea of the previously explained SO method,
but the particular implementation includes several additional steps aimed to improve
the performance and avoid some of the possible limitations.

First, the code identifies the density maxima using the density field computed
over the AMR hierarchy of grids. For each maximum, its corresponding virial radius
is found as the radius which encloses a density ∆vir,c(z)ρc(z). This gives a rough
approximation of haloes’ positions, masses and radii. Then, the overlaps amongst
haloes are considered. Pairs of haloes sharing more than 40% of the minimum of
their masses are joined together and the new position, radius and mass is computed.
This provides a tentative list of haloes.

From this point on, the code works solely on the DM particle distribution, instead
of the smoothed density field. As particles are not limited by cells boundaries, a more
precise estimation of the physical quantities of the halo is, thus, achieved. Further
checks that are finally performed include:

(i) Whether the particles are gravitationally bound. In order to do so, particle
velocities are compared to their local escape velocity. Unbound particles are
pruned and do not contribute to the halo.

(ii) Whether the radially-averaged density profile is consistent with a NFW profile
(Eq. 2.7).

The final output of the halo finder consists on a list of the haloes, with a pre-
cise estimation of the physical parameters of each (position, velocity, virial radius,
moments of inertia, etc.).

This code is especially designed to identify a whole hierarchy of substructures
(haloes within haloes). ASOHF accomplishes this by taking advantage of the AMR
structure of MASCLET outputs and being able to perform the process of halo finding
at each level of refinement independently. The results at each level are finally brought
together by imposing several conditions to prevent misidentifications of subhaloes (see
Planelles and Quilis, 2010 for more details).

Another distinctive feature of ASOHF, which is exploited in this work, is its ability
to track the evolutionary history of DM haloes by building the merger tree (MT).
DM particles in MASCLET are assigned a unique identifier. ASOHF takes advantage of
this in order to find the shared mass between haloes at different code outputs, thus
being able to compute a list of the progenitor haloes of a given structure.

4.3 Simulation details

The simulation we analyse in this manuscript has been performed with the cos-
mological code MASCLET, described in Sec. 4.1. The background model assumes flat
ΛCDM cosmology with density parameters ΩΛ = 0.69, Ωm = 0.31 and Ωb = 0.048.
The Hubble constant is set to h = 0.678, and the initial density fluctuations are
generated using a spectral index ns = 0.96 and an amplitude given by11 σ8 = 0.82.

The simulation domain is a cubic region of comoving side length 40 Mpc, which
is discretised at the base level (` = 0) with 1283 cells. This yields a coarse resolution

11σ8 is the rms amplitude of the linear perturbations on a cubic window of side 8h−1 Mpc. Giving
σ8 is equivalent to giving As, as both quantify the amplitude of the primordial density fluctuations.
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of ∼ 310 kpc. Following the AMR strategy, up to n` = 9 levels of refinement are
allowed, giving a peak resolution of ∼ 610 pc.

The initial conditions are set at z = 100, using a constrained realisation in order
to generate a massive cluster in the centre of the domain by z ' 0 (see Quilis,
Planelles, and Ricciardelli, 2017; Planelles et al., 2018 for more details about the
initial conditions in this simulation).

The refinement criteria is based on the local baryonic and DM density. A low-
resolution run is first performed until z = 0 in order to pick the regions to be initially
refined, up to level ` = 3. Four species of DM particles are used. Initially, the
coarse grid is sampled with the most massive particles, while the subsequent levels of
refinement are sampled with particles 8, 64 and 512 times lighter mass. With these
particles, the best mass resolution is ∼ 2× 106M�, which would be the equivalent of
filling the simulation volume with 10243 particles.

The simulation includes several cooling and heating mechanisms, star formation,
metal enrichment, feedback from type-II SNe, etc. (as described in Sec. 4.1). How-
ever, feedback from stellar winds, type-Ia SNe and AGN are not included in this
run.
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5 | Results and Discussion
As motivated in Sec. 2.2, accretion plays an important role in shaping the dynam-

ical and thermodynamical properties of gas in clusters. In the recent years, several
studies have been aimed to characterise the statistical effects of accretion using big
samples of clusters (e.g. More, Diemer, and Kravtsov, 2015; Y. Chen et al., 2020),
putting emphasis on the effects on the scaling relations (Lau et al., 2014; H. Chen
et al., 2019). Instead, in this work we try to analyse in further detail the physics of ac-
cretion on a small sample of clusters, presented in Sec. 5.1. The subsequent sections
cover different analyses performed on this sample, encompassing the determination
of accretion rates and the exploration of their relation to clusters’ environments, as
well as the inner structure of clusters and the angular distribution of mass accretion
flows.

5.1 Selection of objects

From the simulation described in Sec. 4.3, we have identified 8 DM haloes with
virial massMvir > 1013M� at z = 0. These objects (labelled CL01 to CL08) constitute
the preliminary sample to be studied, and their most basic properties are listed in
Table 2.

Two of these objects have total masses above 1014M� at z = 0 and can be fully
considered galaxy clusters. The remaining six objects have masses below 1014M�,
corresponding to low-mass clusters or groups. This qualitative distinction is of ut-
most importance for the interpretation of our results: while more massive objects
gravitationally dominate their surroundings, one does not expect the same to hap-
pen for the smaller objects. Low-mass clusters and groups are still subject to strong
gravitational influence from nearby larger objects, which could produce a wide variety
of effects: tidal interactions, gas stripping, etc. (Tormen, Moscardini, and Yoshida,
2004; Cen, Pop, and Bahcall, 2014; Quilis, Planelles, and Ricciardelli, 2017)

The MASCLET refinement strategy does not allow to refine ` = 0 cells in the bound-
ary of the computational domain. Hence, matter close to the boundary has been
tracked with low spatial and force resolutions, and the dynamics in this region are
not reproduced as faithfully as in the rest of the simulation box. Due to this instru-
mental limitation, cluster CL05 has been excluded from the sample.

