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Portada: renderització tridimensional
mostrant la densitat de matèria bar-
iònica al voltant d’un cúmul de galàxies
de ∼ 3× 1014 M⊙ en una simulació cos-
mològica.
Més enllà d’una forma central aproxi-
madament esfèrica, permeada per un
parell de filaments còsmics que ali-
menten el cúmul i diverses subestruc-
tures, es representa en color magenta la
superfície dels xocs externs d’acreció del
cúmul.

Cover: three-dimensional render
showing the baryonic matter density
around a ∼ 3×1014 M⊙ galaxy clus-
ter from a cosmological simulation.

Beyond a roughly spherical shape,
permeated by a couple of cosmic fil-
aments that feed the cluster and sev-
eral substructures, the external ac-
cretion shock shell of the cluster is
represented in magenta.



Give me matter, and I will construct a world out of it.
—Immanuel Kant (preface to Universal

Natural History and Theory of the Heavens, 1755)

Yay, space!
—Barbie (Greta Gerwig’s film, 2023)

Now, my own suspicion is that the Universe is not only
queerer than we suppose, but queerer than we can suppose. . .

—J.B.S. Haldane (Possible Worlds, 1927)1

1A different connotation of the word “queer” may have been intended here.
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Abstract

The formation and evolution of cosmic structures proceed through the gravita-
tional collapse of primordial density fluctuations, which is a non-linear process
that results in the emergence of the cosmic web and a rich hierarchy of structures.
Besides gravity, many more phenomena associated with the physics of baryons
are at play during this evolution and shape the physical and observational
properties of galaxies, galaxy clusters and the environments they inhabit. The
processes of cosmological structure formation are complex, in the sense of very
non-linear, and involve a wide range of physical scales, making numerical simu-
lations an indispensable tool for their understanding. The scientific goals of this
Thesis have been mainly oriented towards the numerical study of the assembly of
galaxy clusters, in the first place, and cosmic voids, in the second place, as two
complementary ends of the range of cosmic structures. In galaxy clusters, the
stirring of the gas due to accretion and mergers, together with other processes,
generates two important non-linear hydrodynamic phenomena: shock waves and
turbulence, which have a consequential impact on the dynamical, thermodynam-
ical and observational properties of clusters. Regarding cosmic voids, although
much of their interest comes from their role as pristine environments for galaxy
evolution due to their mostly outflowing velocity field, the situation can be
more complex in a cosmological context. The main results of this Thesis can be
summarised in four closely intertwined main lines. The first line of work has been
the development of numerical tools for the analysis of cosmological simulations
of different types. The most salient outputs have been vortex, a code for
performing a Helmholtz-Hodge decomposition of multiresolution velocity fields,
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and a new version of ASOHF, a spherical overdensity halo and galaxy finder.
Both codes have been publicly released. The second line concerns the assembly of
galaxy clusters, comprising two different works exploring the quantitative study
of their accretion histories and the determination of the assembly state of dark
matter haloes from a set of observables. A third axis of this Thesis is the study
of the previously mentioned non-linear hydrodynamic phenomena, including
the presence of turbulent motions in the intracluster medium in connection
with its assembly history and the properties of cosmological accretion shock
waves. Finally, the fourth line of work has been devoted to the study of the
velocity field in cosmic voids, including the development of a new method for
their identification in cosmological simulations. This Thesis is laid out as a
compendium of publications, and the results presented here have been published
in 6 papers in peer-reviewed journals.



Resum

Abstract. La formació i evolució d’estructures còsmiques avança a través del
col·lapse gravitacional de fluctuacions de densitat primordials, que és un procés
no-lineal que dona lloc a l’aparició de la teranyina còsmica i una rica jerarquia
d’estructures. A més de la gravetat, molts altres fenòmens associats a la física
dels barions estan presents durant aquesta evolució i configuren les propietats
físiques i observacionals de galàxies, cúmuls de galàxies i els entorns que habiten.
Els processos de formació d’estructures cosmològiques són complexos, en el sentit
de ser altament no-lineals, i involucren una àmplia gamma d’escales físiques,
fent que les simulacions numèriques esdevinguen una eina indispensable per
a la seua comprensió. Els objectius científics d’aquesta Tesi s’han orientat
principalment cap a l’estudi numèric de l’assemblatge de cúmuls de galàxies, en
primer lloc, i buits còsmics, en segon lloc, com a dos extrems complementaris
de l’abast d’estructures còsmiques. En els cúmuls de galàxies, l’agitació del
gas a causa de l’acreció i les fusions, juntament amb altres processos, genera
dos importants fenòmens hidrodinàmics no-lineals: ones de xoc i turbulència,
que tenen un impacte decisiu en les propietats dinàmiques, termodinàmiques i
observacionals dels cúmuls. Pel que fa als buits còsmics, malgrat que molt del
seu interés prové del seu paper com a entorns pristins per a l’evolució galàctica
a causa del seu camp de velocitat majoritàriament sortint, la situació és més
complexa en un context cosmològic. Els resultats principals d’aquesta Tesi es
poden resumir en quatre línies principals, estretament relacionades. La primera

This chapter, a summary of the Thesis in Spanish or Catalan, is included to comply with
PhD Thesis regulations by Universitat de València.
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línia de treball ha estat el desenvolupament d’eines numèriques per a l’anàlisi de
simulacions cosmològiques de diferents tipus. Els resultats més destacats han
sigut vortex, un codi per realitzar una descomposició de Helmholtz-Hodge de
camps de velocitat multiresolució, i una nova versió d’ASOHF, un buscador
d’halos i galàxies de sobredensitat esfèrica. Ambdós codis s’han posat a disposició
de la comunitat científica. La segona línia tracta de l’assemblatge de cúmuls
de galàxies, amb dos treballs diferents que exploren l’estudi quantitatiu de les
seues històries d’acreció i la determinació de l’estat d’assemblatge dels halos de
matèria fosca a partir d’un conjunt d’observables. Un tercer eix d’aquesta Tesi és
l’estudi dels fenòmens hidrodinàmics no-lineals esmentats prèviament, incloent-hi
la presència de moviments turbulents en el medi intracúmul en connexió amb
la seua història d’assemblatge, i les propietats de les ones de xoc d’acreció
cosmològiques. Finalment, la quarta línia de treball s’ha dedicat a l’estudi del
camp de velocitat en buits còsmics, inclòs el desenvolupament d’un nou mètode
per a la seua identificació en simulacions cosmològiques. Aquesta Tesi es presenta
com un compendi de publicacions. Els resultats ací detallats s’han publicat en 6
articles en revistes arbitrades.

Introducció

El treball portat a terme durant el curs d’aquesta Tesi Doctoral, i reportat
en aquesta memòria, s’incardina dins del camp de l’Astrofísica Computacional
i, més específicament, la Cosmologia Numèrica. En particular, els principals
objectes científics d’interés han sigut els cúmuls de galàxies i els buits còsmics,
que representen dos extrems oposats dins del rang d’estructures generades pel
col·lapse gravitacional a l’Univers.

Els cúmuls de galàxies (en endavant, també cúmuls) van ser descoberts fa
poc menys de dos-cents cinquanta anys pels astrònoms Charles Messier i William
Herschel, amb distintes motivacions. Tanmateix, no va ser fins ben entrat el segle
XX, amb el desenvolupament de la Cosmologia moderna, que la seua comprensió
astrofísica va començar. Un segle després, els cúmuls han esdevingut un objecte
d’estudi essencial, no només en Astrofísica i Cosmologia, sinó també en altres
disciplines com la Física de Partícules, la Física de Plasmes, etc.

Pel que fa als buits còsmics (o buits), el seu descobriment és més recent, donat
que va haver d’esperar a l’arribada dels primers grans catàlegs espectroscòpics
de galàxies, a partir de la dècada dels setanta i vuitanta.

Malgrat l’interés que ha generat des de fa segles, la formació d’estructures
cosmològiques és, per tant, un camp relativament jove. Açò es deu, en part, a
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la impossibilitat d’accedir directament als objectes d’estudi o recrear les seues
condicions en un laboratori, al contrari que en altres camps de la Física. Per
això, el desenvolupament d’aquest camp ha anat de la mà del desenvolupament
de l’Astrofísica Observacional, per una banda, i del naixement de l’Astrofísica
Computacional, per l’altra, com a eina fonamental per tal de conciliar les
prediccions teòriques de la Física fonamental amb les observacions.

Des de les primeres simulacions numèriques cosmològiques, als anys 70 i
80 del segle passat, el ràpid desenvolupament tecnològic i l’esforç conjunt en
Astrofísica i Cosmologia ens ha permés obtenir un coneixement profund sobre la
formació i evolució de les galàxies, els cúmuls, els seus entorns i els fenòmens físics
que els governen. Així, en les últimes dècades, teoria, simulacions i observacions
han convergit en establir el paradigma jeràrquic com l’escenari estàndard de la
formació d’estructures còsmiques, i el model ΛCDM com el model cosmològic
més exitós fins a la data, a pesar dels seus problemes oberts.

Al mateix temps, treballs pioners amb simulacions hidrodinàmiques numèri-
ques durant les últimes tres dècades han revelat la presència de característiques
complexes associades a la física dels barions, com turbulència, ones de xoc
(també anomenades, directament, xocs), o camps magnètics, que tenen un
impacte significatiu en les propietats observables dels cúmuls a pesar del rol
energèticament subdominant dels barions (la matèria ordinària) en el context
cosmològic. Aquests fenòmens, l’estudi dels quals està associat a la no-linealitat
de les equacions que regixen la dinàmica dels fluids i l’agrupament gravitatori,
remarquen novament l’important rol de les simulacions numèriques en l’estudi
de la formació i l’evolució d’estructures còsmiques.

Objectius

El principal objectiu, en termes generals, d’aquesta Tesi Doctoral ha sigut el
d’explorar, quantificar i contribuir a ampliar el nostre coneixement al voltant de
diversos aspectes associats amb el procés de formació d’estructures còsmiques,
que resulta en l’emergència de complexos fluxos còsmics de matèria fosca i
bariònica, tant laminars i globals com turbulents, que donen títol a aquesta
Tesi. Aquest objectiu general pot concretar-se en els següents objectius més
particulars:

• La caracterització de la història de formació, evolució i assemblatge dels
cúmuls i grups de galàxies (la seua intensitat, propietats qualitatives,
evolució, la seua relació amb propietats locals i globals del mitjà intracúmul
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[ICM], etc.). En aquesta mateixa direcció, la caracterització del complex
estat dinàmic dels cúmuls a partir d’una sèrie d’observables també ha sigut
un tema d’interés durant aquesta Tesi.

• L’estudi al voltant de la presència, la naturalesa i l’evolució de la turbulència
en el medi intracúmul, així com la seua relació amb la història d’assemblatge
dels cúmuls.

• La investigació sobre les propietats i la localització dels xocs en cúmuls de
galàxies, especialment pel que fa als xocs d’acreció a gran escala associats
al col·lapse gravitacional de les inhomogeneïtats primordials, i la relació
d’aquests fenòmens amb les propietats de l’objecte que els alberga.

• L’estudi dels fluxos de matèria bariònica al voltant dels buits i, especial-
ment, la natura del camp de velocitats en aquestes regions i les possibles
conseqüències per a les propietats del gas difús que hi residix.

• El desenvolupament de noves eines numèriques, així com l’optimització de
les ja existents, per tal de dur a terme l’anàlisi de simulacions cosmològiques.
De manera constant durant aquesta Tesi, s’ha treballat per estendre les
eines desenvolupades per a poder ser aplicades a codis de simulacions de
distinta natura. Així mateix, els codis desenvolupats en el marc d’aquesta
Tesi Doctoral han sigut sempre fets públics i de lliure accés per a la
comunitat científica.

Marc teòric

La Part I de la Tesi fa una revisió bibliogràfica del marc teòric i numèric en
què s’inscriu el treball d’aquest Doctorat. En les següents seccions, es descriu
breument el contingut de cada capítol de manera general.

Formació d’estructures còsmiques

Com a culminació d’un segle de treball al voltant de la física de la formació
d’estructures baix el marc de la relativitat general (GR), el model ΛCDM ha
emergit com el model estàndard de la cosmologia moderna. Aquest model, que
descriu l’Univers com un sistema dinàmic en expansió, considera una barreja
de matèria fosca i energia fosca, a més de matèria ordinària, i s’ajusta a les
observacions cosmològiques amb una precisió sense precedents. No obstant això,
el model ΛCDM no està exempt de problemes: més enllà de l’absència d’una
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descripció satisfactòria de la naturalesa de la matèria i l’energia fosca, el model
presenta problemes a xicoteta escala.

Baix el paradigma ΛCDM, la mètrica de l’espai-temps ve descrita per un
model de Friedmann-Lemaître-Robertson-Walker (FLRW), que descriu un Uni-
vers homogeni i isòtrop en expansió. La història d’expansió d’un univers FLRW
queda determinada una vegada especificada la composició, en termes energètics,
del mateix, per mitjà de les equacions de Friedmann. En el model ΛCDM, el
contingut energètic de l’Univers està dominat per l’energia fosca (una densitat
d’energia constant amb pressió negativa que es manifesta en l’expansió accele-
rada de l’Univers) i la matèria fosca (una forma de matèria no-bariònica que
no interacciona electromagnèticament). Només el ∼ 5% restant correspon a
matèria ordinària. Malgrat el seu rol energèticament subdominant, és possible
que alguns dels problemes oberts del model ΛCDM troben la seua solució en
la física dels barions. Per exemple, la retroalimentació energètica associada a
la formació d’estrelles i l’activitat dels nuclis actius de galàxies (AGN) podrien
explicar l’absència de distribucions de densitat amb pics.

Pertorbacions sobre un Univers FLRW

Els models FLRW descriuen universos homogenis i isòtrops. La formació
d’estructures, en tant que inhomogeneïtats en l’Univers, s’estudia com l’evolució
de pertorbacions (de gran magnitud i, per tant, no-lineals), sobre aquest fons cos-
mològic. Per tal que les estructures puguen formar-se, és necessari que existiren
pertorbacions en instants molt primerencs, que s’amplificarien posteriorment per
acció de la gravetat. Els models inflacionaris, que descriuen una fase d’expansió
accelerada de l’Univers en els seus primers instants, poden explicar l’origen
d’aquestes pertorbacions primigènies i quantificar-ne les seues propietats.

Encara que existixen tècniques analítiques per a estudiar l’evolució de les per-
torbacions (per exemple, el model lineal, o el model top-hat), la seua naturalesa
no-lineal fa que siga necessari recórrer a mètodes numèrics per a estudiar-les. En
aquest sentit, les simulacions numèriques cosmològiques s’han convertit en una
eina fonamental per a l’estudi de la formació d’estructures còsmiques. Aquestes
simulacions, que consistixen en la resolució numèrica de les equacions de la
dinàmica de la matèria fosca i la matèria ordinària, es descriuen en la propera
secció.
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Cúmuls de galàxies

Els cúmuls de galàxies són les estructures gravitacionalment lligades més massives
de l’Univers, amb masses entre els 1014M⊙ i 1015M⊙ i grandàries típiques de
∼ 5 Mpc. La formació d’aquests objectes està entre els fenòmens més energètics
de l’Univers, involucrant energies de fins a 1065 erg.

La composició dels cúmuls és aproximadament representativa de la composició
global de l’Univers, amb fraccions de gas fgas similars o només lleugerament
per baix de la còsmica. Açò, junt amb la seua singular posició en el cim de la
jerarquia d’estructures còsmiques, els convertix en objectes d’especial interés per
a la Cosmologia.

Per altra banda, els cúmuls també esdevenen excel·lents laboratoris per a
l’estudi, no només dels processos de formació de galàxies en entorns densos, sinó
també la física de l’ICM, que representa la major part de la massa bariònica del
cúmul i correspon a un plasma quasi completament ionitzat, amb temperatures
de fins a 108 K i densitats de fins a 10−1 cm−3, parcialment en equilibri amb el
camp gravitatori del cúmul.

Els cúmuls poden ser detectats i observats a través de, pràcticament, tot
l’espectre electromagnètic, des de les ones de ràdio fins als raigs gamma. Les
tres principals finestres per a estudiar els cúmuls, això no obstant, corresponen
a les microones, els raigs X i la llum visible. En la banda òptica, els cúmuls
poden observar-se a causa de la llum emesa per les galàxies que en formen part, i
aquest canal correspon precisament als primers descobriments d’aquests objectes.
Addicionalment, els cúmuls també poden ser estudiats en la banda òptica per la
deflexió que produïxen de la llum de galàxies més llunyanes, fenomen conegut
com a lent gravitacional.

En la banda de les microones, els cúmuls són observats a través de la distorsió
que provoquen sobre la radiació de fons de microones (CMB) que travessa l’ICM,
en un efecte conegut com a Sunyaev-Zeldovich. Finalment, en la banda dels
raigs X, els cúmuls poden ser estudiats a través de l’emissió tèrmica de l’ICM
que, a causa de la seua alta temperatura, emet de manera molt potent radiació
de frenat (bremsstrahlung) en aquest rang d’energies.

Buits còsmics

Els buits còsmics són les regions més grans i menys denses de l’Univers, amb
grandàries característiques de fins a 100 Mpc i densitats de matèria al voltant
d’una cinquena part la densitat mitjana de l’Univers. Aquests objectes, que
evolucionen expandint-se i buidant-se a mesura que la matèria circumdant col-
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lapsa per a formar parets, filaments i cúmuls, són de gran interés, tant per les
seues aplicacions cosmològiques, com per a l’estudi de l’evolució de galàxies en
entorns poc densos.

Simulacions numèriques cosmològiques

Per tal de simular els processos associats amb la formació i evolució d’estructures
còsmiques, és necessari plantejar-los com un problema de valor inicial. És a dir,
és necessari descriure quines són les equacions que regixen l’evolució del sistema,
i quines són les condicions inicials per tal de començar aquesta evolució.

A causa de la seua distinta naturalesa, la matèria fosca i la matèria ordinària
són tractades de manera distinta en les simulacions cosmològiques.

Dinàmica de la matèria fosca

La matèria fosca freda (i.e., no relativista) es pot descriure com un fluid sense
col·lisions (és a dir, on les seues partícules no interaccionen apreciablement entre
sí), que es mou sota l’acció de la gravetat. Encara que existixen alternatives, la
tècnica més emprada per a estudiar l’evolució de la matèria fosca és la de les
simulacions d’N -cossos, on es mostreja l’espai de fases (posicions i velocitats)
de la matèria fosca amb un conjunt discret d’N partícules que evolucionen baix
l’acció del camp gravitatori global (generat per la mateixa matèria fosca, però
també pels barions).