5.1.1 Main branch of the merger tree

We are interested in following the evolution of properties of these clusters. In
concordance with previous works (e.g. Planelles and Quilis, 2009; H. Chen et al.,
2019), we define the MT of a cluster as the MT of its underlying DM halo. This
procedure is well motivated by the idea of DM collapse leading the formation of
structures depicted in Sec. 2.2.3.

Using ASOHF, given a halo at some iteration, we can extract a list of its progenitor
haloes (i.e., the haloes at the previous code output which have particles in common
with the given halo), and the fraction of progenitor’s mass given to the descendant
halo. We refer to these data as the full merger tree of a given DM halo. However,
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Table 2: Sample of clusters studied in this work and its main properties at redshift z = 0. x, y and
z refer to the DM center of mass comoving coordinates. The masses MDM and Mgas are measured
inside Rvir. The last column specifies the clusters which have been excluded from later analyses.

cluster x y z Rvir MDM Mgas Excluded
(Mpc) (Mpc) (Mpc) (Mpc) (1013M�) (1013M�)

CL01 0.1 0.0 0.1 1.99 42.9 4.56
CL02 -3.2 4.9 -14.9 1.26 10.9 1.33
CL03 17.0 -3.0 9.4 0.960 4.82 0.656
CL04 10.7 -2.5 2.0 0.948 4.63 0.437
CL05 19.5 -2.8 2.0 0.811 2.91 0.364 a

CL06 -14.6 -1.0 -11.0 0.707 1.92 0.224
CL07 -10.4 1.1 10.8 0.658 1.55 0.144 b

CL08 -15.0 -4.6 1.9 0.609 1.23 0.117
a This object is poorly described, due to the fact that it is close to the simulation
domain’s boundary.
b This object cannot be followed beyond z ∼ 1, as it mass decreases strongly with
increasing redshift.

in order to study continuous accretion, we have built the reduced merger tree, which
only contains the main progenitor of each halo at a given iteration. There is not
a unique definition, as different works opt for different approaches (e.g., check the
references in the previous paragraph). We have tested three different strategies:

• The backwards strategy: amongst all the progenitor haloes, the main progen-
itor is picked as the one which contributes the most (the one which gives the
most mass) to the descendant halo. This strategy is followed in, e.g., Tormen,
Moscardini, and Yoshida (2004).

• The forwards strategy: the main progenitor is picked as the one which gives
the largest fraction of its mass to the descendant halo.

• The shared mass strategy: the main progenitor is chosen as the one which the
descendant halo shares the larger mass of most-bound particles with. In our
particular implementation, we define the most-bound DM particles as the ones
within a radial distance of rb = 0.5R2500m from the halo barycenter.

In principle, these three methods do not necessarily yield the same results. In-
tuitively, the backwards strategy is a reasonable choice to study the evolution of a
cluster sample focusing on the objects at z = 0. Likewise, the forwards strategy bet-
ter captures the evolution of a cluster sample at some zin towards the present time.
Last, the shared mass strategy is physically motivated by the fact that cluster interi-
ors remain less perturbed by the infall of substructures (More, Diemer, and Kravtsov,
2015), although it implies stronger assumptions on the sphericity and relaxedness of
the objects.

For our cluster sample, these three methods only differ in the reduced merger tree
of clusters CL02 and CL03, and these differences are restricted to only two and one
snapshots, respectively, at high redshift (z ' 1) after which the evolutionary lines
converge again. Careful examination of these situations reveals that the backwards
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and forwards strategies tend to pick the higher mass parent; while the parent chosen
by the shared mass strategy is normally a lower mass one which may have collided
with the main cluster with a low impact parameter. The agreement amongst the
three methods points out the robustness of the reconstructed reduced merger trees.
For the rest of this project, we have chosen the evolutionary lines according to the
backwards strategy.

Within these analyses, CL07 has only been followed up to z ∼ 1. For earlier
times, its mass decreases strongly and it is no longer found by ASOHF. Hence, it has
been excluded from subsequent analyses.

5.1.2 Measurement of masses and radii

The previous analyses leave our sample with six objects to be studied, two of
which (CL01 and CL02) can be regarded as massive clusters, and the rest being
smaller clusters or groups.

With the aim of characterising the mass evolution of these clusters, we have
measured the radii R200m, Rvir, R500m and R2500m, defined with respect to the DM
particle distribution, by numerically solving Eq. (2.5), where the term M∆m =´ r=R∆m

r=0
ρDMd3r can be computed as the sum of the masses of the particles inside

a clustercentric radius R∆m . This calculation has been performed for every code
output from z = 1.5 to z = 0.

In order to boost convergence and minimize the number of required enclosed-
mass computations, we use Brent’s method (Brent, 1973), which combines secant
and inverse quadratic interpolation methods and whose convergence is guaranteed
for functions that change sign in some initial interval.

Once the different radii for each cluster at each iteration are known, the stellar,
gas, DM and total masses have been obtained at each code output by integrating the
densities over the corresponding spherical volumes.

5.2 Determination of mass assembly histories and mass accre-
tion rates

5.2.1 Mass accretion history of the clusters in the sample

The evolution of the DM halo mass (according to one of its possible definitions)
informs about its mass assembly history (MAH) (e.g., see Y. Chen et al., 2020, where
this operative definition of the MAH is also used). The computations in the previous
section provide the MAH of each of the components (stellar, gaseous and dark), for
each of the clusters. In this section, we use these data in order to quantify the
magnitude of the accretion phenomena onto each of the objects in the sample. Fig.
2 shows the MAH of the dark and the baryonic (gas and stars) components.

The left panel shows the evolution of the DM masses. As a general trend, all DM
haloes display a mass growth, as a result of the accretion of surrounding matter and
merger events. While some haloes grow at a relatively constant rate (e.g. CL08),
others alternate sudden mass increases and more quiescent periods. This fact already
points out at a division between merger events and smooth accretion, which is further
explored in Sec. 5.3.
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Figure 2: MAH of the selected clusters, for the DM component (left) and the baryonic component
(right). Each curve has been normalised to the present-day mass of the corresponding component
in each cluster.

The right panel presents the evolution of the baryonic masses. Baryonic mass
has been chosen, instead of just the gas mass, as star formation activity can convert
a significant amount of gas mass to stars at recent redshifts. Thus, measuring the
evolution of gaseous masses does not only account for accreted mass, but is biased
because of star formation. This effect is more intense in lower-mass systems, where
star formation is more efficient (as mentioned in Sec. 2.2.1; see also Planelles et al.,
2013). More massive systems do not exhibit significant differences between their DM
and baryonic components, as far as mass evolution is concerned. The same is not
true for the low-mass clusters and groups. Particularly salient is the case of CL04,
whose baryon mass steadily decreases for z . 0.7. In the same direction, CL08 has
a roughly constant baryonic mass with time, while its DM mass increases by more
than 20% from z = 1.5 to z = 0. Less massive systems have shallower gravitational
potential wells and their gas content is more likely to be unbound and lost due to
dynamic (e.g., collisions with other systems, tidal interactions, etc.; Cen, Pop, and
Bahcall, 2014; Quilis, Planelles, and Ricciardelli, 2017), hydrodynamic (e.g., shocks)
and baryonic (e.g., heating due to SNe; Giodini et al., 2013) effects.

5.2.2 Mass accretion rate definitions

There are different ways of quantifying the strength of accretion onto clusters in
the bibliography. Amongst them, we can count the following proxies for the mass
accretion rate (MAR):

• The logarithmic slope of the enclosed mass (in a clustercentric sphere of radius
R∆) with respect to the scale factor.

Γ(a) =
d logM∆

d log a
(5.1)

This is the definition used in Adhikari, Dalal, and Chamberlain (2014), for
example. However, a number of works substitute the derivative by a quotient
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of differences over a wide time interval:

Γ[a1,a0] =
log (M∆(a0)/M∆(a1))

log (a0/a1)
(5.2)

For example, Diemer and Kravtsov (2014) use a1 = 0.67 (z = 0.5) and a0 = 1;
while H. Chen et al. (2019) find that Γ measured between a1 = 0.7 and a0 = 1
maximizes the correlations between the MAR and the ellipticity of the ICM.
Note that these two definitions are related by Γ[a1,a0] = 1

∆ log a

´ log a0

log a1
Γ(a)d log a.

• Lau et al. (2014) define their proxy for the instantaneous MAR as the quotient
between the radially-averaged infall velocity of the DM particles measured at
r = Rα and the circular velocity, Vcirc,∆ =

√
GM∆/R∆,

α∆ =
V DM
r (r = Rα)

Vcirc,∆

. (5.3)

Note that more negative α∆ implies more intense accretion.

These two definitions (Γ and α∆) are anticorrelated, although a large scatter exists
(see Figure 5 in Lau et al., 2014). In this work, we have chosen to define the MAR
as in Eq. (5.1). Furthermore, we define this quantity for each component (baryons
and DM), which allows to study their different behaviour. We adopt the definition
involving the derivative, which informs about the instantaneous accretion rate, rather
than the average rate over a wide interval. The latter can better account for the global
impact of accretion on the dynamical state (H. Chen et al., 2019), while the former
better characterises the actual mass being accreted at a given time.

5.2.3 Determination of Γ(a) for the clusters in the sample

Using the definition discussed above, we have computed the MAR for the clusters
in our sample. In order to evaluate the numerical derivatives, we have tested two
strategies aimed to minimise the contaminating effects of statistical noise:

• Computing the derivative using second-order central differences, and applying
a gaussian filter to smooth the result.

• Directly computing the smoothed derivative using a Savitzky-Golay filter (Sav-
itzky and Golay, 1964). These filters fit low-order polynomials using least
squares methods, and then compute the derivative of the fitted polynomial.
These methods have been long applied to noisy data in astrophysics (e.g., Press
and Teukolsky, 1990).

Although the former is a more conventional approach, our tests show that gaus-
sian smoothing fails to reproduce narrow peaks in the data, as they get excessively
flattened. Savitzky-Golay filters, once their parameters are tuned, closely follow the
data points while still preventing spurious peaks. In order to apply the Savitzky-
Golay filter, the data points must be evenly spaced in log a. In order to achieve this
from initially unevenly spaced data, we have resampled the M(a) curve by linear
interpolation.
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Figure 3: MARs of the selected clusters, for DM (left) and baryons (right). Colours encode the
total mass (baryons + DM). The shape of the dots identifies each of the clusters according to the
legend. Both, the colourbar and the legend, apply to both plots.

Using this technique, Fig. 3 shows the evolution of the MAR of the clusters in
our sample, when measured for DM and for baryons.

The graphs show similar qualitative behaviour for the DM and baryon MARs,
reflecting the fact that gas traces DM to a first approximation. However, the most
prominent peaks (specially in the higher mass objects) are typically more pronounced
for the dark component than their baryonic counterparts (e.g., compare the magni-
tude of Γ at the peak of accretion of CL01 at z ∼ 1.4), implying that (i) there are
systematic differences between DM and gas, and (ii) gas is generally accreting at a
slower pace, when compared to DM. This trend has already been pointed out by other
studies (see e.g. Lau et al., 2014, where a similar conclusion is drawn from studying
the velocity profiles of both components). As opposed to collisionless DM, collisional
gas is supported by pressure (which prevents a faster collapse), and experiences ram
pressure from the ICM (Quilis, Planelles, and Ricciardelli, 2017), shocks, etc.