La diferència entre els distints mètodes per a evolucionar la matèria fosca
residix en les tècniques emprades per a calcular el camp gravitatori. Idealment,
la força sobre cada partícula es calcularia sumant sobre les N − 1 partícules
restants. Desafortunadament, aquest mètode, on el nombre d’operacions a
realitzar escala com O(N2), és prohibitiu per a grans simulacions. Per això,
s’han desenvolupat tècniques més eficients per a calcular aproximacions precises
al camp gravitatori. D’entre elles, un dels enfocaments més adoptats és el mètode
Partícula-Malla (PM), que calcula el potencial gravitatori com la solució de
l’equació de Poisson en un espai periòdic discretitzat en una malla uniforme.
Aquest mètode, que escala com O(N logN), produïx bons resultats per a escales
superiors a la resolució de la malla, però no és capaç de resoldre la força entre
partícules que n’estan més pròximes. Per això, altres mètodes anomenats híbrids,
com els mètodes d’arbre-PM, o el Partícula-Partícula/Partícula-Malla (P3M),
combinen el mètode PM amb mètodes més precisos però computacionalment
costosos per a calcular la força entre partícules pròximes.
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Dinàmica de la matèria ordinària

Al contrari que la matèria fosca, els barions són una component material altament
col·lisional, que es pot descriure com un fluid. Així, la dinàmica de la matèria
ordinària es pot formular mitjançant les equacions de la hidrodinàmica, que
descriuen l’evolució de la densitat, la velocitat i la pressió (o l’energia interna)
del fluid. Aquestes equacions són altament no-lineals, implicant que s’han de
resoldre numèricament en virtualment qualsevol situació d’interés. Més enllà, la
seua no-linealitat implica el desenvolupament de discontinuïtats, o de propietats
a escales molt menudes, demandant per tant tècniques complexes i resolucions
molt altes per a ser tractades correctament.

Les equacions de la hidrodinàmica poden discretitzar-se de diverses maneres,
segons s’escriguen en forma euleriana (les propietats del fluid s’estudien, en
funció del temps, en una posició determinada) o lagrangiana (s’estudien les
propietats d’un element de fluid, a mesura que aquest evoluciona i es desplaça
pel domini).

En el primer cas, les tècniques eulerianes permeten estudiar, mitjançant
mètodes de volums finits, l’evolució de les quantitats integrades en volums fixos
resolent equacions en derivades parcials. Aquestes tècniques tenen certs avantat-
ges, com la possibilitat de tractar de manera molt precisa les discontinuïtats (amb
els mètodes de captura de xocs d’alta resolució, HRSC) i de conservar explícita-
ment certes quantitats (com la massa, el moment lineal, l’energia, etc.). Malgrat
això, la discretització en volums fixos implica costos computacionals molt alts
per a assolir resolucions altes. Aquest problema pot ser parcialment alleugerat
amb la tècnica de refinament adaptatiu de la malla (AMR), on determinades
regions són escollides d’acord amb distints criteris per a ser discretitzades amb
una resolució més alta que la resta del domini, de manera recursiva i dinàmica
(és a dir, el refinament canvia amb el temps).

En el segon cas, les tècniques lagrangianes com la hidrodinàmica de partícules
suavitzades (SPH) discretitzen el fluid en una sèrie de partícules de massa donada,
que es mouen d’acord amb unes equacions diferencials ordinàries. Les quantitats
del fluid en una posició donada es calculen mitjançant una mitjana entre les
partícules més pròximes a aquesta posició. Aquesta tècnica, a causa de la seua
discretització en termes de massa, en lloc de volum, permet obtenir resolucions
molt més altes que els mètodes eulerians en les regions d’alta densitat, que són
usualment les de major interés. No obstant això, el seu tractament de les regions
de baixa densitat és, per construcció, pobre. Addicionalment, aquestes tècniques
tenen majors problemes per a resoldre discontinuïtats o gradients molt forts.
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Finalment, existixen mètodes mixts, que utilitzen una formulació híbrida
euleriana-lagrangiana. Aquests mètodes permeten combinar l’adaptivitat dels
mètodes lagrangians, amb la descripció precisa de discontinuïtats dels mètodes
eulerians, i han guanyat popularitat en els últims anys.

Física addicional de la matèria ordinària

Amb l’objectiu de reproduir fidelment les condicions termodinàmiques del gas
en els cúmuls, o per a descriure els diversos processos astrofísics que condicionen
la formació de galàxies, les equacions bàsiques de la hidrodinàmica han de ser
complementades amb processos addicionals, típicament implementats mitjançant
parametritzacions fenomenològiques.

Aquests processos inclouen processos de refredament del gas, que depenen
de les condicions químiques del medi (la composició o metal·licitat), a banda de
paràmetres com la densitat i la temperatura, i permeten que el gas radie part
de la seua energia interna i puga generar estructures fredes i denses capaces de
formar estrelles. La formació estel·lar s’implementa freqüentment mitjançant la
formació de partícules no-col·lisionals (com la matèria fosca) a partir de gas fred i
dens, d’acord amb parametritzacions compatibles amb les observacions. Aquestes
estrelles, que no corresponen a objectes particulars sinó a poblacions completes,
poden posteriorment retornar part de la seua massa (enriquida químicament) i
energia al mitjà, a través de processos de retroalimentació energètica.

Addicionalment, altres processos usualment inclosos en les simulacions són la
formació de forats negres i la seua retroalimentació energètica deguda a l’acreció
de gas, la presència de camps magnètics (que implica una revisió completa de
les tècniques hidrodinàmiques), rajos còsmics, camps de radiació, viscositat,
conducció tèrmica, o modelització de la pols galàctica, entre d’altres.

Condicions inicials

Les condicions inicials per a les simulacions cosmològiques es dividixen, típi-
cament, en dos tipus. D’una banda, trobem simulacions de grans volums que
tracten de reproduir les propietats a gran escala de l’Univers. En aquest cas,
hi ha mètodes per a generar camps de densitat inicials (a molt alt redshift,
z ∼ 100) amb propietats estadístiques equivalents a les observades. Per altra
banda, existixen tècniques per a restringir aquestes condicions inicials de tal
manera que reproduïsquen, per exemple, un cúmul de galàxies massiu en el
centre del domini computacional o, fins i tot, l’entorn de l’Univers Local.
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Fenòmens no-lineals i no-tèrmics en fluxos cosmològics

Part dels resultats presentats en aquesta Tesi estan relacionats amb l’estudi
de fenòmens associats a la no-linealitat de les equacions de la hidrodinàmica.
Aquests inclouen, per exemple, turbulència i ones de xoc.

La turbulència està present en fluxos cosmològics a escales molt diverses,
des de l’interior d’estrelles fins als cúmuls de galàxies. De manera general, la
turbulència pot definir-se com a la propietat d’un fluid altament irregular, tant
en espai com en temps, que es caracteritza per la transferència d’energia entre
diverses escales. Pel que fa a cúmuls de galàxies, els moviments turbulents poden
ser produïts per diversos processos, incloent-hi fusions de cúmuls de galàxies
i acreció de gas, moviment de galàxies a través de l’ICM, retroalimentació
energètica d’AGN, entre d’altres.

Pel que fa als xocs, els fluxos cosmològics de gas originats pel col·lapse
gravitacional entren freqüentment en el règim supersònic, quan la velocitat del
gas caient al pou de potencial de l’estructura supera la velocitat local del so. Açò
implica l’aparició de xocs, que es manifesten com a superfícies de discontinuïtat
en certes propietats del fluid (pressió, temperatura, densitat, etc.). En el context
dels cúmuls de galàxies, els xocs tenen un paper fonamental en la termalització
de l’ICM fins a les temperatures observades.

A més del seu paper en la termalització de l’ICM, els xocs també poden con-
vertir una fracció significativa de l’energia cinètica involucrada en el col·lapse dels
cúmuls en acceleració de partícules a energies relativistes (rajos còsmics), mit-
jançant mecanismes que estan, al seu torn, associats amb la presència d’emissió
difusa en ones de ràdio. De la mateixa manera, els moviments turbulents al
cúmul també poden accelerar rajos còsmics en regions extenses, a més de contri-
buir a l’amplificació dels camps magnètics o d’aportar una part significativa del
suport de l’ICM contra la gravetat.

Metodologia

Més enllà de comparacions amb resultats d’altres codis de simulacions (per
exemple, els continguts en les Publicacions A5 i A6), la major part dels resultats
reportats en aquesta Tesi han sigut obtinguts a partir de l’anàlisi de simulacions
portades a terme amb MASCLET (Mesh Adaptive Code for CosmologicaL
structurE evoluTion), del qual m’he convertit, durant el curs d’aquesta Tesi, en
un usuari i desenvolupador.
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Simulacions cosmològiques amb MASCLET

MASCLET és un codi hidrodinàmic eulerià, dissenyat fonamentalment per
a aplicacions cosmològiques, acoblat a una implementació d’N -cossos i un
solucionador de la gravetat basat en el mètode PM. Per a ser capaços de resoldre
els alts rangs dinàmics requerits per les simulacions cosmològiques, a la volta que
es mantinga un cost computacional adequat, MASCLET utilitza un esquema
AMR, per tal d’incrementar recursivament la resolució temporal i espacial en
les zones d’interés, que poden ser escollides d’acord amb diversos criteris segons
l’aplicació.

En particular, quant a la component col·lisional (matèria bariònica), MAS-
CLET implementa mètodes HRSC sobre les equacions de la hidrodinàmica
en un marc cosmològic en expansió escrites en forma conservativa. Quant als
algorismes particulars, encara que MASCLET implementa diverses possibilitats
per a cada procediment, la configuració més habitual utilitzada en aquesta
Tesi implica una reconstrucció parabòlica (PPM), un solucionador de Riemann
HLLE, i un esquema de Runge-Kutta de segon ordre (predictor-corrector) per a
l’evolució temporal. Per a la descripció precisa dels mètodes, dirigim el lector
interessat a la Sec. 4.

Quant a la component no-col·lisional (matèria fosca i altres espècies, com
estrelles o forats negres), MASCLET implementa un solucionador de la gravetat
basat en el mètode PM. Les partícules són assignades a la malla computacional
mitjançant un esquema Triangular Shaped Cloud (TSC), que fa que les forces
resultants siguen contínues i diferenciables. Per a la malla base (sense refina-
ments), l’equació de Poisson es resol mitjançant una transformada de Fourier
ràpida (FFT). Finalment, les partícules són avançades en el temps emprant un
esquema Runge-Kutta de segon ordre, amb un pas intermedi.

Naturalment, en presència de refinament de la malla, aquests solucionadors
bàsics han de modificar-se per tal de tindre en compte les condicions de frontera
imposades pels dominis menys resolts que els envolten. Açò implica modificacions
tant per a l’esquema hidrodinàmic, com per a l’avançament de les partícules i el
solucionador de la gravetat, que són descrits en major detall en la Sec. 4.2.

A més de gravetat i hidrodinàmica adiabàtica, MASCLET implementa
diversos processos astrofísics addicionals, d’entre els esmentats anteriorment,
com diversos mecanismes de refredament del gas, formació d’estrelles i forats
negres, enriquiment químic, així com retroalimentació energètica de supernoves
i forats negres.
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A més, encara que en el marc d’aquesta Tesi no s’ha publicat encara cap
resultat referent a les simulacions amb camps magnètics, existix una versió de
MASCLET adaptada per a solucionar les equacions de la magnetohidrodinàmica
en un Univers en expansió.

Resultats, conclusions i perspectives

La Part II d’aquesta Tesi conté un resum dels resultats obtinguts durant el curs
d’aquest Doctorat. D’acord amb les regulacions de l’Escola de Doctorat per al
format de Tesi per compilació de publicacions, els articles, que contenen la major
part del treball d’aquest Doctorat, s’han inclòs a l’Apèndix A. En les següents
seccions, es descriu breument el contingut de cada un dels quatre capítols en
què s’ha dividit el treball d’aquesta Tesi.

Eines numèriques

Una part significativa del treball durant aquest Doctorat s’ha dedicat al desen-
volupament de noves tècniques numèriques per a l’anàlisi de simulacions cos-
mològiques, així com a la renovació i optimització d’altres ja existents. De
manera constant, els codis desenvolupats en el marc d’aquesta Tesi han sigut
generalitzats, de manera que han esdevingut eines que poden ser aplicades, no
només a simulacions AMR, sinó a qualsevol simulació, i han sigut fets públics i
de lliure accés per a la comunitat científica.

Un algorisme per a la descomposició de Helmholtz-Hodge en simula-
cions cosmològiques

Aquesta secció es basa en Vallés-Pérez, Planelles, and Quilis (2021b)7, i el
text complet de l’article es pot trobar a l’Apèndix A2. La implementació de
l’algorisme presentat en aquesta publicació, vortex, és de lliure accés.8

Context. L’estudi dels camps de velocitat turbulents (així com moltes altres
disciplines, on també puga ser rellevant) sovint requerix la descomposició d’un
camp vectorial en les seues components compressiva (o sense rotacional) i
solenoidal (o sense divergència). Açò és un problema matemàtic ben estudiat,
conegut com la descomposició de Helmholtz-Hodge (HHD). L’HHD, donades

7D. Vallés-Pérez, S. Planelles, and V. Quilis. “Unravelling cosmic velocity flows: a
Helmholtz-Hodge decomposition algorithm for cosmological simulations.” In: Computer
Physics Communications 263, 107892 (June 2021). doi: 10.1016/j.cpc.2021.107892

8https://github.com/dvallesp/vortex.

https://doi.org/10.1016/j.cpc.2021.107892
https://github.com/dvallesp/vortex
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condicions de frontera adients, pot ser realitzada d’una manera relativament
senzilla quan el camp vectorial està mostrejat en una malla regular. No obstant
això, en el cas de malles no uniformes, com les utilitzades en les simulacions
d’aquesta Tesi, l’HHD esdevé un problema substancialment més complex.

Objectius. El desenvolupament d’un algorisme computacionalment eficient
per a realitzar l’HHD sobre els camps de velocitat en simulacions AMR basades
en blocs, com les utilitzades en aquesta Tesi.

Mètodes. L’algorisme proposat en aquesta publicació es basa en la formu-
lació de l’HHD com un conjunt d’equacions en derivades parcials el·líptiques,
cadascuna d’elles formalment equivalent a l’equació de Poisson. L’algorisme,
per tant, empra les tècniques estàndard per a resoldre aquestes equacions (en
particular, les mateixes que MASCLET), és a dir, una combinació de FFT
per a la malla base (periòdica) i solucionadors iteratius per als nivells de refina-
ment. L’algorisme està implementat en Fortran i paral·lelitzat d’acord amb
les directrius estàndard d’OpenMP.

Resultats. El codi ha sigut validat amb una sèrie de tests idealitzats i d’altres
més complexos. La descomposició es porta a terme amb errors típics per baix
de l’1% al percentil 95% en els tests idealitzats, mentre que en aquells més
complexos, on s’inclouen camps de velocitat amb fluctuacions en quasi tres
ordres de magnitud en escala, els errors medians són de l’ordre de l’1%.

Conclusions. El procediment presentat en aquest treball proporciona un
algorisme eficient i raonablement precís per a portar a terme l’HHD, i ha sigut
aplicat a estudis posteriors, tant dins com fora d’aquesta Tesi Doctoral. A
més, el codi pot ser adaptat per a altres tipus de simulacions, incloent-hi les
simulacions basades en partícules.

Adaptació de l’algorisme per a simulacions basades en partícules.
Aquests resultats corresponen al treball desenvolupat durant una estada a
l’Universtäts-Sternwarte de Munic, de maig a juliol del 2023, sota la supervisió
del Prof. Klaus Dolag.

Amb l’objectiu de generalitzar els mètodes desenvolupats en el marc d’aquest
Doctorat, el codi vortex s’ha adaptat per a ser capaç d’analitzar simulacions
basades en partícules o de malla mòbil. Amb l’esperit de preservar tot el
possible del codi vortex original, la implementació d’aquesta versió, anomenada
vortex-p, es basa en la interpolació del camp de velocitats des de les partícules
a una jerarquia de malles ad-hoc.
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Aquesta implementació s’ha validat amb una sèrie de tests similars als del
codi original, i s’ha aplicat a simulacions SPH i de massa finita sense malla
(MFM), amb i sense viscositat física, per tal de demostrar les capacitats d’aquest
codi. Aquests resultats corresponen a un treball que ha sigut enviat i recentment
acceptat a la revista Computer Physics Communications.

Una revisió profunda del codi ASOHF

Aquesta secció es basa en Vallés-Pérez, Planelles, and Quilis (2022)9, i el text
complet de l’article es pot trobar a l’Apèndix A5. La implementació de l’algorisme
presentat en aquesta publicació, ASOHF, és de lliure accés.10

Context. L’anàlisi de simulacions cosmològiques requerix, sovint, la identifica-
ció de les estructures que s’hi formen. En aquest context, els halos de matèria
fosca són els blocs de construcció de l’estructura a gran escala, generant els pous
de potencial gravitacional que desencadenen el col·lapse de les galàxies i cúmuls
de galàxies observats. Encara que un halo de matèria fosca és, en essència,
una estructura localment sobredensa i lligada gravitacionalment, no existix una
definició operativa única i s’han desenvolupat diverses tècniques per a la seua
identificació. A més, la tendència creixent en les capacitats computacionals ha
permés que les simulacions cresquen en mida i resolució, de manera que l’anàlisi
de les simulacions esdevé un problema computacional en si mateix.

Objectius. La revisió del codi ASOHF, basat en el mètode de sobredensitat
esfèrica, amb l’objectiu de: (i) millorar el seu rendiment paral·lel i la seua
capacitat per a tractar simulacions molt grans, (ii) millorar la seua capacitat per
a identificar subestructura, (iii) identificar galàxies dins dels halos de matèria
fosca.

Mètodes. ASOHF es basa en el paradigma de la sobredensitat esfèrica,
juntament amb una interpolació de densitat multiresolució per a detectar subes-
tructura. Les principals novetats d’aquesta revisió inclouen la nova definició de
subestructura, els esquemes de recentrat, la capacitat per a identificar galàxies,
la descomposició del domini, un nou procediment de construcció de l’arbre de
fusions, entre d’altres. L’algorisme està implementat en Fortran i paral·lelitzat
d’acord amb les directrius estàndard d’OpenMP.

9D. Vallés-Pérez, S. Planelles, and V. Quilis. “The halo-finding problem revisited: a deep
revision of the ASOHF code.” In: Astron. Astrophys. 664, A42 (Aug. 2022), A42. doi:
10.1051/0004-6361/202243712

10https://github.com/dvallesp/ASOHF.

https://doi.org/10.1051/0004-6361/202243712
https://github.com/dvallesp/ASOHF
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Resultats. El codi ha sigut validat amb una sèrie de tests idealitzats amb
l’objectiu de verificar el rendiment dels diferents processos crítics de l’algorisme
de detecció d’halos. A més, el seu rendiment ha sigut comparat amb altres
cercadors d’halos disponibles públicament, mostrant un bon acord i un rendiment
notable en la detecció de subestructura.

Conclusions. La nova versió d’ASOHF produïx resultats notables en termes
de detecció d’halos, subhalos i galàxies, rendiment paral·lel i cost computacional
reduït.

ASOHF com a buscador de galàxies: aplicació a les simulacions
DIANOGA. Com a verificació de les capacitats d’ASOHF per a identificar
galàxies, s’ha aplicat aquest codi a una de les regions de DIANOGA. Els
catàlegs de galàxies obtinguts s’han comparat amb els proporcionats per Subfind,
mostrant un bon acord entre ambdós, tant pel que fa a la coincidència entre
galàxies, com pel que fa a les seues propietats.

Formació de cúmuls de galàxies

L’assemblatge dels cúmuls de galàxies determina moltes de les seues propietats,
des de les seues poblacions estel·lars fins als estats termodinàmics i la cinemàtica
de l’ICM. Aquesta secció resumix els treballs realitzats en el marc d’aquesta Tesi
Doctoral amb l’objectiu d’explorar la descripció de l’assemblatge dels cúmuls de
galàxies, i el seu impacte en les propietats d’aquests objectes, a partir de l’estudi
de les taxes d’acreció i els indicadors d’estat dinàmic.

Sobre la història d’acreció dels cúmuls de galàxies

Aquesta secció es basa en Vallés-Pérez, Planelles, and Quilis (2020)11, i el text
complet de l’article es pot trobar a l’Apèndix A1.

Context. Els cúmuls de galàxies creixen a través de l’acreció altament ani-
sotròpica de matèria de la teranyina còsmica circumdant, així com a través de
fusions amb altres estructures de mida similar. Treballs anteriors han confirmat
la relació entre l’acreció i diverses propietats de l’ICM, com els perfils de diver-
ses quantitats termodinàmiques, la posició dels cúmuls respecte a les relacions
d’escala, o l’el·lipticitat de l’ICM.

11D. Vallés-Pérez, S. Planelles, and V. Quilis. “On the accretion history of galaxy clusters:
temporal and spatial distribution.” In: Mon. Not. R. Astron. Soc. 499.2 (Dec. 2020),
pp. 2303–2318. doi: 10.1093/mnras/staa3035

https://doi.org/10.1093/mnras/staa3035
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Objectius. La caracterització de l’acreció de matèria d’una petita mostra de
cúmuls de galàxies a partir d’una simulació numèrica, amb l’objectiu d’examinar
diferents indicadors de la taxa d’acreció, així com l’impacte de l’acreció en les
propietats internes del cúmul, i la distribució espacial dels fluxos d’acreció.

Mètodes. S’han comparat diversos indicadors de la taxa d’acreció (MAR),
incloent-hi Γ200m calculat a partir de l’arbre de fusions complet dels halos, α200m

calculat a partir del perfil de velocitat, i el flux de massa integrat a través del
radi virial. Γ200m s’ha comparat, a més, amb la presència d’esdeveniments de
fusió i les densitats circumdants al cúmul. Finalment, la distribució espacial
del flux d’acreció s’ha estimat mitjançant un enfocament pseudolagrangià sobre
les dades eulerianes del gas de la simulació, i s’ha analitzat utilitzant anàlisi
multipolar.

Resultats. Els diferents indicadors de la MAR estan feblement correlacionats
entre ells, destacant la dificultat de trobar bones mesures del creixement del
cúmul associades a l’arbitrarietat en la definició del seu límit. Tant la MAR
bariònica com la total es correlacionen amb la presència d’esdeveniments de
fusió, però, quan es mesuren a R200m, es mantenen altes durant molt de temps
després dels episodis de fusió. L’enfocament novell per a estudiar la distribució
angular del flux d’acreció remarca el comportament altament anisotròpic del flux
de matèria en la frontera virial, i la seua anàlisi multipolar mostra diferències
significatives en algunes propietats termodinàmiques com l’entropia del gas
acretat.

Conclusions. En l’advent de pròximes campanyes observacionals que seran
capaces d’observar les regions externes dels cúmuls, la caracterització de les taxes
d’acreció i la seua comparació amb els observables del cúmul és d’importància
cabdal. Aquest treball exploratori exemplifica alguns enfocaments temptatius,
però es requerix treball amb mostres més grans per a traure conclusions robustes.

L’estat d’assemblatge dels halos de matèria fosca a través de la història
còsmica

Aquesta secció es basa en Vallés-Pérez et al. (2023)12, i el text complet de l’article
es pot trobar a l’Apèndix A6.

Context. L’estat dinàmic i les característiques morfològiques de les galàxies
i cúmuls de galàxies, així com les dels seus homòlegs de matèria fosca, estan

12D. Vallés-Pérez et al. “On the choice of the most suitable indicator for the assembly state
of dark matter haloes through cosmic time.” In: Mon. Not. R. Astron. Soc. 519.4 (Mar.
2023), pp. 6111–6125. doi: 10.1093/mnras/stad059

https://doi.org/10.1093/mnras/stad059
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estretament relacionades amb la seua història d’assemblatge al llarg d’un am-
pli interval de redshifts. Per tant, aquestes característiques poden contenir
informació crucial sobre la formació i l’evolució d’aquestes estructures còsmiques.

Objectius. Aquest treball pretén examinar críticament com l’estat d’assemblatge
d’aquestes estructures, entés com la presència de fusions recents o períodes
d’acreció forta, pot ser determinat a partir d’una sèrie de propietats a un instant
donat.

Mètodes. Utilitzant la combinació de la desviació del centre, el quocient virial,
la velocitat radial mitjana, la dispersió del perfil de densitat i l’el·lipticitat dels
halos de matèria fosca extrets d’una simulació de volum moderat, estudiem com
els llindars d’aquests paràmetres, així com els seus pesos relatius per a definir
un indicador combinat, han d’evolucionar amb el redshift per a correlacionar-se
el màxim possible amb l’activitat de fusió i d’acreció inferida a partir dels arbres
de fusions.

Resultats. La classificació resultant, que involucra una categoria totalment
relaxada, una no relaxada, i una intermèdia (marginalment relaxada), es correla-
ciona fortament amb l’activitat de fusió extreta dels arbres de fusions, així com
amb les taxes d’acreció. Açò s’ha comprovat també amb dades d’una simulació
independent, del projecte CAMELS.

Conclusions. Una classificació de l’estat dinàmic centrada en la història
d’assemblatge (presència de fusions i taxes d’acreció) ha de tindre en compte
que diferents indicadors poden proporcionar més informació que altres en un
temps còsmic particular. De la mateixa manera, els llindars que s’han d’aplicar
a aquests indicadors per a produir la millor classificació també semblen dependre
del redshift.

Turbulència i xocs durant l’evolució de cúmuls de galàxies

Tal com s’ha descrit al Marc Teòric, els fluxos turbulents i les ones de xoc són
dos fenòmens associats a la no-linealitat de les equacions de la hidrodinàmica
que tenen conseqüències molt importants per a la física de l’ICM, així com per
a les seues propietats observables. En aquesta secció, es resumixen els resultats
de dos estudis relacionats amb aquests fenòmens.
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Turbulència, enstròfia i helicitat a l’ICM

Aquesta secció es basa en Vallés-Pérez, Planelles, and Quilis (2021a)13, i el text
complet de l’article es pot trobar a l’Apèndix A3. Els mètodes desenvolupats per
a realitzar una descomposició de Reynolds sobre camps de velocitat definits en
una malla AMR basada en blocs han sigut inclosos en el codi públic vortex.14

Context. La turbulència és un fenomen present en molts fluxos astrofísics
i, en particular, en els cúmuls de galàxies. No obstant això, és particularment
difícil de modelitzar numèricament, a causa de la seua naturalesa intrínsecament
multiescala, que requerix altes resolucions. A més, treballs anteriors han mostrat
que la turbulència està estretament relacionada amb la història de formació de
l’ICM.

Objectius. Explorar la connexió entre la generació i la dissipació de turbulència
en l’ICM amb la història d’assemblatge (tant de matèria fosca com de barions)
dels cúmuls de galàxies.

Mètodes. El codi públic vortex s’ha ampliat per a incloure la possibilitat
de realitzar una descomposició de Reynolds (component laminar i turbulenta)
abans de l’HHD. Açò, aplicat als dos cúmuls de galàxies millor resolts de la simu-
lació, permet extraure estadístiques globals (per exemple, funcions d’estructura
compressives i solenoidals) i estadístiques locals (per exemple, enstròfia) dels
fluxos turbulents.

Resultats. Encara que les funcions d’estructura mostren una dependència
important amb la distància al centre del cúmul, açò es deu, en gran mesura, a la
resolució no constant. L’estudi de l’evolució temporal de les funcions d’estructura
de segon ordre a escala fixa revela una clara correlació amb les taxes d’acreció
i els períodes de fusió. Seguint l’evolució temporal i la distribució espacial
i en espai de fases de l’enstròfia, un indicador de moviments solenoidals, els
nostres resultats confirmen un escenari proposat prèviament on els moviments
solenoidals que omplin el volum són generats, primer, per baroclinicitat en els
xocs més externs que envolten el cúmul, i després són amplificats per compressió
i canalitzats avall dels xocs per estirament de vòrtexs.

Conclusions. Encara que la mesura de quantitats relacionades amb el flux tur-
bulent en dades AMR, on diferents regions han sigut evolucionades amb diferents
resolucions en diferents temps, està lluny de ser senzilla, els resultats reportats

13D. Vallés-Pérez, S. Planelles, and V. Quilis. “Troubled cosmic flows: turbulence, enstrophy,
and helicity from the assembly history of the intracluster medium.” In: Mon. Not. R. Astron.
Soc. 504.1 (June 2021), pp. 510–527. doi: 10.1093/mnras/stab880

14https://github.com/dvallesp/vortex.

https://doi.org/10.1093/mnras/stab880
https://github.com/dvallesp/vortex
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en aquest treball mostren que és possible extraure informació significativa sobre
el flux turbulent en l’ICM amb aquestes simulacions.

Xocs d’acreció com una ferramenta per a mesurar la massa dels cúmuls
de galàxies

Aquesta secció es basa en Vallés-Pérez, Quilis, and Planelles (2024, in press)15,
que ha sigut acceptat per a la seua publicació en la revista Nature Astronomy.
El manuscrit original (previ a revisió, d’acord amb la llicència de l’editorial) s’ha
inclòs a la Secció 8.2.

Context. Els xocs d’acreció cosmològics creats durant la formació dels cúmuls
de galàxies són un fenomen ubic en tot l’Univers. Aquests xocs i les seues
característiques estan íntimament relacionats amb l’energia gravitatòria posada
en joc durant la formació dels cúmuls de galàxies.

Objectius. Estudiar les relacions d’escala que lliguen la massa dels cúmuls
de galàxies amb el radi i la intensitat dels seus xocs d’acreció, i explorar la
possibilitat d’utilitzar aquestes relacions per a mesurar la massa dels cúmuls de
galàxies.

Mètodes. Emprem una mostra de cúmuls de galàxies i grups de galàxies
extrets d’una simulació cosmològica euleriana de mida i resolució moderades
(100h−1 Mpc de costat, resolució pic de ∆x ∼ 9 kpc). Els xocs s’identifiquen en
la simulació utilitzant un algorisme de cerca de xocs basat en la separació de
coordenades i els salts de temperatura, i les superfícies dels xocs d’acreció més
externs es caracteritzen a partir d’ací amb una sèrie de criteris heurístics.

Resultats. Demostrem que els objectes de la nostra mostra es troben en un
plànol dins de l’espai tridimensional de la massa total del cúmul, el radi del xoc
i el nombre de Mach (una mesura de la intensitat del xoc).

Conclusions. Utilitzant aquesta relació, i considerant que observacions futures
seran capaces de mesurar els radis i les intensitats dels xocs d’acreció, plantegem
la idea que el contingut de matèria fosca dels cúmuls de galàxies podria mesurar-
se indirectament amb un error d’aproximadament el 30% al nivell de confiança
d’1σ. Aquest procediment seria un mètode nou i independent per a mesurar
la massa de matèria fosca en les estructures còsmiques, i una nova manera de
posar a prova el paradigma ΛCDM.

15D. Vallés-Pérez, V. Quilis, and S. Planelles. “Cosmic accretion shocks as a tool to
measure the dark matter mass of galaxy clusters.” In: Nat. Astron. (2024, in press). doi:
10.1038/s41550-024-02303-x

https://doi.org/10.1038/s41550-024-02303-x
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Buits còsmics

Aquesta secció es basa en Vallés-Pérez, Quilis, and Planelles (2021)16, i el text
complet de l’article es pot trobar a l’Apèndix A4.
Context. Els buits còsmics són regions de baixa densitat que ocupen la major
part del volum de l’Univers i emergixen en regions que contenen fluctuacions
primordials de densitat negatives, que posteriorment s’expandixen mentre la
matèria al seu voltant col·lapsa per a formar parets, filaments i halos.
Objectius. Estudiar la naturalesa dels fluxos de matèria a través de les
fronteres dels buits, per a comprovar si el seu camp de velocitat és purament
sortint o sorgixen patrons més complexos.
Mètodes. A partir dels resultats d’una simulació cosmològica especialment
dissenyada per a descriure amb detall les regions que formaran buits i els
seus voltants, s’extrau una mostra de buits definits com els majors el·lipsoides
possibles al voltant de mínims de densitat en expansió, possiblement envoltats de
gradients de densitat forts. Els fluxos de massa de gas a través de la frontera dels
buits s’estimen en post-processament utilitzant un enfocament pseudolagrangià.
Resultats. Contràriament a l’expectativa comuna, al voltant del 10% de la
massa de gas en els buits a z = 0 ha sigut acretada des de regions sobredenses,
arribant a fraccions més grans per a alguns buits (per exemple, ∼ 35% en el
percentil 84). A més, seguint els fluxos d’entrada de matèria fosca, una fracció
significativa de la massa que entra als buits roman en ells durant llargs períodes
de temps, arribant a regions centrals del buit.
Conclusions. Els resultats reportats en aquest treball suggerixen que, si els
buits es defineixen a partir del camp de densitat com les regions més grans
possibles al voltant dels mínims de densitat, llavors no és possible afirmar
que el seu camp de velocitat és purament sortint, fins i tot per als més grans.
L’existència d’entrada de matèria als buits, una fracció d’ella procedent de gas
que ha habitat regions més denses i que posteriorment ha sigut deslligat, pot
tindre conseqüències importants per al paradigma de la formació de galàxies
dins dels buits.

Conclusions i perspectives

Aquesta Tesi Doctoral presenta resultats referents a la recerca teòrica i numèrica
al voltant de la natura, les propietats i l’evolució de diversos aspectes relacionats

16D. Vallés-Pérez, V. Quilis, and S. Planelles. “Void Replenishment: How Voids Accrete
Matter Over Cosmic History.” In: Astrophys. J. Lett. 920.1, L2 (Oct. 2021), p. L2. doi:
10.3847/2041-8213/ac2816

https://doi.org/10.3847/2041-8213/ac2816
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amb els fluxos còsmics, amb especial atenció als cúmuls de galàxies i els buits
còsmics com a principals objectes d’estudi. El treball reportat en aquesta
Tesi, principalment contingut en les sis publicacions que constituïxen l’Apèndix
A, pot ser emmarcat generalment en el camp de la Cosmologia Numèrica o
Computacional. Més enllà dels treballs científics publicats, aquest Doctorat
també ha suposat un esforç important en el desenvolupament de noves eines
numèriques, que han sigut fetes públiques i de lliure accés per a la comunitat
científica.

En cadascun dels capítols de la Part II es descriuen les línies de continuació
del treball desenvolupat durant aquest Doctorat, tant les més immediates com
aquelles a mitjà i llarg termini. A manera de resum breu, les eines numèriques
dissenyades i desenvolupades durant aquesta Tesi, així com el codi cosmològic
MASCLET, del qual he esdevingut un usuari i contribuïdor, són codis en
constant desenvolupament i optimització. En el vessant computacional, les
principals línies de continuació inclouen noves estratègies de paral·lelització per
tal de fer els codis més eficients i escalables, d’acord amb la tendència actual
en computació d’alt rendiment, així com una major interoperabilitat amb codis
externs.

Pel que fa al vessant científic, un nou conjunt de simulacions que ja està en
preparació ens permetrà estendre i ampliar els resultats presentats en aquesta
Tesi i les seues publicacions associades. Conjuntament amb les versions públiques
d’ASOHF i vortex per a codis basats en partícules, les futures extensions a
simulacions majors i més resoltes dels resultats i de les tècniques desenvolupades
en aquesta tesi ens permetran explorar amb gran detall la connexió entre
l’assemblatge dels cúmuls i la presència de característiques no-lineals (turbulència,
xocs, etc.) en els cúmuls de galàxies, així com la seua relació amb observables.
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1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis goals and aims . . . . . . . . . . . . . . . . . 5

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . 6

1.1 Motivation

The work undertaken during the course of this PhD Thesis, and
reported in this dissertation, is generally framed within the field of Compu-

tational Astrophysics and, more specifically, Numerical Cosmology. In particular,
the main scientific objects of study have been galaxy clusters and voids, represent-
ing two opposite ends within the range of structures generated by gravitational
collapse.

Galaxy clusters (from here on, used interchangeably with clusters) were
discovered almost 240 years ago, with different motivations, by astronomers
Charles Messier and William Herschel. The latter described, already back in
1785, one of the most widely-studied clusters today (Herschel 1785):

“[...] that remarkable collection of many hundreds of nebulae which are to
be seen in what I have called the nebulous stratum of Coma Berenices.”



4 Introduction

However, it was not until a few decades into the 20th century, with the
advent of modern Cosmology, that the actual astrophysical comprehension of
these objects commenced. A century later, galaxy clusters have become an
essential object of study, not only for Cosmology and Astrophysics, but also for
more fundamental fields of research, such as Particle Physics, Plasma Physics,
etc.

Regarding cosmic voids, their discovery has been more recent and had to wait
until the era of the first galaxy surveys (Gregory and Thompson 1978, Jõeveer,
Einasto, and Tago 1978). Their interest has steadily grown ever since, because
of their potential as cosmological probes and their role in galaxy evolution.
Altogether, galaxy clusters and voids represent the two opposite ends of a
complex network of structures, known as the cosmic web, containing a hierarchy
of haloes, filaments, sheets, and voids.

It is therefore evident that, despite the fact that it has triggered interest
since long times ago, cosmological structure formation in its modern form is
a relatively young field of research. This is in part due to the obvious fact
that, in contrast to many other fields of Physics, it is not possible to directly
access the objects of study or to recreate their conditions in a laboratory.
Hence, the advancement of this field has inevitably been tightly linked to,
first, the development of Observational Astrophysics and, second, the birth of
Computational Astrophysics as a fundamental tool to bridge the gap between
fundamental physics and observations.

The first simulations of gravitational collapse were performed by Holmberg
(1941), who ingeniously devised a method to use the intensity of a set of lightbulbs
to compute the gravitational force (since they both decay with distance as
1/r2). The earliest computational numerical integrations, however, had to wait
until the advent of the first electronic computers (von Hoerner 1960, Aarseth
1963). Around a decade later, Press and Schechter (1974) performed the first
truly cosmological simulations of gravitational collapse, while Larson (1969),
Peebles (1970) and White (1976) carried out some of the first simulations with
hydrodynamics in this context. Since then, in the 50 years of maturity of the
field, cosmological simulations have grown in sophistication and realism, and
have become an indispensable tool for the study of the cosmic web and its
different elements.

The joint effort in Cosmology and Astrophysics, aided by the rapid tech-
nological development of the last decades and the consequent ever-growing
computational capacities, has allowed to garner a deep understanding on the
formation and evolution of galaxies, galaxy clusters, their environments, and the
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physical phenomena associated to them. In the last decades, theory, simulations
and observations have converged to establish the hierarchical paradigm as the
standard scenario for the formation of cosmic structures, and the ΛCDM model
has been confirmed as the most successful cosmological model to date, despite
their remaining open problems.

Together with this, pioneer works with numerical simulations have revealed,
during the past 25 years, the presence of complex features associated to the
physics of baryons, such as turbulence, shock waves, or magnetic fields, which
have been shown to have a significant impact on the observable properties of
galaxy clusters despite the energetically subdominant role of baryons in the
cosmic picture. These phenomena, whose study is associated to the non-linearity
of the equations governing gravitational clustering and fluid dynamics, highlight
once again the importance of numerical simulation in the research around the
formation and evolution of cosmic structures.