Fig. 3 displays a clear distinction between massive clusters (CL01, CL02 and,
marginally, CL03) and low-mass clusters and groups (CL04, CL06 and CL08). Mas-
sive clusters often present strong peaks in their MAR curves, which indicate relatively
short periods of intense accretion. These events are likely associated to major merg-
ers, which are still frequent as clusters continue growing and collapsing by z ∼ 0
(Walker et al., 2019). As can be seen from the colour scale, these events are the main
contribution to the mass growth of clusters. We analyse in further depth the relation
between mergers and accretion in Sec. 5.3.

Less massive clusters show flatter curves, pointing out that either they do not
experience merger events as strong as their more massive homologues, or they un-
dergo important mass losses during these events, as a consequence of their shallower
potential wells. The latter idea is supported by the fact that the differences between
baryonic and dark components are more remarkable in these systems. Clusters and
groups with total mass . 5 × 1013M� do not seem to dominate as efficiently their
neighbourhoods, and are therefore harassed by other systems.
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Figure 4: Left panel compares the MAR for DM and for baryons, both measured inside R200m.
Right panel shows the total (baryons + DM) MAR measured inside R200m and R500m.

5.2.4 Dependence on radii and components

In order to better highlight the differences between the DM and baryonic MARs,
Fig. 4a shows the corresponding curve for each component, for the particular case of
the object CL08 (the lowest mass one). Dark matter shows a much smoother trend,
while the gaseous counterpart exhibits important variability in its MAR. Furthermore,
baryonic MAR peaks show a delay with respect to DM peaks. The redshift differences
observed in the graph correspond to time differences in the order of ∼ 1 Gyr. These
results, again, hint that pressure support prevents faster accretion for the baryonic
component.

Last, we have also analysed how do the MARs change with the reference radii.
In that direction, Fig. 4b presents the total accretion rates (accounting for all gravi-
tational matter) measured at R200m and R500m. The most remarkable feature of this
graph is the delay between the Γ peaks at both radial marks. These delays, which
are again in the order of ∼ 1 Gyr, are present in all clusters displaying important
peaks, and are consistent with the necessary time for infalling DM particles to cross
the distance R200m −R500m.

5.3 Correlating accretion rates with mergers and surrounding
density

As already pointed out in the previous section, the peaks in the MAR curves
are most likely due to merger events. We define such mergers as events where two
cluster-sized haloes (and their respective baryonic counterparts) encounter and share
a significant amount of mass. In Sec. 5.3.1 we describe the procedure followed to
identify and classify mergers. However, a significant part of the accreted mass can
end up lying outside the R∆ definition and, hence, the corresponding SO masses
are not additive in merger events (Kravtsov and Borgani, 2012; More, Diemer, and
Kravtsov, 2015). In Sec. 5.3.2, this fact is studied by determining the densities in
the surroundings of the cluster and correlating them to the MAR.
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5.3.1 Merger identification and classification

We have identified the mergers using ASOHF full MTs of DM haloes. Generally, and
especially for massive haloes, ASOHF merger trees are able to identify many progenitor
objects which contribute to a given halo in the following code output. However,
most of them either contribute very little to the halo mass, correspond to low-mass
substructures or are distant enough to be considered an artifact due to the spurious
movement of a few particles. In order to identify halo mergers, we establish the
following conditions:

I. The distance between the centers of mass of the two progenitor candidates is
less than the sum of their virial radii, i.e., their spheres of radius Rvir intersect.

dij ≤ Ri +Rj (5.4)

This condition is conceptually similar to the one of H. Chen et al. (2019), who
take a much inner radius, R500c, to assess the merger times. In this work, we are
not so interested in finding a particular merger time, but rather aim to describe
the merging state of clusters. This motivates our choice of an outer radius.

II. Each of the progenitor haloes gives, at least, 1% of its (DM) mass to the de-
scendant halo. Again, H. Chen et al. (2019) take a more stringent value (10%)
which is consistent with their smaller interaction radii.

III. Each of the progenitor halo masses is larger than 1/10 of the descendant mass.
Mergers with haloes of smaller mass are regarded as smooth accretion.

Following previous works (Planelles and Quilis, 2009; H. Chen et al., 2019), we
define three accretion regimes, based on the maximum mass ratio between the pro-
genitors:

• Major mergers: involve two haloes of comparable mass, and are relatively un-
frequent. They typically have a large impact on the structure of haloes. We
take a mass ratio of 1 : 3 as the threshold for these events, in consistency with
the previously cited works.

• Minor mergers: produce less significant disturbances on the objects, but are
generally more frequent. Their mass lower threshold is more arbitrary. For
example, H. Chen et al. (2019) take 1 : 6, while Planelles and Quilis (2009) use
1 : 10. In this work, we stick to the latter definition.

• Smooth accretion: systems which experience no mergers above the 1 : 10 mass
ratio threshold are considered to undergo smooth accretion.

In our sample, clusters CL01, CL02 and CL03 exhibit periods of major and minor
merging activity. CL06 does not experience any major mergers, but only minor
mergers. Last, no mergers have been identified in CL04 and CL08 and they are
therefore smoothly accreting clusters throughout the considered interval 1.5 ≥ z ≥ 0.
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Figure 5: Relation between the MAR, merger events and densities in the surroundings of the
cluster, for two of the clusters. In each panel, the upper plot shows the MARs for the total mass
(solid line) and baryonic mass (dashed line). The lower panel shows the surrounding density in
various clustercentric radial bins, in terms of the background density of the Universe. The dashed
line, corresponding to the baryonic density, has been normalized to the cosmic baryon fraction (i.e.,
has been multiplied by Ωm/Ωb). The legend in the left panel applies to both plots.