1.2 Thesis goals and aims
The main, general aim of this Thesis is to explore, quantify and contribute to
deepening our knowledge on several aspects associated to the assembly of cosmic
structure, which results in the emergence of complex cosmic flows of dark and
baryonic matter, both bulk and turbulent, that give title to this dissertation.
This is attained, primarily, through the design and analysis of cosmological
simulations, which are the main tool used in this Thesis. This general objective
can be specified in the following, more particular goals:

• The characterisation of the assembly history of galaxy clusters and groups,
the intensity of accretion, its qualitative features, evolution, and their
relation with several global and local properties of the intracluster medium
(ICM). In this same direction, the characterisation of the complex and
multifaceted assembly and dynamical state of galaxy groups and clusters
through a set of observables has also been a topic of interest during this
Thesis.

• The study of the presence, the nature, the role, and the evolution of
turbulent motions filling the ICM, and their relation with the assembly
history of galaxy clusters referenced in the previous point.

• The investigation on the properties and the location of shocks surrounding
galaxy clusters, especially regarding the large-scale accretion shocks associ-
ated with the gravitational collapse of the primordial inhomogeneities, and
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the relation of these features with the properties of the objects harbouring
them.

• The study of the gas flows around voids and, especially, the nature of
the velocity field in these regions and its possible consequences for the
properties of the diffuse gas in voids.

• The development of new numerical tools, as well as the optimisation of
existing ones, to allow the analysis of cosmological simulations. A constant
line of work throughout this Thesis has been the extension of the developed
tools to enable them to be applied to the analysis of other simulation codes
of different nature, as well as the public release of any code that has been
mainly developed during the course of the Thesis.

1.3 Outline of the Thesis
This Thesis is lay out as a compendium of publications, which comprise the main
body of work conducted during the duration of the PhD. To comply with the
requirements imposed by the Escola de Doctorat of the Universitat de València,
all publications are deferred to Appendix A. The main body of the Thesis is
structured as follows:

• Part I (Background) contains the theoretical and bibliographic review of
the topics covered in the Thesis. It is divided in four chapters:

– Chapter 2 overviews the basic physics around the formation of cosmic
structures, including a review of the ΛCDM model, the growth of
cosmological perturbations and, in particular, the formation of galaxy
clusters and voids.

– Chapter 3 describes the basic mathematical modelling and numerical
tools for addressing the problem of cosmological structure formation
as an initial-value problem.

– In Chapter 4, the main features of MASCLET, the code employed
to perform most of the simulations used in this Thesis, are described.

– Chapter 5 gives an overview of some phenomena associated to the non-
linearity of the evolution of the baryonic component of the Universe,
that are particularly relevant for the study of cosmic flows.

• Part II (Results) contains a brief summary of each publication, together
with some details on unpublished results. It is divided in four chapters:
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– Chapter 6 covers the works related to the development of numerical
tools for the analysis of cosmological simulations.

– Chapter 7 covers the works related to the study of the assembly
history of galaxy groups and clusters.

– Chapter 8 describes the results of the study of turbulence and accretion
shocks during the formation of galaxy groups and clusters.

– The results obtained from the study of cosmic flows around voids are
explained in Chapter 9.

• Part III (Conclusions) highlights the main conclusions of this Thesis and
lines out some future perspectives. It is lay out in a single chapter, Chapter
10.

• Part IV corresponds to the Appendices.

– Appendix A contains the publications that constitute the main body
of work of this PhD Thesis, in chronological order of their publication
dates, according to the regulations of the Escola de Doctorat of the
Universitat de València.

– Appendix B contains a brief summary of the publications where I
have participated as a co-author, outside the main body of work of
this Thesis, together with a short description of my contribution to
each of them.





CHAPTER 2

Cosmological structure formation

Contents
2.1 The ΛCDM model . . . . . . . . . . . . . . . . . . . 9
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ground . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Galaxy clusters . . . . . . . . . . . . . . . . . . . . . 22
2.4 Cosmic voids . . . . . . . . . . . . . . . . . . . . . . 31

The formation and the evolution of the cosmological structures stud-
ied through this PhD Thesis are intimately interwoven with the evolution

of the Universe as a whole. In this Chapter, I give a brief overview of the physics
of cosmological structure formation. This includes an introduction to the ΛCDM
model (Sec. 2.1) and to the paradigm of the growth of perturbations over a
cosmological background (Sec. 2.2), as well as a review of the main properties,
from the physical and the observational points of view, of galaxy clusters (Sec.
2.3) and cosmic voids (Sec. 2.4).

2.1 The ΛCDM model

The standard cosmological model, also dubbed the Λ-cold dark matter (ΛCDM)
or concordance model, has been the culmination of a century of work around the
physics of structure formation under the framework of General Relativity (GR),
and it has turned to be remarkably successful in describing the evolution of the
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large-scale structure of the Universe. Nevertheless, several fundamental and
practical issues still remain open, especially when dealing with the smallest scales
(length scales below ∼ 1 Mpc, and masses below ∼ 1011 M⊙; see Hamilton 2014,
Bullock and Boylan-Kolchin 2017, for reviews). In the following paragraphs,
its fundaments, the observations supporting the model, and its open issues are
briefly overviewed.

2.1.1 The Friedman-Lemâitre-Robertson-Walker metric

The ΛCDM cosmological paradigm is a particular case of a larger class of models
—the Friedman-Lemâitre-Robertson-Walker (FLRW) models; see Peebles (1993)
for a textbook introduction—, which stem from two major assumptions:

• Gravity is the main force driving the evolution of the Universe (on its cos-
mological scales), and it can be well described by Einstein’s field equations
of GR.

• When smoothed on sufficiently large scales (at least, above a few 100 Mpc;
Yadav, Bagla, and Khandai 2010), the Universe can be modelled as a
homogeneous and isotropic system (i.e., the Cosmological principle, ulti-
mately stemming from the Copernican principle which states the absence
of privileged observers).

Under these assumptions, and when written in the appropriate coordinate
system (the so-called comoving, spherical coordinates), the FLRW metric is
usually given by the arc element (ds):

ds2 = −c2dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]
, (2.1)

where c is the speed of light, t is the time measured by the comoving observer,
r and Ω(θ, ϕ) are the usual radial and unit sphere coordinates, k is the scalar
curvature of the FLRW metric and a(t) is the scale factor. The scalar curvature
k can take the values of −1, 0 or 1, corresponding to open, flat and closed
universes, respectively. The scale factor a(t) encodes the expansion history of
the Universe and, in the case of flat (k = 0) universes, it can be normalised
so that a(t0) ≡ a0 = 1, where t0 is the present time. Hence, a distance
Dc =

´
dr will be referred to as a comoving distance, while Dp =

´
a(t)dr

will be a physical or proper distance. A particularly useful quantity is the
Hubble parameter, H(t) ≡ ȧ/a, which measures the rate of expansion of the
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Universe. Its value at the present time, or the Hubble constant, is often given as
H0 ≡ 100h km s−1 Mpc−1, where h ∼ 0.7 is the dimensionless Hubble parameter.

2.1.2 The energetic budget of the Universe

The description of a FLRW model is complete once its parameters, k and a(t),
are specified by solving Einstein’s field equations, written in tensor form as
G + Λg = 8πG

c4 T. Here, g is the metric tensor, G is the Einstein tensor (a
second-order differential concomitant of the metric tensor), and T is the energy-
momentum tensor. Assuming T to be given by a perfect fluid, Einstein equations
reduce to the so-called Friedman equations:

(
ȧ(t)
a(t)

)2
= 8πG

3 ρB(t)− kc2

a(t)2 + Λ
3 , (2.2)

ρ̇B(t) + 3H(t)
(
ρB(t) + pB(t)

c2

)
= 0, (2.3)

where ρB(t) is the density of the background (i.e., homogeneous) Universe and
pB(t) its pressure. Generally, the composition of the Universe is assumed to
be a mixture of several components, each of them with a given equation of
state pB = wρBc

2, where w is the equation of state parameter. Therefore, the
composition of the Universe can be specified by the equation of state parameter
of each component, together with the values of their densities at one time
(typically, at the present time, ρX0). The latter are often given in terms of the
dimensionless density parameters ΩX0 ≡ ρX0/ρc0, where ρc0 = 3H2

0/8πG is the
critical density (at z = 0), or the value of ρB that would make a universe with
Λ = 0 flat (k = 0).

In the ΛCDM paradigm (Blumenthal et al. 1984, Deruelle and Uzan 2018), the
main constituents of the Universe are dark matter (DM; a non-electromagnetically
interacting form of gravitational matter whose fundamental nature is yet un-
known) and baryonic (or ordinary) matter, accounting for ΩDM ∼ 0.25 and
Ωb ∼ 0.05, both of which are pressureless (w = 0) due to being non-relativistic
species. Incidentally, the cosmological constant term can be interpreted as an
energy density, ρΛ ≡ Λ/8πG, with negative pressure (w = −1) so that its density
remains constant according to Eq. (2.3). This elusive form of dark energy makes
up to ΩΛ ∼ 0.7 of the total energy content of the Universe, making it consistent
with flatness (k = 0).
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2.1.3 Observational probes supporting the ΛCDM model

The predictions of ΛCDM have been tested against a wide variety of observations,
which range from the cosmic microwave background (CMB) to the large-scale
structure (LSS) of the Universe. Besides serving as tests for the model, many of
these probes are able to provide complementary and stringent constraints on the
values of the free parameters of the model. In the following paragraphs, some of
the most relevant probes are briefly described.

Expansion of the Universe. Naturally, the first probe in this category
corresponds to the one by Hubble (1929), who interpreted the fact that galaxies
are redshifted proportionally to their distance to the observer as a (relativistic)
Doppler effect from the recession of galaxies. This is only made compatible with
the cosmological principle if the Universe is globally expanding. The rate of
this cosmic expansion at the present time, after decades of long-standing debate,
has been constrained to yield around h ∼ 0.7. More recently, the observations
of distant type-Ia supernovae (SN), dimmer than expected, have been used to
obtain precise measurements of the expansion rate at late times, suggesting an
acceleration of the expansion rate and providing compelling evidence for the
necessity of dark energy (Riess et al. 1998, Perlmutter et al. 1998, Perlmutter,
Turner, and White 1999).
Incidentally, the expansion of the Universe provides a useful manner to measure
distances and times. The cosmological redshift, z, is defined as a dimensionless
measure of time, since it can be shown to be related to the expansion factor by

a(t) = 1
1 + z

, (2.4)

and the expansion factor itself, a(t), is a monotonous function of cosmic time
for flat and open universes.

Cosmic microwave background. The CMB, which originated at the epoch
of recombination at around z ≃ 1100, was predicted by Gamow (1948), and
only serendipitously discovered two decades later by Penzias and Wilson (1965)
and promptly interpreted by Dicke et al. (1965). Despite its extreme isotropy
(with relative fluctuations only in the order of ∼ 10−5), subsequent missions
(e.g., COBE, Smoot et al. 1992; WMAP, Spergel et al. 2003; Planck, Planck
Collaboration et al. 2020) have been able to measure the CMB temperature with
increasing precision and angular resolution. The spectral study of the primary
temperature fluctuations of the CMB (i.e., the ones that were imprinted on
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the surface of last scattering, including the primordial fluctuations [see below,
Sec. 2.2] and the baryonic acoustic oscillations [BAO]; Hu and Dodelson 2002)
provides stringent constraints on the cosmological parameters (see, for example,
Komatsu et al. 2011, Planck Collaboration et al. 2020), becoming one of the
main cornerstones of the cosmological model.

Abundance of light elements. The production of light atomic nuclei other
than 1H during the first minutes after the Big-Bang is extremely sensitive to
the thermal history of the Universe and, in particular, to the baryonic matter
density. Big-Bang nucleosynthesis (Alpher, Bethe, and Gamow 1948) allows
to predict the abundances of 2H, 3He, 4He and 7Li, providing an independent
probe to Ωb and serving as a fundamental test to the cosmological model.

Large-scale structure. The LSS of the Universe and, in particular, the
clustering of matter at ≳ Mpc scales, allows placing additional constraints on
several cosmological parameters. For instance, large-scale galaxy surveys, such
as CfA (de Lapparent, Geller, and Huchra 1986), SDSS (York et al. 2000), 2dF
(Colless et al. 2001) or, more recently, DEEP2 (Newman et al. 2013) and GAMA
(Liske et al. 2015), can be used to constrain the autocorrelation power spectra, or
the mass function (i.e., the mass distribution of gravitationally-bound objects),
which are particularly sensitive on Ωm ≡ ΩDM + Ωb and σ8 (see Sec. 2.2 for its
definition). Additionally, X-ray or Sunyaev-Zeldovich (SZ) observations can be
used to measure the baryon fraction in galaxy clusters, providing a probe for Ωb.

Cluster and galaxy dynamics. Perhaps the earliest example of cosmology
with galaxy clusters dates back to Zwicky’s (1933) inference of the presence of
DM from the study of the velocity dispersion of galaxies in the Coma cluster.
Although it did not have a large initial impact, the interest in DM resurged a few
decades later, after the observations of Rubin, Ford, and Thonnard (1980) on
the rotation curve of spiral galaxies. As of today, observations of the hot, X-ray
emitting gas in galaxy clusters (Böhringer and Werner 2010) and gravitational
lensing (Bartelmann 2010) are customarily used to probe the distribution of DM
in clusters, providing complementary probes supporting and/or constraining the
cosmological model. Recently, it has been shown that, even with a single galaxy,
it is possible to extract information about the cosmological model (mainly, in
the form of constraints on Ωm; see Villaescusa-Navarro et al. 2022).

As an example of the information garnered by different probes, Fig. 2.1
shows the constraints that BAOs, type-Ia SNe, and the CMB impose on the
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Figure 2.1: Example of constraining power of different probes on the equation of state of dark
energy (w) and the matter density parameter (Ωm). Differently coloured regions correspond
to BAOs, type Ia SNe, CMB (from WMAP data), gas mass fraction in galaxy clusters (fgas),
and X-ray luminosity function (XLF). The yellow contour represents the confidence region
combining the five probes. Figure reproduced from Mantz et al. (2010) with permission.

joint distribution of the dark energy equation of state (w) and matter density
parameter (Ωm).

2.1.4 Open issues of the ΛCDM model

Besides the lack of a fundamental explanation for the nature of dark matter and
dark energy, the ΛCDM model still has several open issues regarding structure
formation, especially at the smallest scales. Some of these issues are briefly
described in the following paragraphs.

The core-cusp problem. Predictions from DM-only simulations within the
ΛCDM framework point at a cuspy density profile for DM haloes, where density
scales as ρ(r) ∝ r−γ with γ ≈ 1 at small radii (Navarro, Frenk, and White 1997,
Navarro et al. 2010). However, rotation curves of low-mass galaxies tend to
prefer a cored density profile, i.e., γ ≈ 0 (Walker and Peñarrubia 2011).

The missing satellites’ problem. High-resolution cosmological simulations
predict that, rather than being monolithic objects, dark matter haloes contain a
rich amount of substructure at all scales. In a Milky Way-like halo, for instance,
thousands of subhaloes with masses above 107M⊙ would be expected from the
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results of DM simulations (Springel et al. 2008). However, only around 50
satellites have been observed around the Milky Way (Drlica-Wagner et al. 2015).

The too-big-to-fail problem. One possible solution to the missing satellite
problem could be related to the fact that most of the missing satellites correspond
to faint, yet undetected galaxies, in such a way that the observed Milky Way
satellites correspond to the largest subhaloes. The most massive subhaloes
in DM-only simulations are expected to be the most concentrated ones, and
therefore the most easily detectable. However, the measured central mass of the
Milky Way satellites are systematically lower than that of the most massive DM
haloes in high-resolution simulations, suggesting that these high-mass haloes
would be failing at forming galaxies (Boylan-Kolchin, Bullock, and Kaplinghat
2011).

These and other problems (e.g., the planes of satellites, Kroupa, Theis, and
Boily 2005; or the phenomenology of dark, e.g. Simon and Geha 2007, relic,
e.g. Quilis and Trujillo 2013, and ultradiffuse, e.g. Román and Trujillo 2017,
galaxies) have been the subject of intense debate in the last decades. It may be
possible that the solution to these problems is found in the modification of the
cosmological model, such as the introduction of self-interacting DM (Moore et al.
2000, Tulin and Yu 2018), or the modification of the gravitational force at small
scales (Famaey and McGaugh 2012). Nevertheless, there is still room for many
of these conundrums to still find an answer lying within the ΛCDM model. For
instance, baryonic feedback from SNe and active galactic nuclei (AGN) activity
may be capable of erasing DM cusps (Mashchenko, Wadsley, and Couchman
2008), thus motivating the importance of deepening the understanding of the
physics of baryons.

2.2 Growth of perturbations over a cosmological
background

In Sec. 2.1, a homogeneous universe of mean values has been introduced to
discuss its global properties and evolution. This section succinctly discusses the
evolution of inhomogeneities over this background, which ultimately lead to the
formation of the structures populating the Universe.
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2.2.1 The seed of density perturbations

In order for structures to gravitationally collapse, there must be some inhomo-
geneities already present in the density field at high redshift. While the origin
of these primordial inhomogeneities is not fully understood, the most widely
accepted mechanisms place the origin of these perturbations in the inflationary
epoch. Cosmic inflation, a period of exponential expansion driven by a constant
density scalar field, which took place at very early cosmic times (t ≲ 10−32 s),
was initially proposed to solve several open problems in Cosmology, such as the
horizon problem and the flatness problem (Guth 1981, Linde 1982) or the lack
of magnetic monopoles (Guth and Weinberg 1981). Incidentally, this model also
predicts the spatial magnification of quantum fluctuations up to cosmic scales,
thus providing a mechanism for the emergence of tiny density fluctuations that
would constitute the seed for structure formation (see also García-Bellido 1999,
Mukhanov 2005 for reviews).

Due to the weakness of its interaction with baryonic matter, DM was able to
decouple from the primordial plasma at early times and start its collapse, forming
potential wells. Baryonic matter, instead, would remain coupled to photons,
preventing its collapse, until the epoch of recombination. This difference in the
behaviour of DM and baryons prior to recombination is imprinted in the CMB
via several effects, such as the BAOs or the non-integrated Sachs-Wolfe effect.

Inflationary models predict the power spectrum of primordial fluctuations to
be self-similar, i.e., given by a power law (Guth and Pi 1982),

P (k) = Akns , (2.5)

where A is the amplitude of the power spectrum and ns ∼ 1 is its spectral
index. Instead of A, it is frequent to use the variance of the primordial density
field in spheres of 8h−1 Mpc, σ8, as a measure of the amplitude of the power
spectrum. The baryonic effects mentioned above are often parametrised by a
transfer function (Eisenstein and Hu 1998; see also Fig. 2.2), T (k), in such a
way that the power spectrum at the epoch of recombination can be given by

P (k) = A|T (k)|2kns . (2.6)

2.2.2 The linear model for the evolution of perturbations

Even though the behaviour of density perturbations is generally not analytically
solvable (see below, Sec. 2.2.4 and Sec. 3), some knowledge can be gained
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Figure 2.2: Top panel: Power spectrum for the primordial density fluctuations (linearly
extrapolated at z = 0), generated using the Colossus library (Diemer 2018) and assuming a
Planck Collaboration et al. (2020) cosmology. Middle panel: Transfer function, T (k), for the
same cosmology. Bottom panel: Ratio between the transfer function shown above, and the
one for an equivalent cosmology with only cold dark matter and no baryons.

from the analytic study of the linear regime, i.e., when deviations from the
homogeneous background are small in magnitude. It is useful to define the
density contrast,

δ(x, t) ≡ ρ(x, t)− ρB(t)
ρB(t) , (2.7)

which, according to the linearised continuity and Euler equations for a self-
gravitating, pressureless fluid (see Sec. 3.1.2 for a more thorough discussion of
these equations), can be shown to evolve following (Peebles 1980):

∂2δ

∂t2
+ 2H∂δ

∂t
= 4πGρBδ, (2.8)

which admits a separable solution in the form

δ(x, t) = A(x)D+(t) +B(x)D−(t), (2.9)

where D+(−)(t) are the growing (decaying) linear growth factors, and A(x)
and B(x) are set by the initial conditions. In what follows, I shall adopt an
Einstein-de Sitter (EdS; flat, k = 0, and without cosmological constant, ΩΛ = 0,
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hence Ωm = 1) cosmology for simplicity, although equivalent results can also be
obtained for ΛCDM (often not admitting closed forms and requiring numerical
integration). In an EdS cosmology, the linear growth factors are given by
D+(t) ∝ t2/3 ∝ a(t), D−(t) ∝ t−1. Therefore, once the decaying mode can
be neglected, the density contrast grows as δ ∝ a(t), i.e., linear overdensities
(underdensities) collapse (expand) with the same rate as cosmic expansion in a
matter-dominated universe.

The linear analysis based on the determination of the growth factor for a given
cosmology, although only valid for |δ| ≪ 1, provides important insight on the
evolution of inhomogeneities in different cosmologies. For instance, in a universe
dominated by dark energy (ΩΛ ∼ 1), the growing mode is constant and, thus,
the collapse of structures is suppressed with respect to the matter-dominated
one, consequently preventing the formation of structures at late times.

2.2.3 The spherical collapse model

One of the few situations where the exact solution for the evolution of a non-
linear perturbation can be obtained is the collapse of a spherically-symmetric,
homogeneous overdensity (usually called top-hat, for its flat shape) in a matter-
dominated Universe. In this case, the evolution can be studied as an isolated
FLRW Universe, and it is possible to obtain analytic solutions. The spherical
top-hat collapse model (Gunn and Gott 1972, Bertschinger 1985) describes the
evolution of an initially homogeneous overdensity δi ≪ 1, with initial radius
R at time ti, in an EdS cosmology. The motion of each spherical shell can be
solved under the assumption that shells do not cross (i.e., if r1(ti) > r2(ti), then
r1(t) > r2(t) ∀t).

The overdensity initially grows in size due to cosmic expansion but, provided
Ωm(ti)(1 + δi) > 1, the perturbation will reach a maximum radius Rta (the
so-called turn-around radius) at t = tta, after which it will detach from the
background expansion and collapse. Using energetic considerations, the collapse
time t = tvir is defined as the moment when the virial theorem, U + 2K = 0 is
satisfied, being U and K, respectively, the gravitational and kinetic energies of
the perturbation. In an EdS Universe, the collapse time is given by

tvir = ti
9π
10

√
3

5δ3
i (1 + δi)

, (2.10)

from which the density predicted by the linear model (δ ∝ t2/3) at collapse can
be computed:
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δvir = δ+(tvir) = 3
5

(
3π
2

)2/3
≈ 1.686 (2.11)

Note, however, that this universal value for the linear-theory extrapolation
of the density at collapse time already falls outside the domain of validity of the
linear theory. Conversely, the non-linear overdensity (∆ ≡ 1 + δ) at the time of
collapse is found to be

∆vir = 18π2 ≈ 178. (2.12)

Compared to δvir ≈ 1.69, this gives a sense of the rapid evolution of overden-
sities once the non-linear evolution onsets. For a more detailed discussion on
the spherical collapse model, the reader is referred to, e.g., Planelles, Schleicher,
and Bykov (2015) and Bovy (2023), and references therein.

2.2.4 Beyond the linear model

Although the linear model can be very illuminating and provides a useful
description of the evolution of density perturbations at very large scales, which
have not yet entered non-linearity, it does not suffice to describe the complex
evolution of cosmic structures. Similarly, also the spherical collapse model has
important limitations: under the assumption of no shell-crossing, the collapse
would continue so that, at t = 2tta, all shells would end up at r = 0. This
unphysical conclusion is prevented by, for instance, deviations from spherical
symmetry causing shell-crossing, where non-linear interactions between shells
prevent this collapse.

Notwithstanding the fact that other analytic or semi-analytic models, such as
the Zeldovich (1970) approximation or higher-order perturbation theory (Buchert
1992), are customarily used to study the evolution of inhomogeneities in the
Universe, especially at high redshift or at large scales (where the perturbations
remain linear or mildly non-linear), the scientific community soon resorted to
cosmological, N -Body simulations to study the evolution of cosmic density fields
in the non-linear regime (e.g., Press and Schechter 1974; see Sec. 3 for a more
detailed discussion on simulations, both N -Body and hydrodynamic).

Complemented with data from observations and simulations, our current
understanding of the formation of cosmic structures indicates that structures
form:

• Anisotropically, i.e., galaxies (hence, haloes) are not distributed homoge-
neously in space in scales of ∼ 10 Mpc, but they form topologically distinct
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regions (Bond, Kofman, and Pogosyan 1996). Matter tends to accumulate
in two-dimensional structures called sheets, which surround large regions
of low matter density (voids). In turn, sheets are not homogeneous, but
they are instead traversed by filaments, which intersect at nodes, where the
most massive structures (clusters) reside (Bhavsar and Ling 1988, Cautun
et al. 2014).

• Hierarchically, i.e., smaller and less massive structures form at earlier times,
and subsequently merge to form larger structures (White and Rees 1978).
This is also known as the bottom-up scenario. Incidentally, this also implies
the presence of substructure within cosmic structures: haloes may contain
a population of smaller haloes, called sub-haloes (and so on, recursively),
which are the remnants of smaller structures that have been accreted by
the main halo (e.g., Springel et al. 2008). Similarly, voids are permeated
by a tenuous network of filaments, haloes and sub-voids (Sheth and van
de Weygaert 2004).

2.2.5 Dark matter haloes

Within the paradigm described above for the non-linear emergence of the cosmic
web, gravitationally-bound spheroidal structures of DM –the so-called dark
matter haloes– are the basic building blocks of the LSS of the Universe, providing
the gravitational potential wells that support the collapse of virtually all observed
structures between the scales of dwarf galaxies and galaxy clusters. In this
framework, the distribution, internal structure, evolutionary history and the
surrounding environment of DM haloes are key ingredients to understand the
formation and evolution of galaxies and galaxy clusters. Below, I briefly review
some basic properties of DM haloes, while the interested reader is referred to,
e.g., Zavala and Frenk (2019) for a thorough review.

Definition of a DM halo. Within the spherical collapse model for an EdS
universe, the overdensity of a halo in virial equilibrium is ∆vir,EdS = 18π2

(Eq. 2.12). However, in a fully cosmological environment, this has to be taken
with caution. In the first place, the dynamical environment the halos inhabit,
and their lack of spherical symmetry, makes the definition of a halo somewhat
arbitrary. Generally, there is not a clear boundary for a DM halo1 and this

1Nevertheless, there are more physically-motivated definitions of the extent of a DM halo.
For instance, the splashback radius has been proposed as a physical boundary of haloes
(Diemer and Kravtsov 2014), which separates the regions were DM particles are infalling
from the regions where they are orbiting the potential centre. However, even with more
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brings an unavoidable arbitrariness in its definition. However, it is still common
to define the extent of a halo as the spherical region encompassing a density ∆m

times the background (matter) density, or ∆c times the critical density. While
common choices for ∆m and ∆c are 200 or 500, a widely-used option in the
literature is to choose the virial overdensity (Bryan and Norman 1998),

∆c,vir = 18π2 + 82x− 39x2, where x ≡ Ωm(z)− 1. (2.13)

Yet another definition of a halo can be obtained through the friends-of-friends
(FoF) definition, which groups together all particles (i.e., DM particles in an
N -Body simulation [see Sec. 3.1.1]; or any kinematic tracer, e.g., galaxies)
separated by less than a given linking length, l, which is customarily defined in
terms of the mean particle density n̄ as l = bn̄−1/3, b ∼ 0.2 being a dimensionless
parameter that approximately sets the overdensity of the resulting haloes in
∆ ∼ b−3.

Mass function. The mass function of DM haloes is defined as the number
density of haloes per unit mass and unit volume, n(M, z). It can alternatively
be defined as an anti-cumulative quantity, i.e., the number density of haloes with
mass above M at redshift z, in which case I shall denote it n(> M, z) within
this Thesis. Numerical simulations roughly predict (Frenk et al. 1988, Crain
et al. 2009)

n(M, z) ∝M−1.9, (2.14)

that is, massive clusters are highly suppressed, in consistency with a bottom-
up formation scenario. The normalisation constant is a function of redshift
and, possibly, other factors related to the environment (i.e., higher density
environments yield a higher normalisation). Mass functions can be reasonably
predicted from theoretical grounds using Press and Schechter (1974) or excursion
set (Bond et al. 1991) formalisms, and are essential ingredients for cluster
cosmology.

Internal structure: density profile. In the past few decades, a large amount
of effort was devoted to the study of the internal structure of DM haloes, which
in general terms presents a negative logarithmic slope that gets steeper with
radius. Navarro, Frenk, and White (1997) found that, across a large range in

physically-motivated definitions, the lack of spherical symmetry and the interactions between
different elements of the cosmic web do not leave room for ideal definitions.
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halo masses, the spherically-averaged density profile of DM haloes in dynamical
equilibrium can be well described by a functional form that is independent of the
initial condition of the overdensity, and depends essentially on two parameters —
namely, a scale density, ρs, and a scale radius, rs — which can be related to the
total mass and concentration of the halo. This functional form, which is widely
known as the Navarro-Frenk-White (NFW) profile, is given by

ρ(r) = ρs

r
rs

(
1 + r

rs

)2 . (2.15)

A fundamental quantity derived from the NFW profile is its concentration,
c = Rvir/rs. Alternatively, concentration can be defined at any other overdensity
as c∆ = R∆/rs. Concentration is itself a function of mass and redshift (Dutton
and Macciò 2014).

Shape. While, in part for simplicity, haloes are often described by spherical
boundaries and spherically-averaged profiles, the shape of DM haloes is —even
after removing the substructure— generally triaxial, with a slight preference
towards prolateness. The shape of DM haloes is the result of several factors,
including the shape of the initial overdensity (Bardeen et al. 1986), and the
anisotropic environment, which can affect the shape of the halo through tidal
torques (Dubinski and Carlberg 1991, Jing and Suto 2002).

Substructure. Besides a smooth component, DM haloes are populated by
large numbers of substructures —the so-called DM subhaloes. In a bottom-up
scenario, subhaloes correspond to the remnants of haloes accreted onto the main
host, most of which end up stripped due to processes like tidal stripping (Read
et al. 2006) or dynamical friction (White 1976). The presence of substructure in
a halo has been widely used as an indicator of its past merging history (West
and Bothun 1990).

2.3 Galaxy clusters
Galaxy clusters stand in the apex of the hierarchy of gravitationally bound
objects, being the latest structures to have collapsed and virialised by z ∼ 0 (or
are still in the process of doing so). Having masses in the order of 1014−1015 M⊙,
and extents of ∼ 5 Mpc, the processes associated to their formation are amongst
the most energetic ones in the Universe, involving up to 1065 erg over time
scales of several Gyr. In this section, I briefly review some of the most relevant
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properties of galaxy clusters, while the interested reader is referred to, e.g.,
Kravtsov and Borgani (2012) for a more thorough review.

2.3.1 Physical properties of galaxy clusters and their evo-
lution

As the most massive collapsed structures in the Universe, the composition of
galaxy clusters, which is customarily expressed in terms of their mass fractions,

fDM = MDM

Mtot
, fgas = Mgas

Mtot
, f∗ = M∗

Mtot
, (2.16)

where ‘∗’ stands for cold baryons (stars), is approximately representative of
the cosmic matter budget. Even though these objects were initially discovered
from the emission of their stellar component, it only corresponds to a few per
cents of the total mass of the cluster (f∗ ∼ 0.01− 0.05). The baryon fraction
(fb = fgas+f∗ ∼ 0.14−0.16) is found by cosmological simulations to be consistent
or just slightly below the cosmic value (Planelles et al. 2013). The remaining
mass being in the form of DM (fDM ∼ 0.85), much of what has been mentioned
in the previous section about the properties of DM haloes applies to galaxy
clusters themselves.

Since these objects are still in the process of assembling by z ≃ 0, its
dynamical state has drawn considerable attention in the recent decades. There
are numerous ways of assessing the dynamical states of galaxy clusters, both in
three-dimensional simulation data (Shaw et al. 2006, Neto et al. 2007, Cui et al.
2017) which can additionally track the evolution of these objects (e.g., Nelson
et al. 2019), and in two-dimensional, projected observations (Mohr, Fabricant,
and Geller 1993, Buote and Tsai 1995; see also Rasia, Meneghetti, and Ettori
2013 for a review); and these classifications do not necessarily match each other.
A proper selection of relaxed clusters is a fundamental step for treating clusters
as cosmological probes (Mantz et al. 2015).

Besides their cosmological role, galaxy clusters also constitute excellent
laboratories to study, not only galaxy formation processes in dense environments
(Gunn and Gott 1972), but also the physics of the bulk of baryonic matter
in clusters, the hot intracluster medium (ICM). The ICM is an almost fully
ionised plasma with typical temperatures of T ∼ 107 K and densities in the range
n ∼ 10−5 − 10−1 cm−3, which is nearly in equilibrium within the gravitational
potential well of the cluster. The chemical and thermodynamic properties of this
medium are of utmost importance for the study of the physical process at play
during galaxy and galaxy cluster assembly. Besides adiabatic hydrodynamics,
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galaxy clusters also harbour non-thermal processes contributing to a significant
amount of their energetic budget. For instance, large-scale shock waves located at
the peripheries of clusters (r ∼ [2− 3]Rvir), together with weaker, smaller-scale
internal shocks, have a significant role in the thermalisation of the infalling
gas and the heating of the ICM up to the observed temperatures (Quilis et al.
1998, Miniati et al. 2000), while residual, turbulent motions fill a large fraction
of the ICM volume and contribute significantly to its support against gravity
(Vazza et al. 2009, Biffi et al. 2016). Non-thermal processes in the ICM and
their observational implications are reviewed in Chapter 5.

While, so far, observations of galaxy clusters are restricted to their central
regions (≲ R500c), future telescopic facilities along the electromagnetic spectrum
will be able to shed light on the physics of their outer regions (Walker et al.
2019), where the physics of accretion leaves its imprint on the ICM. Due to
them being dynamically active and low-density regions, cluster outskirts exhibit
a plethora of non-equilibrium phenomena, deviations from spherical symmetry,
etc., such as gas clumping (Nagai and Lau 2011), intense bulk and turbulent
motions (Lau, Kravtsov, and Nagai 2009, Vazza et al. 2009), or non-equilibrium
conditions for electrons and ions (Avestruz et al. 2015).

2.3.1.1 Galaxy cluster formation and the thermodynamics of the
ICM

Gravity is the main force driving the collapse of galaxy clusters, and therefore
it is responsible, not only of setting the properties of the DM halo, but also
the thermodynamic quantities of the ICM, which in turn determine its obser-
vational properties. Diffuse gas infalling from very low-density regions into
the cluster soon achieves supersonic velocities (∼ 1000 km/s), producing the
large-scale, strong (M ∼ 100) accretion shocks that are already predicted by
the spherically-symmetric collapse model of Bertschinger (1985). In a three-
dimensional, cosmological context, the picture gets more complex due to the
presence of an anisotropic environment (e.g., filaments) and internal shocks due
to mergers and the passage of substructures. Both these classes of shocks have
an essential role in determining the thermal properties of the ICM (Skillman
et al. 2008). They are also crucial to understand the velocity structure of the
ICM, since gas transitions from ordered, laminar infall at high clustercentric
distances to develop vortical and small-scale motions inside the accretion shock
boundaries (e.g., Vazza et al. 2009).

However, the low levels of entropy in the cores of clusters, together with
the very presence of galaxies forming out of cold gas, indicate that additional
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processes able to cool the gas must be at play during cluster evolution (in this
regard, see, e.g., the review by Voit, Kay, and Bryan 2005). Incidentally, the
inclusion of cooling introduces a physical scale and breaks the otherwise self-
similar evolution of the ICM (Voit and Bryan 2001). At the same time, several
mechanisms must be present to overcome an excessive cooling of the gas and
to regulate star formation, such as the injection of energy from SNe and AGN
activity (Springel and Hernquist 2003, McNamara and Nulsen 2007). Besides
these mechanisms, also thermal conduction (Dolag et al. 2004), physical viscosity
(Sijacki and Springel 2006), and cosmic rays (Ruszkowski, Yang, and Reynolds
2017), amongst others, are expected to play a significant role in shaping the
thermodynamic properties of the ICM, especially in the outskirts.

The complexity and diversity of the physical processes acting during cluster
formation and evolution can only be self-consistently addressed with the aid of
numerical simulations, which are discussed in Sec. 3.

2.3.2 Observational properties of galaxy clusters

Clusters of galaxies can be detected and observed throughout the electromagnetic
spectrum, from radio wavelengths to high-energy gamma-rays, but the three
main windows correspond to the microwave, the optical and the soft X-ray
regions of the spectrum. In the following paragraphs, I briefly review the
main observational properties of galaxy clusters in these three windows, while
the interested reader is referred to, e.g., Voit, Kay, and Bryan (2005) for a
classical review on the observable properties of galaxy clusters through the
electromagnetic spectrum. Additionally, Sec. 5.4 briefly discusses some aspects
of clusters in radio wavelengths. In Fig. 2.3, a multiwavelength view of the
Coma cluster is displayed.

2.3.2.1 Observations in the optical band

The historical discovery of galaxy clusters corresponds to this band of the
spectrum, with the observations of Charles Messier and William Herschel of
the Virgo and Coma clusters, respectively (see Biviano 2000 for a historical
perspective to the optical study of galaxy clusters). A large leap forward in
the optical identification and characterisation of optical clusters was performed
by Abell (1958) and Abell, Corwin, and Olowin (1989), who systematised the
identification and classification of galaxy clusters with a well-defined heuristic
procedure. Still today, modern optical cluster identification techniques are based
on similar principles to the ones of Abell (Lumsden et al. 1992, Dalton et al.
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Figure 2.3: Region around the Coma cluster (z = 0.023) seen at different wavelengths.
The left-hand side, middle and right-hand side panels correspond, respectively, to X-ray
(SRG/eROSITA, 0.4 − 2 keV), SZ (Planck) and optical + infrared (SDSS+Sptizer). The X-ray
and SZ panels cover a region of (4.4 deg)2, and have been reproduced from Churazov et al.
(2021) with permission (CC-BY license). The contours in both panels correspond to the SZ
signal. The optical image covers a smaller, 41.7 × 36.2 arcmin2 region. Image credit (public
domain): NASA/JPL-Caltech/L. Jenkins (GSFC).

1997, Gladders and Yee 2000; cf. Euclid Collaboration et al. 2019 for a discussion
on the detection of clusters with the very recent Euclid mission).

Given a list of member candidates, the status of the apparent concentration
of galaxies as an actual cluster has to be confirmed, since projection effects can
complicate their characterisation. This is done with a two-fold motivation: con-
firming the status of true members of the candidate galaxies, and measuring the
mass of the cluster. In the optical band, there are at least three complementary
ways of doing so:

Optical richness. Defined as a categorical measure (from 1, the poorest, to
5, the richest) of the number of galaxies in the cluster above a magnitude limit,
it serves as a proxy for the total optical luminosity of the cluster and, in turn,
for its mass (as long as light traces mass).