5.3.2 Surrounding densities

Motivated by the non-additiveness of SO masses in major mergers, we have quan-
tified the densities in the surroundings of each cluster and its evolution with cos-
mic time in four non-overlapping, equally spaced radial bins, covering the region
1 ≤ r/R200m ≤ 3.

Fig. 5 exemplifies the results of these analyses for two clusters: CL01 (massive
cluster which undergoes numerous major and minor mergers) and CL06 (low-mass
cluster which only suffers minor mergers). Both panels show the total (solid lines)
and baryonic (dashed lines) MARs, the merging regimes (background colour of the
plot) and the surrounding densities (lower panels).

In the case of the massive CL01 cluster (Fig. 5a), as already pointed out in Sec.
5.2.3, differences in the MAR between different components (in this case, between the
total mass, which is dominated by DM, and the baryonic one) are small in magnitude.
In this case, peaks in the MAR are undoubtedly associated to (major) merger events,
as it is the case of the displayed peaks at z ∼ 1.4 and z ∼ 0.8.

It is also interesting to note how high MARs are mantained for a long time after
the merger has taken place (particularly salient is the case of the merger at z ∼ 0.8).
As already hinted in the introduction to this section, a significant part of the mass can
be deposited beyond the R200m boundary (More, Diemer, and Kravtsov, 2015). This
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matter continues feeding the cluster –in a more quiescent way– for some time. In this
respect, the lower panel shows how densities in the 1 ≤ R/R200m ≤ 1.5 region keep
above 10ρB until z ∼ 0.5; and even at regions as far as 2.5 ≤ R/R200m ≤ 3, densities
are several times over the background value for a long time after the interaction.

Comparing the surrounding total and baryonic densities, the latter appears to
evolve in a much smoother way than the former. At outer radii, R & 2R200m, baryon
surrounding densities (when normalized to the cosmic baryon fraction) tend to be
higher than total densities. This seems to reinforce the idea that gas, due to its pres-
sure support, is deposited at larger radii than DM, which can more easily penetrate
to inner regions. We find these general trends are shared for all the massive clusters
in our sample which suffer major mergers.

The low-mass CL06 (Fig. 5b) exhibits significant differences in the behaviour
of baryonic and total masses, as already found for CL08 in Sec. 5.2.4. The total
MAR appears to experience peaks in correlation to the minor merger events. The
gaseous component roughly follows these peaks, although their magnitude can differ
significantly. There are also severe declines in the gas mass (negative Γ200m), which
reflect the inability of low-mass systems and groups to keep their gas inside R200m.
However, note that some of this Γbaryons

200m < 0 may be associated, not to the gas being
unbound and lost, but just deposited outside R200m (e.g., see the important increase
of surrounding baryon density when compared to total density at z ∼ 0.8, while
Γbaryons

200m < 0). Part of this baryonic matter is reaccreted in the following peak at
z ∼ 0.7, while the rest might be expelled to larger radii, contributing to the increased
baryon density at large radii at later times.

5.3.3 Temporal shift between surrounding densities and the MAR

For massive clusters, like CL01, the density in the immediate neighbourhood of
the cluster shows remarkable resemblance with the MAR. However, a temporal shift
between the surrounding density and the MAR is evident from the graphs. In order
to quantify this shift, we compute the Spearman’s rank correlation coefficient, rs, of
ρsurrounding(t) in the first radial bin with Γ(t + τ), and find the τ which maximises
rs. Spearman’s coefficient assesses the monotonicity of the relation Γ − ρsurroundings

without assuming linearity (as the Pearson’s coefficient does). With this analysis, we
draw the following conclusions:

• For the cluster CL01, when total masses are considered, an optimal shift of
900 Myr provides a rank correlation of rs = 0.803. Restricting to the bary-
onic component enhances this correlation to rs = 0.895, while increasing the
time shift to 1.1 Gyr. Although these shifts can only be considered as rough
estimates, we get consistent results, i.e. temporal shifts compatible with the
crossing time for the faster infalling DM particles, and a higher shift for baryons.
A similar trend is shown by cluster CL03, although in this case the correlations
are weaker (rs = 0.744 and rs = 0.691, respectively).

• CL02, a massive cluster which only experiences a major merger at high redshift
and experiences a more quiescent evolution therein (when compared to CL01
and CL03), shows weaker correlations, of rs = 0.623 and rs = 0.572.

35



• Less massive clusters do not display significant correlations between these vari-
ables, as a result of their limited ability to capture matter (especially, gas).
Indeed, in the lower panel of Fig. 5b one sees a much flatter evolution of the
surrounding densities.

5.4 Evolution of the density profiles

In Sec. 5.2 and 5.3, we have quantified accretion by studying the change in mass
in a sphere enclosing most of the clusters’ mass. In this section, we analyse how
mergers and strong accretion impact the inner distribution of matter in clusters. In
order to do so, we have computed the comoving density profiles of DM, gas and stars
using nbins = 100 logarithmically spaced bins, from 100 kpc to 4 Mpc.

The central several hundreds of kpc in the radial profiles of density (or any other
quantity) are considerably sensitive to the choice of center. There are many different
choices: in simulations, amongst the most extended ones are the center of mass of the
bound DM particles12, DM or total mass density peaks, local gravitational potential
minimum, etc. In Cui et al. (2016), the authors present a comparison of different
choices of observable and how they influence the position of the center.