Galactic kinematics. It can be used together with dynamical considerations
to estimate the gravitational mass of the cluster, together with the boundedness
state of each constituent. Optical spectroscopy allows to measure the radial
velocities, i.e. the velocities along the line of sight, vlos, of each member, from
which the one-dimensional velocity dispersion, σ1D, or even the whole (radial)
velocity distribution function can be estimated. Using the virial theorem, as in
the original approach by Zwicky (1933), the mass can be estimated. Alternatively,
more sophisticated methods are used nowadays to estimate the mass profile of
the cluster, such as the caustic technique (Diaferio and Geller 1997), or the
Jeans equations (Mamon, Biviano, and Boué 2013).
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Gravitational lensing of background sources. The lensing of background
objects (most typically, galaxies) by the deep gravitational potential well of
clusters can produce multiple images of the lensed galaxy (in the strong lensing
regime), or a mild shear distortion of the background galaxies (in the weak
lensing regime). Originally suggested by Zwicky (1937), the latter can be used
to constrain the distribution of mass in the cluster (Tyson, Valdes, and Wenk
1990; see also Umetsu 2020 for a recent review).

The optical component of galaxy clusters does not consist exclusively of
galaxies. In the recent years, the intracluster light (ICL), a diffuse component
not bound to any galaxy, but only to the cluster’s potential well, has triggered
considerable attention (e.g., Contini et al. 2014, Mihos et al. 2017), in part
because it has been suggested to trace total mass (Montes and Trujillo 2019)
and the assembly history of the cluster (Presotto et al. 2014).

2.3.2.2 Observations in X-ray

The first detections of X-ray emission outside our Galaxy were reported by
Byram, Chubb, and Friedman (1966) and Bradt et al. (1967) in the direction of
the radio-galaxy M87, the most dominant galaxy of the Virgo cluster. Promptly,
X-ray photons were also detected in the directions of Perseus (Fritz et al. 1971)
and Coma clusters (Gursky et al. 1971), suggesting that galaxy clusters are
generally X-ray sources (Cavaliere, Gursky, and Tucker 1971) and already
attributing it primarily to bremsstrahlung emission (Felten et al. 1966).

X-ray emission from clusters appears as a consequence of the inefficiency of
star formation, i.e., of the fact that only a small fraction of baryons (∼ 10%) is
in the form of stars. Diffuse baryons in clusters get compressed in the cluster
potential well and shock-heated to temperatures of T ∼ GMvirmp/(kBRvir) ∼
107−8 K, thus becoming powerful X-ray emitters. The X-ray spectrum (see
Rosati, Borgani, and Norman 2002, Böhringer and Werner 2010 for classical
reviews) is mainly contributed by two components, which I shall briefly review
below:

The thermal bremsstrahlung continuum. It is especially dominant at high
temperatures (kBT ≳ 2 keV), and is produced by the scattering of free electrons
off ions. The spectral energy distribution of this component is described by the
emissivity (Gronenschild and Mewe 1978)

ϵ(ν, T ) ∝ T−1/2neniZ
2gff(ν, T )e− hν

kBT , (2.17)
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where ne(i) is the electron (ion) number density, Z is the effective charge of the
ion, gff ∼ 1 is the gaunt factor that accounts for the quantum nature of the
scattering process, and ν, T are, respectively, the photon frequency and the
plasma temperature. The spectrum presents a sharp cut-off at high frequencies
due to the exponential term, which can be used to infer the temperature of the
emitting plasma as long as it is within the energy window of the X-ray telescope.

When considering bolometric X-ray luminosities, it is frequent to parametrise
the temperature dependence inside a cooling function, Λ(T ) ∝ T 1/2, in such
a way that the bolometric emissivity is given by neniΛ(T ). The total X-ray
luminosity of a cluster is then given by the integral of the emissivity over the
cluster volume, which is most usually expressed in terms of the plasma density
using ne ∼ ni ∼ ρgas/(µmp), where ρgas is the gas density and µmp is the mean
mass per particle. The bolometric X-ray luminosity of a cluster is then given by

LX =
˚ (

ρgas

µmp

)2
Λ(T )dV, (2.18)

yielding typical values of LX ∼ 1043 − 1045 erg/s.

Emission lines. Especially relevant at low temperatures (kBT ≲ 2 keV; Ray-
mond and Smith 1977), they allow the measurement of chemical abundances
of metals in the ICM (see, e.g., Mernier and Biffi 2022 for a recent review on
the chemical enrichment of the ICM). Early works (e.g., Renzini 1997) estab-
lished that clusters had typical metallicities of one third of the solar value,
ZICM ∼ Z⊙/3, while subsequent studies, aided by the improvement of the spec-
troscopic capabilities of X-ray telescopes, have focused on the distribution of
metals in the ICM (De Grandi and Molendi 2001, Gatuzz et al. 2023).

2.3.2.3 Observations in microwaves

Soon after the discovery of the CMB, Weymann (1966) predicted the distortions
of its spectrum by inverse Compton scattering with high-energy electrons, which
shifts photons to higher energies. Sunyaev and Zeldovich (1970) applied this
to the hot gas in clusters, predicting the existence of a spectral distortion of
the CMB, now known as the Sunyaev-Zeldovich (SZ) effect. First claims of the
detection of such effect were only reported two decades later (Birkinshaw 1990),
while modern facilities such as Planck (Planck Collaboration et al. 2011) or
the South Pole Telescope (Bleem et al. 2015) have led to the identification of
hundreds of galaxy clusters.
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The effect described above corresponds to the so-called thermal Sunyaev-
Zeldovich (tSZ) effect, which is due to the thermal motion of electrons in the ICM.
Its magnitude is proportional to the integrated electron pressure, Pe = nekBTe,
along the line of sight, and is usually parametrised by the Compton-y parameter,
defined as (see, e.g., Mroczkowski et al. 2019 for a review)

ytSZ = σT

mec2

ˆ
Pedl, (2.19)

where σT is the Thomson scattering cross section. Since the ICM is optically
thin, this is a small distortion (ytSZ ≪ 1). Bulk motions of the cluster, and
even its motion as a whole, produce an additional contribution, known as the
kinetic Sunyaev-Zeldovich (kSZ) effect, which can be interpreted as a relativistic
Doppler boosting (Rephaeli 1995). Its intensity is proportional to the line of
sight velocity, and can be parametrised with an analogue parameter, ykSZ.

ykSZ = σT

c

ˆ
nev · dl (2.20)

Only recently, the direct detection of kSZ effect from stacked observations
has been reported (e.g., Tanimura, Zaroubi, and Aghanim 2021). A property
which makes the SZ effect especially interesting is the fact that, consisting on
a scattering of CMB photons off the ICM electrons, its intensity is essentially
redshift-independent, making it a promising tool for the study of high-redshift
systems (e.g., Jones 1998).

2.3.3 The self-similar model

While the actual formation and evolution of the properties of galaxy clusters
is complex and demands numerical simulations (Sec. 3), the self-similar model
(Kaiser 1986; see also Borgani and Kravtsov 2011 for a comprehensive review)
provides a useful baseline to compare with observations and simulations. Within
this model, the properties of galaxy clusters are determined by the driving
mechanism in their evolution, i.e., gravity. The predictions of this model are
most usually presented in the form of scaling relations, which are briefly reviewed
below. In their simplest form, scaling relations connect any observable measured
within an overdensity aperture ∆, X∆, with the corresponding mass (M∆) and
redshift z. For thorough reviews on the topic of scaling relations, the reader is
addressed to Giodini et al. (2013) and Lovisari and Maughan (2022).

As seen in Sec. 2.2.5, DM haloes (and hence, clusters) can be defined based on
an arbitrary overdensity with respect to the background density (ρ = ∆mρB(z))
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or the critical density (ρ = ∆cρc(z)). The scaling relations can be formulated
for any of these, but care must be taken with their different evolution: while
ρB(z) = ρB0(1 + z)3, the evolution of ρc(z) is related to that of H(z). It is
customary to express H(z) = H0E(z), where

E(z) =
√

Ωm(1 + z)3 + ΩΛ, (2.21)

for a universe with no curvature nor radiation, and where the ΩX written here
correspond to their values at z = 0. With this definition, ρc(z) = ρc0E(z)2.
Then, the mass enclosed within an overdensity ∆m is given by

M∆m
∝ ∆mR

3
∆m

, (2.22)

while for a ∆c overdensity

M∆c
∝ ∆c

E(z)2

(1 + z)3R
3
∆c
, (2.23)

where all radii are expressed in comoving coordinates. From this, assuming
gravity to be the driving mechanism of the evolution of the system, one would
expect the internal (thermal) energy per particle to be proportional to its binding
energy, i.e., kBT ∝ GM(µmp)/R. This implies that the temperature of the ICM
should scale with mass and redshift as

T∆m
∝ ∆1/3

m (1 + z)M2/3
∆m

, (2.24)

T∆c
∝ ∆1/3

c E(z)2/3M
2/3
∆c

. (2.25)

Similarly, the ICM entropy, defined as K ≡ kBTn
−2/3
e , should scale as

K∆m
∝ ∆−1/3

m (1 + z)−1M
2/3
∆m

, (2.26)

K∆c
∝ ∆−1/3

c E(z)−2/3M
2/3
∆c

. (2.27)

Equivalent relations can be written for the X-ray bolometric luminosity, LX,
gas pressure, etc.; as well as for parameters derived from SZ observations, such as
the integrated Compton-y parameter, YSZ. These relations can be observationally
used to infer masses from integrated quantities of the cluster.
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2.3.3.1 Breaking of self-similarity

While the self-similar model has been extremely successful in predicting average
properties of galaxy clusters, some of its predictions have been found to be at
variance with observations, indicating the presence of additional processes on
top of gravity.

For instance, Reiprich and Böhringer (2002) reported an LX −M relation
steeper than the self-similar prediction (with a logarithmic slope of 4/3). Simi-
larly, the T −M relation has also been reported to be steeper than expected
(Markevitch et al. 1998, Arnaud and Evrard 1999), together with a non-constant
gas mass fraction across masses (Sanderson et al. 2003). Additionally, the scatter
around some of these relations (e.g., the LX −M relation) can be important,
and this has been associated to the presence of cool cores2 (Fabian et al. 1994).
While excising the core is a common practice in X-ray studies (Markevitch et al.
1998), departures from self-similarity still remain present.

Subsequent studies using hydrodynamical cosmological simulations have been
able to link departures from self-similarity to structure formation processes. Just
to cite a few, Planelles and Quilis (2009) show how clusters move along the
scaling relations planes as a result of mergers. In Lau et al. (2015), the shape
of the ICM thermodynamic profiles is studied in relation to accretion rates,
demonstrating how accretion impacts the outskirts of clusters. Also in this
direction, Chen et al. (2019) explore the connection between the residuals with
respect to the T −M relation and accretion rates as well as the ellipticity of the
ICM.

Besides the purely hydrodynamical and gravitational processes, the introduc-
tion of radiative cooling, together with heating from SNe and AGN feedback,
are also thought to be major contributors to the breaking of self-similarity in
the ICM (Borgani et al. 2004, McCarthy et al. 2004, McCarthy et al. 2008).

2.4 Cosmic voids
For as long as galaxy surveys have been compiled (e.g., Einasto, Joeveer, and
Saar 1980), voids have been known as a characteristic feature of the LSS of the
Universe, filling up most of its volume (Cautun et al. 2014) and constituting
the largest structures in the cosmic web, with typical sizes up to ∼ 100 Mpc as
in the case of the colossal Boötes void (Kirshner et al. 1981). In this section, I

2In relaxed systems, dense cores that are capable of undergoing efficient radiative cooling
may develop. Cool gas gets removed from the X-ray emitting phase but, perhaps paradoxically,
these objects exhibit an enhanced central surface brightness due to its high density
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Figure 2.4: Density field across a thin slice of a cosmological simulation at z = 0, where
the initial conditions have been smoothed at different scales: no smoothing (left-hand side
panel), smoothed at scales of 2 h−1 Mpc (middle panel), and 4 h−1 Mpc (right-hand side panel);
showing the emergence of a hierarchy of voids and subvoids. Reproduced from Aragon-Calvo
and Szalay (2013) with permission.

briefly review some of the most relevant properties of cosmic voids, while the
interested reader is referred to, e.g., van de Weygaert and Platen (2011) for a
more thorough review.

Voids emerge from the evolution of primordial underdensities which, according
to the linear theory (see Sec. 2.2.2), get emptier with cosmic time, as matter
around them collapses to form walls, filaments and haloes. In this sense, cosmic
voids have triggered considerable attention in the last decades, for their potential
as cosmological probes (e.g., Lavaux and Wandelt 2012, Nadathur et al. 2019,
Pisani et al. 2019). Essentially, their lower mean density allows treating isolated
voids, by means of the Tolman-Bondi approach (Tolman 1937, Bondi 1947),
as regions with super-Hubble expansion (e.g., Baushev 2021) where structure
formation proceeds at a slower pace.

Nevertheless, voids are not monolithic regions of negative density contrast, but
instead contain tenuous filaments and walls, subvoids and haloes, in the light of
the hierarchical structure formation scenario (Sheth and van de Weygaert 2004).
To exemplify this, Fig. 2.4 shows slices of the density field from a cosmological
simulation smoothed at different scales, demonstrating the hierarchical nature
of these structures. The pristine, low-density environment of voids constitutes
an ideal laboratory to study the formation and evolution of galaxies, where
interactions are extremely infrequent (Hahn et al. 2007, Kreckel et al. 2011,
Ricciardelli et al. 2014).

As already revealed by models of isolated voids, as they evolve, matter inside
them gets evacuated by the repulsive peculiar gravitational field, which is stronger
in the central regions and gradually decreases going outwards, as density also
increases. Consequently, matter in central regions moves outwards faster than
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matter in its outskirts, leading to an accumulation of matter in the surrounding
of the void, usually denominated as the void’s shell. A characteristic timescale in
void evolution is that of shell-crossing, when inner shells of matter overtake the
outer ones. Analytic models show that, by this time, voids reach a self-similar,
slower, expansion phase (Sheth and van de Weygaert 2004), achieving non-linear
density contrasts of δv ∼ −0.8.

In this picture, also confirmed by three-dimensional simulations (Ricciardelli,
Quilis, and Planelles 2013, Aragon-Calvo and Szalay 2013), the velocity field in
voids is dominated by its nearly-radial expansion, especially for larger voids that
are not contaminated by the shear of larger-scale structure. Regarding their
shapes, voids are generally triaxial, with a slight preference towards prolateness.
Even though analytical models predict that aspherical voids become more
spherical as they undergo expansion (Icke 1984), simulations show that they
do not get more spherical as evolution progresses due to their anisotropic
environment (Shandarin et al. 2006). As a matter of fact, the aforementioned
reference also shows how voids are not only aspherical in the sense of being
triaxial, but also because of their intricate, porous shapes. Lastly, several groups
(Hamaus, Sutter, and Wandelt 2014, Ricciardelli et al. 2014) have studied the
universality of void density profiles, coming up with functional forms capturing
their shape and evolution.

All this said, the very definition of a void is still matter of debate. Different
identification techniques have been proposed, ranging from finding the largest
spheres around density minima or connecting underdense cells, to performing
a watershed transform on the density field or studying the dynamics of test
particles; and either using the DM particle distribution from simulations, or
halo/galaxy catalogues. The extent to which different void finding strategies
converge has been thoroughly studied, for example, in Colberg et al. (2008),
revealing important differences in basic properties of the void distribution, such
as the sizes of the largest void regions and their shapes.





CHAPTER 3
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As introduced in Chapter 2, cosmological structure formation is a com-
plex process, involving the interaction of many different phenomena (e.g.,

gravity, hydrodynamics, galaxy formation physics, etc.) over a wide range of
scales. The complexity of this intrinsically multiscale and multiphysics problem
render numerical simulations as, perhaps, the most viable option for tackling it.

For a classical review of numerical methods and simulation techniques for
cosmological simulations, the reader is referred to Dolag et al. (2008). The
recent review by Vogelsberger et al. (2020) offers an updated view on the topic,
including a thorough discussion on the additional physics associated to galaxy
formation. In this Chapter, I discuss how the evolution of cosmic inhomogeneities
is posed as an initial-value problem (Sec. 3.1), and the numerical techniques
that are most often involved in its solution (Sec. 3.2).
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3.1 Cosmological structure evolution as an initial
value problem

In this Section, the mathematical framework regarding the evolution of cosmic
inhomogeneities is introduced. In the following, I shall use comoving coordinates
in the description of the dynamics of the different components. Throughout this
text, the comoving position is denoted by x, and it is related to the physical
position vector, r, by r = a(t)x. Henceforth, the explicit time dependence of any
function related to cosmology is dropped, unless in the cases where it may trigger
confusion. The physical velocity, u ≡ dr/dt, is related to the comoving velocity,
v ≡ adx/dt, by u = v + ȧx, where the second term corresponds to the Hubble
flow. The differential operator ∇ always makes reference to derivatives with
respect to the components of the comoving position, unless explicitly written as
∇r.

The dynamics of any material component can be fully described, in the
continuum limit, by its distribution function, f(x,p, t), specifying its phase
space density at a given time t. The distribution function is defined such that
f(x,p, t)d3xd3p is the number of particles in the phase space volume d3xd3p
around the point (x,p). Once f is known, the value of any given field Q(x) is
obtained by integrating the distribution function over momenta,

Q(x, t) =
´
q(x,p)f(x,p, t)d3p´

f(x,p, t)d3p
. (3.1)

The evolution of the distribution function is governed by the Boltzmann
equation, which can be written in comoving coordinates as (see, for instance,
Padmanabhan 2002 and Winther 2021 for introductory reviews)

∂f

∂t
+ v
a
· ∇f + ṗ · ∇pf =

(
δf

δt

)
coll

, (3.2)

where ṗ is the rate of change of momentum due to external force fields (e.g.,
gravity, Hubble flow), and (δf/δt)coll is the collision term, which accounts
for the changes in the distribution function due to particle interactions. In
most real applications, this equation is numerically intractable due to its high-
dimensionality, and approximate approaches are sought for. Generally, most
cosmological simulations use Newtonian dynamics for the description of the
perturbations over the FLRW background, since Newtonian and GR predictions
match in the linear approximation for the matter-dominated case (Padmanabhan
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2002), and the velocities and gravitational fields at these scales are far from the
relativistic regime (see, e.g., the discussion by Vogelsberger et al. 2020).

Owing to their fundamentally different natures, DM and baryons receive
distinct treatments. In Sec. 3.1.1, the dynamics of DM are introduced, including
the description of the gravitational field, which couples the different material
components. Sec. 3.1.2, instead, discusses the dynamics of baryonic matter.
Given a recipe for the evolution, the mathematical statement of the problem is
complete once the initial conditions are established. These are covered in Sec.
3.1.3.

3.1.1 Dynamics of dark matter

Cold dark matter (CDM) can be described as a collisionless fluid, i.e., a fluid
where self-interactions can be neglected. This implies dropping the right-hand
side term in Eq. (3.2), (δf/δt)coll = 0. The resulting equation is also known as
the Vlasov equation, or the collisionless Boltzmann equation.

3.1.1.1 The N-Body approach

While there are alternative approaches (see the next heading), the most widely-
used approach for addressing the dynamics of collisionless systems is the N -Body
method, in which the phase space density of DM is sampled by a set of N tracer
particles, each of them characterised by a point-like phase space position (xi,
vi),

f(x,p, t) ∼
N∑

i=1
miδ

(3)(x− xi)δ(3)(p− pi). (3.3)

Here, δ(3) represents a three-dimensional Dirac delta. Each individual tracer
is evolved in time according to the Newtonian equations of motion, which are
a set of 6N coupled ordinary differential equations (ODEs) that, written the
comoving frame, have the form

ẋi = 1
a

vi, (3.4)

v̇i = −1
a
∇ϕ−Hvi, (3.5)

where ϕ is the peculiar Newtonian gravitational potential, related to the usual
gravitational potential (Φ) by
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ϕ = Φ + 1
2aäx

2 (3.6)

and generated by the total density contrast (accounting for all matter density,
i.e., including baryons), δT, through the comoving Poisson equation,

∇2ϕ = 4πGa2ρBδT = 3
2H

2a2δT. (3.7)

Updating particle positions and velocities in this way can be shown to
be equivalent to solving the original Vlasov equation using the method of
characteristics. An N -Body method can also be seen as a Monte-Carlo approach
for solving the Vlasov equation. As such, this method is affected by sampling, or
shot noise, that is reduced with increased resolution. For a thorough discussion
on N -Body simulations for solving the gravitational dynamics of collisionless
systems, see also Dehnen and Read (2011). In Sec. 3.2.1, the techniques to
tackle Eqs. (3.4) and (3.5) are discussed in detail.

3.1.1.2 Alternative approaches

Despite the hegemony of N -Body methods to solve the gravitational dynamics
of DM and other collisionless species, alternative methods have been developed
and tested to try to overcome some of its shortcomings (e.g., the ones associated
to discreteness noise; Splinter et al. 1998). These include, for instance, the
reformulation of the problem as a Schrödinger-Poisson system (Widrow and
Kaiser 1993, Schaller et al. 2014), Lagrangian tessellation methods (Hahn, Abel,
and Kaehler 2013), or the direct integration of the distribution function from
Vlasov’s equation (Yoshikawa, Yoshida, and Umemura 2013, Colombi et al.
2015).

3.1.2 Dynamics of baryons

Contrary to DM, baryons are a highly collisional material component, therefore
undergoing qualitatively different dynamics than what has been reviewed before
for DM. At early times, the baryonic mass in the Universe is in the form of a
gas mainly composed of hydrogen and helium. Some of this gas is able to cool
efficiently and form bound objects, such as stars, that detach from the global
dynamics of the gaseous component and behave effectively as a collisionless
species. Nevertheless, at least ∼ 80% of the Universe’s baryons are still forming
a diffuse gas and, hence, the bulk of baryonic matter can be described with a
hydrodynamic approach.
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In the Eulerian specification of the flow, any quantity regarding the fluid is
mathematically described as a function of (comoving) position and time: e.g., its
density, ρ(x, t); its velocity, v(x, t); its pressure, P (x, t); etc. This is in contrast
to the Lagrangian specification of the flow, where instead of focusing on the
properties of the fluid at a fixed position, the properties of a given fluid element
are tracked as it moves through space. In this case, it is customary to describe
the properties of the fluid parcel in terms of its initial position, q. Through this
text1, I shall denote the Eulerian time derivative as ∂

∂t , while the Lagrangian,
total or material derivative is d

dt ≡
∂
∂t + ∂x

∂t · ∇ = ∂
∂t + v

a · ∇.
The set of partial derivative equations (PDEs) governing the evolution of a

collisional, inviscid fluid in an expanding frame, under the action of a peculiar
gravitational potential, ϕ, are (e.g., Peebles 1980):

∂δ

∂t
+ 1
a
∇ · [(1 + δ)v] = 0, (3.8)

∂v
∂t

+ 1
a

(v · ∇)v +Hv = −1
a
∇ϕ− 1

ρa
∇P, (3.9)

∂E

∂t
+ 1
a
∇ · [(E + P )v] = −3H(E + P )−Hρv2 − ρv

a
· ∇ϕ, (3.10)

where ρ is the gas density, δ ≡ ρgas/ρB − 1 is the gas density contrast, and
E ≡ ρu+ 1/2ρv2 is the total energy density, contributed by internal and kinetic
comoving energy densities, u being the specific internal energy. In qualitative
terms, Eq. (3.8), the continuity equation, expresses mass conservation; Eq. (3.9)
is the law of motion of a gas parcel, or the Euler equation, corresponding to the
conservation of linear momentum; and Eq. (3.10), the energy equation, expresses
conservation of energy and contains the first law of Thermodynamics.

Once the background cosmology is solved (i.e., a(t), H(t) are known func-
tions), and provided the total peculiar gravitational potential is solved for using
Eq. (3.7), the system of equations (3.8-3.10) presents 6 scalar unknowns (namely,
δ, the three Cartesian components of v, E and P ) and only 5 scalar equa-
tions. The system is only closed after choosing an equation of state for the gas,
P = P (δ,v, E) in the most general case. The most common option is to choose
the equation of state of an ideal gas,

P = (γ − 1)ρu, (3.11)

1Also following the notation of, e.g., Landau and Lifshitz (1987). Note that other authors
choose to notate the total (Lagrangian) time derivative as D

Dt
.
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where γ is the adiabatic exponent (γ = 5/3 for a monatomic ideal gas).
As discussed by, e.g., Dolag et al. (2008), the equations of hydrodynamics in

an expanding frame under the action of gravity are highly non-linear, as a result
of the non-linearity of gravitationally-driven clustering in the Universe. On the
one hand, the collapse of overdense regions by gravitational instability triggers
supersonic motions leading to the appearance of strong shock discontinuities. On
the other hand, the non-linearity of the equations requires a sizeable dynamical
range to be resolved, from the LSS sizes of (10− 100) Mpc to the scales of galaxy
formation, below the kpc. In this context, complex turbulent fluid flows of high
Reynolds number develop within collapsing structures. These two phenomena
are described in greater detail in Chapter 5.

Finally, it is worth mentioning that Eqs. (3.8-3.10) can be alternatively
formulated in terms of the Lagrangian derivative, or in integral form for an
arbitrary Lagrangian-Eulerian formulation, and this gives rise to the different
methods for discretising and solving the hydrodynamic equations, as discussed
below in Sec. 3.2.2. With the definition of the Lagrangian derivative, the
equations of hydrodynamics become (Dolag et al. 2008):

dρ
dt = −ρ

a
∇ · v− 3Hρ, (3.12)

dv
dt = −1

a
∇ϕ− 1

ρa
∇P −Hv, (3.13)

d(ρu)
dt = −(ρu+ P )

(
1
a
∇ · v + 3H

)
(3.14)

where u is the specific internal energy, i.e., u ≡ E/ρ − v2/2. Finally, the
equations can also be written in integral form in an arbitrary Eulerian-Lagrangian
formulation, where the integration volume V (t) can evolve arbitrarily in time.
Dropping the expansion terms (a = 1, H = 0) and the gravitational force for
ease of notation, the equations can be written as (Vogelsberger et al. 2020)

d
dt

˚
V (t)

ρdV = −
‹

∂V (t)
ρ(v−wS) · dS, (3.15)

d
dt

˚
V (t)

ρvdV = −
‹

∂V (t)
ρv(v−wS) · dS−

‹
∂V (t)

PdS, (3.16)

d
dt

˚
V (t)

ρedV = −
‹

∂V (t)
ρe(v−wS) · dS−

‹
∂V (t)

Pv · dS, (3.17)
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where e ≡ u+ v2/2 = E/ρ is the total specific energy, and wS is the velocity of
the surface ∂V .

The equations of hydrodynamics can be modified to include the presence of
magnetic fields, giving rise to the equations of magnetohydrodynamics (MHD).
Since magnetic fields have not been the main object of the results presented
within this PhD Thesis, the equations of MHD are not discussed here for
conciseness, and only briefly mentioned in Chapter 4 for completeness.

3.1.2.1 Other phenomena beyond adiabatic hydrodynamics

With the aim of faithfully reproducing the thermodynamic conditions of the gas
within galaxy clusters, or in order to describe the various astrophysical processes
that shape galaxy formation, the equations above need to be complemented with
additional physics that are most usually modelled with subgrid or subresolution
prescriptions, since they occur at scales below the ones directly resolved by
simulations. In the following, the main processes that are usually included
in cosmological simulations are briefly described, with special focus on those
relevant for galaxy clusters.

Gas cooling. Internal energy of the gas is dissipated through a variety of
processes, including inverse Compton scattering, electron-nuclei recombina-
tion, collisional excitation, and free-free emission. These terms are usually
parametrised through a cooling function, Λ, in such a way that the rate of change
of specific internal energy due to cooling can be written as(

du
dt

)
cooling

= −Λ/ρ. (3.18)

The cooling function is often tabulated in terms of the abundances of each
species (H, Hi, He, Hei, Heii, etc.) and temperature (e.g., Sutherland and
Dopita 1993), and is usually computed assuming ionisation equilibrium and an
optically thin gas in order to derive the elemental abundances (Katz, Weinberg,
and Hernquist 1996, Theuns et al. 1998). Simulations aimed to reproduce
galaxy formation in more detail track the individual abundances of each species
implementing chemical reaction networks that are solved during the evolution
of the simulation (e.g., Tornatore et al. 2007; see also Smith et al. 2017). An
example of the cooling rates in the first case (where they are parametrised only
as a function of gas density) is shown in Fig. 3.1.

Although it is not a source of cooling, gas can interact with a background of
high-energy (ultraviolet) photons, generated by high-redshift quasars, heating
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Figure 3.1: Cooling rate (−Λ) in cgs units shown as a function of temperature for several
densities (expressed in units of the background density at z = 0), for a gas with metallicity
Z ≃ Z⊙/3.

the gas in a process known as reionisation. This ionising background is time-
dependent because of the evolution of the quasar population, and can be treated
similarly to cooling, by including its contribution in the cooling function. The
most widely-used approach is to include a parametrisation, such as the one in
Haardt and Madau (1996; see also the discussion in Theuns et al. 1998), as a
heating term in the energy equation.

Star formation. In cosmological simulations, which are generally far from
resolving the scale of molecular clouds giving rise to star formation, it is rep-
resented by the creation of collisionless particles (stars) out of cold, dense gas.
These stellar particles represent single-age, single-metallicity stellar populations,
with an underlying initial mass function. The rate of star formation is usually
computed according to a prescription consistent with the Kennicutt-Schmidt
law (Schmidt 1959, Kennicutt 1998),

dM∗

dt = ε
Mgas

τff
, (3.19)

where M∗ is the stellar mass, Mgas is the gas mass, τff ∝ (Gρ)−1/2 is the
gravitational free-fall time, and ε ∼ 0.01− 0.1 is a free parameter related to the
efficiency of star formation (Springel and Hernquist 2003), or the fraction of gas
mass converted to stars per free-fall time. When implementing star formation,
Eq. (3.19) is not applied to all gas elements, but only to those satisfying a set
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of criteria. Although there are many prescriptions, common choices include a
minimum density and a maximum temperature (Springel and Hernquist 2003,
Hopkins et al. 2014, Schaye et al. 2015), a criterion based on Jeans length
(Hopkins et al. 2018) or on the divergence of the gas velocity (Stinson et al.
2006), gravitational boundedness (Stinson et al. 2006, Semenov, Kravtsov, and
Gnedin 2017), or a restriction of star formation exclusively to the molecular gas
phase (Hopkins et al. 2014, Hopkins et al. 2018).

Once formed, stellar particles evolve as a collisionless component under the
action of the gravitational potential, and may yield part of their mass back
to the gaseous phase, enriching the intergalactic medium with metals using
parametrisations derived from the study of type-II SNe or, more recently, winds
from stars in the asymptotic giant branch (Wiersma, Schaye, and Smith 2009)
and type-Ia SNe (Vogelsberger et al. 2013), amongst others.

Stellar feedback. Stellar particles inject energy and momentum back into
their surrounding medium, typically parametrising the effect of SNe (with a
typical value of ∼ 1051 erg per event), to generate a self-regulated feedback
loop that prevents excessive cooling of the gas and star formation. The main
difference amongst models lies on the particular mechanism by which energy
and momentum are deposited into the gaseous phase. Broadly, energy can be
injected in the form of kinetic energy or internal (thermal) energy.

Feedback prescriptions where energy is exclusively deposited in the form
of internal energy of the gas are ineffective, because in this high-density gas
resolved at the (relatively) low resolution of cosmological simulations, the energy
is quickly radiated away. Possible remedies for this problem rely on artificially
disabling cooling for some tens of Myr for the gas affected by feedback (Stinson
et al. 2006), or on the implementation of stochastic modes of heating the gas
(Dalla Vecchia and Schaye 2012). By injecting the energy in kinetic form, the
immediate loss of the feedback energy is prevented, because it first needs to
thermalize (by shocks or viscous dissipation).

Naturally, there are even more sophisticated stellar feedback schemes, that
take into account other feedback channels (e.g., young, massive stars; e.g., Agertz,
Teyssier, and Moore 2011, Stinson et al. 2013), or that track the multiphase
nature of baryons in star-forming regions (Murante et al. 2010).

Black hole (BH) formation and AGN feedback. Supermassive black
holes are present in the centres of many galaxies, from massive (Gehren et al.
1984) to dwarf ones (Reines et al. 2011). Since the actual seeds of these BHs and
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the detailed accretion processes fall many orders of magnitude below the scales
resolved by cosmological simulations, BHs are usually seeded in DM haloes with
a minimum DM, gas or stellar mass (see, e.g., the discussion by Wang et al.
2019), or directly in regions of high stellar density fulfilling several conditions
(as is the case of MASCLET; see Sec. 4.3.3).

BHs then act as sink particles that accrete surrounding gas based on some
prescription for their accretion rate. Most often, the accretion rate is set by the
Bondi-Hoyle model (Bondi 1952, Hoyle and Lyttleton 1941),

ṀBH = 4πG2M2
BHρ

(c2
s + v2

BH)3/2 , (3.20)

where MBH is the BH mass and ṀBH its accretion rate, ρ is the gas density in
the vicinity of the BH, cs is the sound speed, and vBH is the BH velocity relative
to the gas. The accretion rate is usually superiorly limited by the Eddington
accretion rate, which indicates the limit where the outward radiation pressure
would counteract the gravitational force and stop the accretion process,

ṀEdd = 4πGMBHmp

ϵσTc
(3.21)

where mp is the proton mass, ϵ ∼ 0.1 is the efficiency in turning gravitational
energy into thermal energy, and σT is the Thomson cross-section.

Intensely accreting BH particles may release energy back to the surrounding
gas aiming to mimic the phenomenology of AGN (see, e.g., Krolik 1999 for a
thorough review), serving to regulate the growth of the BH and the star formation
activity in the host galaxy. Most commonly, AGN feedback is divided in two
broad modes: quasar mode (at high accretion rates, energy is released through
photon emission, that may deposit energy and momentum in the gas through
radiation pressure; Di Matteo, Springel, and Hernquist 2005) and radio mode
(at low accretion rates, through the launching of highly-collimated, relativistic
jets, which in turn may inflate X-ray bubbles; Sijacki et al. 2007).

Other processes. Besides the aforementioned processes and feedback mech-
anisms, present-day cosmological and galaxy formation simulations have im-
plemented additional physical effects. These include, but are not restricted
to, cosmic rays (able to drive galactic outflows, Pakmor et al. 2016; and heat
the ICM, Ruszkowski, Yang, and Reynolds 2017; see Pfrommer et al. 2017
and Böss et al. 2023 for recent implementations), radiation hydrodynamics to
study reionisation (e.g., Gnedin and Kaurov 2014, Rosdahl et al. 2018), physical
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viscosity (Sijacki and Springel 2006, ZuHone et al. 2015), thermal conduction
(Ruszkowski et al. 2011, Arth et al. 2014, Kannan et al. 2016) or dust modelling
(McKinnon, Torrey, and Vogelsberger 2016, Vogelsberger et al. 2019).

3.1.3 Initial conditions

The initial conditions for cosmological simulations are most often obtained by
performing a realisation of the power spectrum at high redshift z ∼ 50− 1000,
P (k), introduced in Sec. 2.2.1. In an unconstrained realisation of the primordial
Gaussian random field, where the complex phases are independent, the real
and imaginary part of each Fourier mode, δk, are drawn from two standardised
Gaussian distributions and scaled by

√
P (|k|) (Bardeen et al. 1986). This is

normally done by the Box and Muller (1958) method, i.e.,

ℜ(δk) =
√
P (|k|)

√
−2 log ξ1 cos(2πξ2), (3.22)

ℑ(δk) =
√
P (|k|)

√
−2 log ξ1 sin(2πξ2), (3.23)

where ξ1 and ξ2 are two independent random numbers drawn from a uniform
distribution in the interval ]0, 1]. The inverse Fourier transform of δk yields
the initial overdensity field in real space δ(x). In order to get initial velocities,
as well as the initial displacements for particles, it is customary to define the
perturbation potential, Ψ, as the solution of the elliptic equation

∇2Ψ = δ, (3.24)

whose solution can be easily written in Fourier space as

Ψk = − δk

k2 . (3.25)

Particles are placed in a glass-like arrangement (Baugh, Gaztanaga, and
Efstathiou 1995), with Lagrangian coordinates q, and then displaced to their
initial positions using Zeldovich (1970) theory,

x = q −D+(z)∇qΨ(q), (3.26)

where D+(z) is the linear growth factor, defined in Sec. 2.2.2. Similarly, the
initial velocities can be found from the above equation, since v = aẋ, thus
yielding
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v = −a(z)Ḋ+(z)∇qΨ(q). (3.27)

For more thorough reviews on the Zeldovich approximation and on the
generation of initial conditions, see, respectively, Shandarin and Zeldovich (1989)
and Efstathiou et al. (1985). Alternatively, second-order Lagrangian perturbation
theory can also be used to set the initial perturbations (Bertschinger 2001, Jenkins
2010, Garrison et al. 2016).

While unconstrained initial conditions are useful to simulate large volumes
with statistical properties akin to the Universe at large scales, they may not be
the optimal solution for the study of individual objects. To study individual
objects (e.g., a galaxy cluster) while still retaining the large-scale environment,
which can affect the object of study through the action of its tidal field, it
is frequent to use the zoom-in technique (Tormen, Bouchet, and White 1997,
Klypin et al. 2001). In this approach, the region of interest is selected and
sampled at high resolution. This can be done by either degrading the resolution
outside the volume of interest, even using a nested set of refinements (Miniati
2014), or by adding higher frequency modes to lower-resolution initial conditions
(see, e.g., the discussion in Jenkins 2010, its section 3).

Finally, it is also possible to generate realisations of the primordial Gaussian
random field subject to constraints, using for example the relatively simple
algorithm by Hoffman and Ribak (1991). With this algorithm, it is possible to
produce constrained simulations of massive objects without the need of simulating
the large volumes required to expect at least one of them, due to their scarcity,
as it is done in several articles in this Thesis (see Sec. A1 and A3). Alternatively,
this algorithm has also been used in combination with observational data to
produce constrained simulations of the local Universe (e.g., Gottloeber, Hoffman,
and Yepes 2010).

3.2 Numerical techniques

The mathematical modelling for the evolution of cosmic inhomogeneities, re-
viewed in Sec. 3.1, implies, in its most basic form, the resolution of a system of
five non-linear hyperbolic PDEs (Eqs. 3.8-3.10), a set of 6N coupled ODEs (Eqs.
3.4 and 3.5), coupled together through the gravitational force, which is obtained
as the solution of the Poisson equation (Eq. 3.7), an elliptic PDE. The inclusion
of additional physics, such as the ones discussed in Sec. 3.1.2.1, may add source
terms to the hydrodynamic equations, or even introduce new equations, and the
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particularities depend on each mechanism and each implementation. Here, I
give an overview of the most standard numerical techniques for the basic system
described above: Sec. 3.2.1 discusses the techniques for solving gravity and the
dynamics of DM, while Sec. 3.2.2 reviews the techniques for addressing the
hydrodynamic equations.