In order to compute the profiles, we have compared the non-recentered results
with three recentering schemes: maximum of DM or total density and potential
minimum. For the recentering runs, we have looked for the optimal cell inside a sphere
of radius 0.5R2500m around the center of mass of the DM halo. Our tests suggest that
recentering to the potential minimum provides the overall most consistent results.
The other options exhibit sudden displacements of the center (which can be attributed
to the presence of substructures) and non-monotonically decreasing density profiles,
which hint at miscentering issues. The choice of recentering to the potential minimum
can be motivated by the fact that, by being the solution to the Poisson equation, the
potential smoothes the spurious density peaks of the density field and better captures
the overall distribution of matter in the cluster.

In Fig. 6, we represent the evolution of DM, gas and stellar radially-averaged
comoving densities (top, middle and bottom rows, respectively) for clusters CL01,
CL02 and CL06 (from left to right). On top of these plots, the green line indicates
the virial radius. Note how the virial radii of CL02 (which only undergoes a major
merger at z ∼ 1.4) and CL06 (which only suffers minor mergers) are roughly constant,
while CL01 (undergoing several major mergers) displays important variations in this
magnitude.

Related to this, the inner regions of dark matter comoving density profiles are
mostly constant in time for CL02 and CL06, suggesting that these structures are
already collapsed by z ∼ 1 and the innermost radii (r . R2500m) do not get disturbed
by minor mergers and smooth accretion. This result is consistent with More, Diemer,
and Kravtsov (2015), who find that the mass inside 4rs (being rs the scale radius of
the NFW profile, Eq. 2.7) evolves relatively slowly for z . 1− 2. Conversely, CL01
does experience important disturbances in its DM profiles, especially around z ∼ 0.8.
The enhanced MAR during 1.1 & z & 0.7 (see Fig. 5a) associated to the major
merger event appears to substantially increase the central density.

12This corresponds to the center given by ASOHF.
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Figure 6: The panels show the evolution of the comoving density profiles of the different material
components for three clusters, from z ' 1.5 to z = 0. Densities are always normalised to the
background matter density of the Universe and the colour scale is logarithmic. Radial coordinates
are comoving. From top to bottom, panels show DM, gas and stellar densities. From left to right,
these quantities are presented for CL01, CL02 and CL06. The colour scale in the left plot of each
row applies for all plots in the row. The green line in each panel indicates the virial radius.

Gas density profiles clearly show the presence of gas clumpiness, as well as miscen-
tering (specially in the case of CL06). The centers of the gaseous and dark components
do not necessarily coincide, especially when there is an important merging activity
(i.e. departures from dynamical equilibrium). Stellar masses are mostly confined to
the inner regions, with high densities only inside quite central radii (. R500m), as
only in these regions gas is dense enough and can cool efficiently to form stars.

Lines of decreasing radii with decreasing redshift indicate the presence of massive
structures being accreted, mainly galaxy cluster mergers. These streams of matter are
better recognised in the stellar component, as the stellar mass is more concentrated
towards the center of the infalling cluster and leaves a sharper imprint on the density
profile. The redshifts at which these streams cross the halo boundary appear to be
consistent with the periods of mergers for the examples shown.

Gas density profiles also suggest the presence of streams of gas being deccreted
or expelled from inside the virial radius. This is particularly notorious for CL02
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and CL06, and hints that dynamical interactions between clusters can also extract
gaseous matter to outer radii (Cen, Pop, and Bahcall, 2014).

5.5 Understanding the angular distribution of accretion

In this section, we focus on the characterisation of the angular distribution of
accreting gas. This topic has not been extensively covered in the literature, but it
is of utmost interest in order to assess the influence of the clusters’ environment and
the complex physics of baryons on the cosmic flows. In Sec. 5.5.1, we describe our
method for quantifying the angularly-resolved distribution of accretion and present
and discuss some results. In Sec. 5.5.2, the validity of this approach is assessed.

5.5.1 Determination and representation of the angular distribution of
accretion in simulations

A proper computation of the flux, like the one which is performed in order to
solve the equations of hydrodynamics, through all the cells in the cluster boundary
lacks interest for this analysis, as this would involve a tremendous computational
cost without adding too much valuable physical information. Instead, in this work
we suggest the computation of an estimated flux, based on the peculiar velocities and
density fields at a given code output.

We assume each gas cell as a particle located at its geometrical center, with mass
ρB(z)(1 + δcell)∆Vcell and the peculiar velocity v = adx

dt
given by the corresponding

cell-averaged velocity. All cells, regardless of the refinement level they belong to, are
considered on equal footing.

For each cell, its radial comoving distance to the center of the cluster, r, and
radial peculiar velocity, vr ≡ adr

dt
, are computed. Let the halo be limited by a given

SO boundary, at a radial comoving distance Rbdry from the centre (e.g., R200m, Rvir,
etc.). With these data, we estimate the fluxes across the spherical boundary Rbdry

according to the following rules:

• Given a cell with radial coordinate r < Rbdry (inside the spherical boundary),
we mark it as an escaping cell if r + vr

a
∆t > Rbdry.

• Likewise, a cell with radial coordinate r > Rbdry (outside the spherical bound-
ary) is marked as an entering cell if r + vr

a
∆t < Rbdry.

In these definitions, ∆t is the time interval used in the estimation. Larger ∆t
increases the number of cells used to estimate the fluxes, and thus provides higher
angular resolutions. However, a too long ∆t would produce unreliable results, as the
gas flows are not expected to be persistent on long timescales. Related to this, Sec.
5.5.2 briefly covers the validity of this approach. In our analyses, we have set ∆t to
be the time difference between consecutive snapshots at the moment when the fluxes
are being estimated (in this simulation, this quantity takes values from ∼ 60 Myr to
∼ 300 Myr).

Once the entering and escaping cells are estimated according to our flux calcula-
tion, the angular distribution of accretion is computed by binning the complete solid
angle around the cluster in the clustercentric spherical angles, φ and cos θ (defined
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with respect to the cartesian axes of the simulation domain). By dividing the polar
direction in intervals of constant cos θ (instead of constant θ), bins at all latitudes
subtend the same solid angle. In our analyses for cluster CL01, we split the solid an-
gle in nφ × nθ = 80× 80 equally sized angular sectors, which yield enough resolution
for our analyses. Increasing the number of bins beyond this quantity produces an
excessive number of cells where no entering or escaping flows are measured, due to
the approximation of cells as particles located at their geometrical center.

For each entering (escaping) cell, we assign all its mass to the bin corresponding
to its angular position, yielding the distribution of accreting (deccreting) matter.
Their subtraction is the net flow across the SO boundary. The resulting values can
be further normalised by dividing by ∆t, R2

bdry and ∆Ω = 4π
nφnθ

, in order to get the
mass flux density in its proper units:

jM =
∆M

R2
bdry∆Ω∆t

(5.5)

For the purposes of our analyses, as the main focus of this work is the study of
accretion, we take the sign convention to be jM > 0 when matter is infalling (being
accreted).

Fig. 7 exemplifies the result of the calculations explained up to this point, for
cluster CL01 at z u 0.81 (while it is strongly accreting mass after a major merger),
with the fluxes computed at Rvir u 1.95 Mpc. In order to produce these plots,
one needs to represent positive (entering matter) and negative (escaping matter)
values which span a broad range of orders of magnitude. In order to do so, we
have implemented a symmetric logarithmic scale13. From these values, the mass flux
isocontours (obtained by bilinear interpolation from the computed bins) are encoded
in colour scale.

As it can be seen in the figure, accretion clearly dominates the gas mass fluxes
(consistently with the fact that Γ takes a high value at this redshift). Outgoing flows
of mass are restricted to small angular regions and are subdominant. The horizontal
(cos θ = const.) white lines are artifacts which arise when matter is infalling from a
low level patch, which ultimately trace back to the approximation of considering all
the cell’s mass as a point-like particle in its center.

The angular distribution of accretion is dominated by two intense hotspots, which
are located at approximately antipodal positions. These hotspots are likely to cor-
respond to accretion through the cosmic filaments, which is assumed to be the main
contribution to mass growth in clusters (Lee and Evrard, 2007; Lee et al., 2008).

13The symmetric logarithmic scale is a transformation of the data which allows the representation
of a variable which spans several orders of magnitude and can be both positive and negative. The
basic underlying idea of our particular implementation relies on mapping any interval [−xmax, xmax]
to the interval [−1, 1] by performing the following continuous transformation:

x 7→ f(x) =

{
sign(x)

[
1 + 1−a

α log10

(
x

xmax

)]
, |x|

xmax
≥ 10−α

a
10−αxmax

x, |x|
xmax

≤ 10−α
(5.6)

The parameter xmax controls the maximum of the scale, α gives the dynamical range of the repre-
sentation (the number of orders of magnitude represented in logarithmic scale) and a = f (10−αxmax)
represents the visual extent of the linear scale. For example, in the plot shown in Fig. 7 we have
chosen α = 3, a = 1/3.
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Figure 7: Angular distribution (with the z-axis of the domain box as the polar axis) of the
estimated mass fluxes through the r = Rvir surface, for the cluster CL01 at z u 0.81. The plot
has been produced with nφ × nθ = 802 bins covering the 4π sr around the cluster, and using
α = 3, a = 1/3 for the representation. Two accretion hotspots in approximately antipodal positions
dominate the infall of mass. The white, cos θ = const. lines correspond to artifacts due to the lack
of resolution in a given direction (i.e., matter infalling from a low AMR level patch).

Hereon, we will refer to this component as the filamentary component. Besides this
filamentary component, a more quiescent contribution is present in nearly all direc-
tions. However, far from being isotropic, the flows have intricate structures. This
complexity likely emerges from the interaction with the surroundings, and need fur-
ther investigation in order to make quantitative predictions.

Although we do not explore it in the present manuscript due to the limited space,
it can be seen that the filamentary component is, indeed, tightly aligned with the
major axis of the total mass distribution, and it is the dominant contribution to the
mass inflows throughout the cluster evolution, typically accounting for more than
50% of the accreted mass. Besides, it is worth mentioning that this method can
be easily extended to quantify, not only the mass flows, but also thermodynamical
properties of the accreted gas, like its temperature or entropy; or any other quantity
which can be derived from the simulation outputs.

5.5.2 Validity of the approximation. Persistence of the flows.

The procedure proposed above relies on the implicit assumption that gas velocities
measured at one code output are persistent during the time interval, ∆t, used to
estimate which gas cells enter or leave the spherical volume. In this section, we briefly
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argue that this approximation is, indeed, applicable to our system, thus justifying
the validity of the method.

The basic scheme of the performed test consists on the comparison of the radial
velocity dispersion, σr, with the radial velocity, vr. For each cell which the method
described in Sec. 5.5.1 marks as entering cells, we compute its total and radial velocity
dispersions as the standard deviation of such quantities in the neighbouring 5× 5× 5
cells. Such analysis yields the following conclusions:

• The gas flows are eminently radial. The mean radial projection of the velocity
of the entering cells has magnitudes 0.8 . |vr|/v . 0.9 for all code outputs.

• The radial velocity dispersion is typically consistent, only slightly above the
isotropic value, σiso

r = σv√
3
. For most of the code outputs, σr

σiso
r
∼ 1 − 1.1.

Having velocity dispersions near the isotropic value but much higher mean
radial velocities, the relative velocity dispersion in the radial direction σr/|vr|
is much smaller than in the directions tangential to the flow.

• Indeed, |vr|/σr takes mean values between 10 and 40. This high value means
that, in the neighbourhood of a cell, radial gas flows are spatially coherent.

As a result of the velocities being mainly radial and the relative radial velocity
dispersion being small, one should expect the shear forces between neighbouring cells
to be small in the radial direction. Therefore, turbulence is not expected to have
a severe impact on the overall effect of radial flows, and these can be assumed to
be persistent between consecutive code outputs. Nevertheless, as our analysis has
considered the mean of radial velocities, velocity dispersions, etc. across all entering
cells, this does not necessarily mean that, locally, turbulence can be relevant on the
radial flows in small angular regions. This would have the effect of introducing noise
into our flux maps.

This simple analysis does not take into account any timescale of the variation
of the computed fluxes. The timescale can be regarded as sufficiently small for our
estimation of the fluxes to be valid if the angular distributions for consecutive code
outputs are resemblant, i.e., they show the same structures and temporal changes are
gradual. Indeed, running the same test displayed in Fig. 7 for all the code outputs
from z = 1.5 to z = 0 confirms this hypothesis.
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6 | Summary, Conclusions and Out-
look

In this work, we have aimed to characterise the inflows of matter onto the largest
virialised objects in the Universe at the present time, galaxy clusters. In order to
perform such analyses, we have presented the results of a hydrodynamic+N -Body,
Eulerian AMR cosmological simulation on a 40 Mpc comoving side box around a
central, massive cluster. Besides the central object, several less-massive clusters and
groups are also present in the simulation domain, which have turned to be useful
in order to assess the differences between more massive and less massive systems.
In addition to gravity and hydrodynamics, the simulation also accounts for several
non-gravitational processes.

In Sec. 5.2.2, several ways of quantifying the MAR of a cluster found in the
recent bibliography have been described, and the definition used through this work
has been motivated. This has allowed us to study the MAH of each of the material
components of the clusters in our sample, thus enabling a comparison between the
intrinsically different behaviour of the collisional and collisionless components. The
determinations of radii and enclosed mass taken in this work rely on the SO defini-
tions. A possible continuation to this work could be accounting for the differences
in the MAR when measured with respect to other definitions of radii, like the more
dynamically-motivated splashback radius.

As a general result of our analyses, DM and baryons tend to present similar
MARs in massive clusters, where the gravitational field is strong enough to capture
the inflowing gas, which is pressure supported and can undergo shocks. Conversely,
for low-mass objects, the different behaviour of DM and baryons is noticeable (as
shown in Fig. 5b). We have suggested their lower mass (and, therefore, shallower
gravitational potential well) and the interaction with other structures as a plausible
explaination for their limited ability to capture gas.

In Sec. 5.3, the evolution of the DM halo has been classified into three regimes
according to their merging state, in concordance with previous bibliographic works,
and the behaviour of the MAR in each of the regimes has been analised. We have
identified that, specially for massive clusters, high accretion rates are mantained for a
long timespan after major mergers have taken place, pointing out that an important
amount of mass is deposited beyond the R200m boundary and is only slowly reaccreted
in the following hundreds to thousands of Myr. In that respect, we also find that
baryonic and DM densities in the immediate surroundings (1 < r/R200m < 1.5) of
clusters undergoing major merging events correlate quite tightly with the MAR of
their respective component in the following ∼ 1 Gyr, for the whole history of the
clusters. However, less massive clusters do not seem to dominate as efficiently their
surroundings.

The different evolution of dark and baryonic components has also been explored
from the radial profiles of their corresponding densities. DM haloes interiors seem
to be considerably stable, unless intense growth of mass takes place (as it has been
the case for the most massive cluster in our sample). The results presented in Sec.
5.4 suggest that, while DM profiles evolution is dominated by the infall of mass,
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hydrodynamical and thermodynamical effects can lead to the extraction of gas mass
from the clusters.

In Sec. 5.5 we have presented a new way of analysing accretion (or mass flows,
in general) through its angular distribution. The accretion picture is generally dom-
inated by two hotspots, which are aligned with the major axis of the total mass
distribution, as found by previous works in N -Body simulations. This has been as-
sociated to the matter being accreted from the cosmic filaments of the LSS. In the
analyses performed on the most massive cluster, this component, coming from a small
angular region, accounts for more than 50% of the mass inflow during most of the
cluster evolution. The rest corresponds to a smoother component which, nevertheless,
exhibits complicated spatial patterns as a result of the interaction with the environ-
ment and the complexity of the physics of baryons. As a natural extension of this
analysis, which we do not cover in this text because of space limitations, the angular
distribution of thermodynamical properties of the gas (their temperature or entropy),
baryon fractions, etc. can also be accounted for.

The analyses in this Master’s Thesis set the ground for further, short-term con-
tinuations. Still regarding accretion, besides the extensions already mentioned, other
possible topics to be covered are the rotation of the different material components,
the extension of these analyses to larger samples of clusters (either from MASCLET or
from other codes, which could allow to assess the possible changes due to different
numerical schemes) in order to draw statistically robust conclusions, etc.

In the mid-term future, and intimately related to accretion and strong gradients,
shock waves and turbulence in galaxy clusters have been recently triggering increasing
interest of the scientific community, and are also natural extension lines of this work.
Last, the new version of MASCLET will allow to quantify the influence of magnetic
fields on the studied phenomena. Covering these topics, a FPU doctoral fellowship
project has been proposed, under the title Untangling the complexity of cosmic flows
in the Universe: the role of strong gradients, shock waves and turbulence.
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