3.2.1 Overview of methods for N-Body simulations

The modelling of collisionless species is most often done through N -Body ap-
proaches, as discussed in Sec. 3.1.1. Here, the two main elements of N -Body
simulations, i.e., the force computation (Sec. 3.2.1.1) and the time integration
and advancement of the particles (Sec. 3.2.1.2), are discussed. It is worth
mentioning that the discussion on the force computation is also relevant for the
hydrodynamics part, but it is included here for the sake of the argument.

3.2.1.1 Force computation

Given a distribution of N particles with masses {mi}N
i=1 in positions {xi}N

i=1,
any N -Body code needs to be capable of computing the gravitational force acting
on each particle. This can be done by either directly summing the forces, or by
solving for ϕ(x) and finite-differencing it. The most widely-used alternatives are
discussed below.

Direct summation. The (conceptually) simplest method consists on the
obtention of the gravitational force acting on a particle by explicitly summing
the contributions of the remaining N − 1 particles. That is to say,

Fi = −Gmi
∑
j ̸=i

mj
xi − xj

(|xi − xj|2 + ϵ2)3/2 . (3.28)

which, in the case ϵ = 0, would represent the exact Newtonian force acting on the
particle. Since N -Body particles do not represent actual physical particles, but
rather a Monte-Carlo sampling of the underlying density field, they should not
be regarded as point-like particles. Hence, the divergence of the force amongst
arbitrarily close pairs of particles is prevented by the inclusion of the gravitational
softening length, ϵ, which weakens gravity on scales ≲ ϵ and reduces spurious
two-body interactions. The softening length is usually set globally to a fraction
(broadly, 0.01− 0.1) of the mean interparticle separation.

Within this approach, the algorithmic complexity of an N -Body force compu-
tation is O(N2), what renders it prohibitive for large numbers of particles (large
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volumes and/or high resolution). Nevertheless, direct summation simulations
are still used, either by using dedicated hardware (Ito et al. 1990, Makino et al.
1997, Kawai et al. 2000, Makino et al. 2003) or by performing the calculations
in graphic processing units (GPUs; e.g., Schive et al. 2008, Maureira-Fredes and
Amaro-Seoane 2018).

Tree methods. The computational load of direct-sum methods can be al-
leviated by simplifying the contributions of distant particles and substituting
them by a low-order multipolar expansion, as if they were produced by a distant
“macro-particle”. There are different ways to perform this substitution but,
perhaps, the most widely used approach is the tree algorithm by Barnes and Hut
(1986). In this algorithm, the whole particle distribution is covered by a cube
(the root node), which is split in its eight octants. This subdivision is performed
recursively, each time halving the side length, until each leaf of the tree contains
only one particle. In order to compute forces, the algorithm needs to ‘walk’ the
tree, starting by its root, and only entering a node if necessary to comply with a
pre-defined precision criterion.

In this way, the algorithm can achieve algorithmic complexity as good as
O(N logN) for a homogeneous particle distribution, although its performance is
worsened when strong inhomogeneities develop. Tree methods for solving gravity
have been extensively used (e.g., Dehnen 2000), especially in combination with
other methods (see below).

Particle-mesh (PM). The PM method simplifies the computation of the
force to O(N logN) by computing it on a grid and considering a finite-difference
version of the Poisson equation (Eq. 3.7). There are three main steps for the
algorithm:

1. Density assignment. Density is computed on an N3
g grid with cell

resolution ∆x, where it is common to choose N3
g ∼ N . In doing so, the

density of a cell, ρg, can be written as

ρg =
N∑

i=1
miW (xi − xg), (3.29)

where W is a smoothing kernel, that determines the particular scheme
for splitting the mass of the particle amongst the neighbouring cells. The
three most common choices are:
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• Nearest Grid Point (NGP), where the mass of a particle is assigned
to the cell containing it. That is to say, the particle is treated as
point-like. The resulting forces are discontinuous at cell boundaries,
representing the main drawback of this approach.

• Cloud-in-Cell (CIC), where the mass of a particle is split amongst the
eight immediate neighbouring cells, according to the fraction of the
particle’s volume contained in each cell. That is to say, the particle
is treated as a cubical cloud with uniform density. In this way, forces
are continuous, but not differentiable at cell interfaces.

• Triangular-Shaped Cloud (TSC), where the mass of a particle is split
amongst the 33 cells around the particle using a quadratic weighting
function that ensures that forces are continuous and differentiable at
cell interfaces.

For the particular functional form of the smoothing kernels and a more
thorough discussion, the reader is addressed to Hockney and Eastwood
(1981). Note that, by iterating on the particles, any of these density
assignment methods is only O(N).

2. Solution of Poisson’s equation in Fourier space. From the density
contrast evaluated on the grid, δijk, it is possible to solve the second-order
centred finite-difference version of Poisson’s equation (Eq. 3.7),

ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1−

−6ϕijk = 4πGa2(∆x)2δijk.
(3.30)

This equation can be solved in Fourier space, where it admits a Green
function of the form:

G̃lmn = − (∆x/2)2

sin2
(

πl
Ng

)
+ sin2

(
πm
Ng

)
+ sin2

(
πn
Ng

) , (3.31)

being l,m, n the indices of the Fourier modes. The solution of Eq. (3.30)
is then given by

ϕ̃lmn = 4πGa2G̃lmnδ̃lmn. (3.32)

where δ̃lmn are the discrete Fourier transform components of δijk, and
the solution potential is obtained by taking the inverse discrete Fourier
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transform on ϕ̃lmn. Both these Fourier transforms can be performed by
the Fast Fourier Transform (FFT; Cooley and Tukey 1965) algorithm,
which requires O(N logN) operations.

3. Computation of the forces. Finally, forces (per unit mass) are obtained
by finite-differencing the potential, e.g.,

f
(x)
ijk = −ϕi+1,j,k − ϕi−1,j,k

2∆x , (3.33)

for a second-order centred scheme (although higher-order schemes, involv-
ing longer stencils, can also be used; see for example Dolag et al. 2008).
Forces on the grid can be interpolated back to particles using the same
scheme as in the density assignment step.

Note that, strictly, the PM technique can only be applied in this version
to periodic boxes since, otherwise, the FFT is artificially imposing periodicity.
Additionally, the main limitation of the PM method lies on the fact that the
force resolution is fixed by ∆x and, once structures start to cluster strongly,
many particles may end up within an individual cell and the forces amongst
them are unresolved. This can be –at least partially– overcome by using the
Adaptive-Mesh Refinement (AMR) technique, which is introduced in more detail
in the section about hydrodynamics (Sec. 3.2.2) and within the discussion of
the MASCLET code (Sec. 4). Essentially, the grid can be refined in regions
of interest (e.g., where finer force resolution is required). In these regions, the
potential can be initialised to the coarser, inaccurate solution, and then Eq.
(3.30) can be iterated to solve for ϕijk in the refined region. This iteration can
be performed by different methods (see, e.g., Tomida and Stone 2023 for a recent
discussion on different approaches), but generally have a cost O(N4/3)−O(N5/3).
An alternative with better scaling properties are the multigrid methods (e.g., as
implemented in the AMR code Athena++ by Tomida and Stone 2023), which
bring the scaling back to O(N logN).

Other methods. Finally, there exist several methods that combine some of
the above, by using a computationally-cheaper method for long-range forces, and
a more accurate solver for short-range ones. Normally, the splitting is performed
in Fourier space, where the potential is written as

ϕk = ϕlong
k + ϕshort

k . (3.34)
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With ϵ being the length scale separating the long-range and short-range
scales, the long-range potential is obtained from the PM solution as

ϕlong
k = ϕke

−k2ϵ2
, (3.35)

and the short range potential can be specified in real space as a direct sum with
a long-range cut-off (Bagla 2002),

ϕshort(x) =
∑

i

−Gmi

|x− xi|
erfc

(
|x− xi|

2ϵ

)
. (3.36)

The short-range force can be computed by different methods. In the TreePM
method (Xu 1995, Bode, Ostriker, and Xu 2000, Bagla 2002), it is computed
with a tree algorithm. Over time, it has become one of the most widely-used
methods for solving gravity in cosmological simulations, being implemented in
some of the most widely used public codes (e.g., GADGET, Springel 2005,
Arepo, Springel 2010). Alternatively, the short-range force can be computed
by direct summation, giving rise to the Particle-Particle/Particle-Mesh method
(P3M; Hockney and Eastwood 1981).

3.2.1.2 Time integration

Once the gravitational forces are known, the ODEs in Eqs. (3.4) and (3.5) can
be solved by a variety of methods. The simplest of them, although seldom used,
is the first-order accurate, explicit Euler method. Writing the system of 6N
differential equations in vector form as ẏ = f(y, t), Euler’s method corresponds
to performing the iteration:

yn+1 = yn + f(yn, tn)∆t (3.37)

This simple, explicit method assumes constant derivatives over the integration
interval, ∆t. This can be overcome by the usage of implicit methods. The
equivalent first-order implicit method would be

yn+1 = yn + f(yn+1, tn+1)∆t, (3.38)

its main disadvantage being the fact that yn+1 appears also at the right-hand side
of the equation and, in general, requires numerical inversion. As a compromise,
there are explicit rules that make use of information of the evolved timestep, such
as the predictor-corrector integration, where a first, Euler-like step is performed
to obtain ypred

n+1 , and then this prediction is used to compute the corrected value,
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ycorr
n+1 = yn + 1

2

[
f(yn, tn) + f(ypred

n+1 , tn+1)
]

∆t. (3.39)

In this case, the integration is second-order accurate, at the cost of requiring
two force computations instead of just one. In general, all these methods can be
seen as particular cases of the Runge-Kutta methods (Runge 1895, Kutta 1901),
which use Newton-Cotes formulae to evaluate the integral

´ t+∆t

t
f(y(t′), t′)dt′

to the desired order of accuracy using several evaluations of f .

Yet another possibility, given that the system to be integrated is second-order
(ẍ = f(x)), is the leap-frog method, where the evaluation of velocities and
positions are shifted by half a timestep. In the kick-drift-kick implementation,
the iteration is:

vn+1/2 = vn + f(xn, tn)∆t
2 ,

xn+1 = xn + 1
a

vn+1/2∆t,

vn+1 = vn+1/2 + f(xn+1)∆t
2 .

(3.40)

While this method is still second-order accurate and requires two force
evaluations as well, it is widely employed in N -Body integrations due to its
stability, related to its symplectic properties (see the discussion in Springel 2005).

Finally, a particularly relevant issue is choosing the timestep, ∆t. In a
general N -Body simulation, one can associate a timescale from the maximum
acceleration in the previous timestep (max |a|), as

∆t = α

√
ϵ

max |a| , (3.41)

where α ∼ 0.1 is a dimensionless, tolerance parameter, and ϵ is a characteristic
length scale, or the cell size in PM methods. In such a way, no particle can
change significantly its velocity over a timestep. Alternatively, especially in
implementations using PM, it is also frequent to use a Courant-like condition,
where the timestep is fixed by the cell-crossing time of the fastest particle,

∆t = α
∆x

max |v| . (3.42)

For a thorough discussion and comparison of different time-stepping options,
the reader is referred to Power et al. (2003).
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3.2.2 Overview of methods for hydrodynamic simulations

Based on the different formulations of the equations of hydrodynamics (Eqs.
3.8-3.10 in Eulerian form; Eqs. 3.12-3.14 in Lagrangian form; Eqs. 3.15-3.17
in Eulerian-Lagrangian form), there are different numerical techniques to solve
them. This section briefly introduces the main three formulations, without
aiming to be exhaustive but rather to give a general overview of the different
approaches and highlighting some differences amongst them.

3.2.2.1 Eulerian HRSC methods

The equations of hydrodynamics in Eulerian form can be rewritten as a hyperbolic
system of conservation laws (e.g., Quilis, Ibañez, and Sáez 1993, Ryu et al. 1993,
Quilis, Ibañez, and Sáez 1994),

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= S, (3.43)

where U = {δ, (1 + δ)vx, (1 + δ)vy, (1 + δ)vz, E} is the vector of conserved
quantities2, F, G and H are the fluxes, and S are the source terms. These
equations, formally resemblant to the continuity equation, imply that in the
absence of sources, S = 0, the volume integral of U would be conserved, granting
these codes with excellent conservation properties.

While early implementations discretised these equations using central differ-
ences (Cen 1992), these methods are unable to treat regions with discontinuities
and need to explicitly include artificial viscosity. Modern approaches, based
on high-resolution shock-capturing (HRSC) methods, are essentially higher-
order versions of the method by Godunov and Bohachevsky (1959). Here,
it is worth keeping in mind that fluid quantities are defined as cell averages,
ū ≡
´ xn+1/2

xn−1/2
fun

(x)dx, where fun
(x) represents the underlying continuous dis-

tribution of the variable. The general procedure for evolving the cell-averaged
values according to these schemes can be summarised in three main steps (for
the sake of simplicity, in the one-dimensional case):

1. Reconstruction of the quantities at cell boundaries. In order to com-
pute the fluxes at cell interfaces while being able to treat strong discontinuities
and shocks, HRSC methods compute the values at the left-hand side and the
right-hand side of the interface. That is to say, in order to compute the flux of
the variable u from cell i to cell i+ 1, one needs uL

i+1/2 and uR
i+1/2, where L and

2Conversely, V = {δ, vx, vy , vz , ε} are the primitive variables. Here, the specific internal
energy, ε, can be interchanged with pressure, P .
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Figure 3.2: Reconstruction of the cell-averaged quantities at cell interfaces. Squares represent
the cell-averaged values, while vertical dashed lines mark the cell interfaces. Red, blue and green
lines correspond to piecewise constant, piecewise linear and piecewise parabolic reconstructions.
Figure reproduced from Dolag et al. (2008, CC-BY-NC permission)

.

R stand for left- and right-hand side of the interface. This is usually done by
piecewise polynomials, that are set by the values in the neighbouring cells. In
increasing order of accuracy, basic choices are the piecewise constant method,
the piecewise linear method (Colella and Glaz 1985) and the piecewise parabolic
method (PPM; Colella and Woodward 1984). An example of the reconstruction
of the values at cell interfaces is shown in Fig. 3.2.

The reconstruction procedures need to add several constraints to, for instance,
avoid oscillations (i.e., the development of spurious extrema). For instance, in
linear reconstructions it is customary to introduce slope limiters (e.g., the total
variation diminishing schemes, Harten and Hyman 1983). In parabolic recon-
struction, additional controls are placed to guarantee the monotonicity of the
reconstruction (e.g., Colella and Woodward 1984). Finally, it is worth mention-
ing that, although the reconstruction can be performed either on primitive or
conserved variables, the former has been argued to have more robust properties
(Martí and Müller 1996), such as the avoidance of the occurrence of unphysical
values.

2. Solution of the Riemann problem: computation of the fluxes. The
evolution of an initial discontinuity that separates two constant states, i.e., a
Riemann problem, has been thoroughly studied since many decades ago (Courant
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and Friedrichs 1948). A plethora of methods to give either an exact solution
(involving iterations) or an approximate solution (with a reduced computational
cost, hence, most broadly used) to this problem have been developed over the
years. Notable examples are the Roe (1981) solver, which solves exactly a
linearisation of the system; the HLLE solver (Harten and Hyman 1983, Einfeldt
1988), which simplifies the structure of the system and only considers the fastest
and slowest propagation velocities; and many variations of the latter (e.g., HLLC,
Toro, Spruce, and Speares 1994).

While a detailed description of Riemann solvers exceeds the scope of this
Chapter, a comprehensive description can be found in the textbooks by LeVeque
(1992) or Toro (2009). In any case, from the left and right values reconstructed
at the interfaces, uL

i+1/2 and uR
i+1/2, any particular Riemann solver will yield

the fluxes at the interfaces, Fi+1/2, which are the necessary ingredient for time-
stepping in the next paragraph. This description can be naturally extended to
three spatial dimensions, by solving the Riemann problem along each direction
independently.

3. Time-stepping. After solving the Riemann problem and obtaining all the
fluxes at the interfaces, the cell-averaged values of the conserved variables can
be evolved in time with an ODE integrator. Exemplifying with a first-order,
explicit Euler step,

Uijk(t+ ∆t) = Uijk(t)−∆t
(Fi+1/2,j,k − Fi−1/2,j,k

∆x +

+
Gi,j+1/2,k −Gi,j−1/2,k

∆y +
Hi,j,k+1/2 −Hi,j,k−1/2

∆z

)
+ ∆tSijk.

(3.44)

In practice, higher order schemes granting better conservation and stability
properties are used, like the third-order Runge-Kutta of Shu and Osher (1988).
This integration is in principle stable if the timestep is chosen according to the
Courant, Friedrichs, and Lewy (CFL; 1928) condition,

∆t ≤ a(t)∆x
max |cs + v|

, (3.45)

where cs is the sound speed and v is the velocity. In practice, the timestep is
usually chosen as a fraction of the maximum allowed by the CFL condition,
∆t = α∆tCFL, with α ∼ 0.1− 0.6.

Generally speaking, Eulerian methods are well-suited to describe both high-
density and low-density regions, and handle accurately shocks, discontinuities
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and strong gradients, without the need of explicitly introducing artificial viscosity.
However, they involve a large computational cost, severely limiting resolution
and consequently the dynamical range that can be resolved in a simulation. This
is why the AMR technique (Berger and Oliger 1984, Berger and Colella 1989) has
become a standard feature in Eulerian codes for cosmological structure evolution
(Teyssier 2002, Quilis 2004, Bryan et al. 2014). Even though implementations
are diverse, in general AMR allows to dynamically refine regions of interest and
solve them with enhanced temporal and spatial resolution. For more details on
the AMR implementation in MASCLET, see Sec. 4.2.

3.2.2.2 Lagrangian SPH methods

The most widely spread implementation for solving the Lagrangian form of the
equations of hydrodynamics are the so-called smoothed particle hydrodynamics
methods (SPH; Lucy 1977, Gingold and Monaghan 1977). In this approach,
the fluid is discretised in finite mass elements (particles), and the properties
of the fluid at a given position are obtained by smoothing the properties of
the neighbouring particles. That is to say, the value of a given field A(x) is
computed from the value of this magnitude amongst the neighbouring particles,
Ai, as

A(x) =
Nngh∑
j=1

mj

ρj
AjW (x− xj, hj), (3.46)

where Nngh is the number of neighbours considered for the computation, mj/ρj

represents the volume associated to the particle in position xj and W (·, hj)
is a smoothing kernel with smoothing length hj , which is usually determined
from the radius of a sphere containing Nngh neighbours around the particle. In
this way, also derivatives can be computed by summing over the neighbouring
particles, since

∂A

∂xα
=

Nngh∑
j=1

mj

ρj
Aj

∂

∂xα
W (x− xj, hj). (3.47)

where xα is an arbitrary component of the vector x. Using the above relations
at the position of the i-th particle, xi, and using properties of the derivatives to
symmetrise the expressions above, the Lagrangian equations of hydrodynamics
(Eqs. 3.12-3.14), in the absence of gravity and expansion (for the sake of
simplicity), are discretised as:
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dvi

dt = −
Nngh∑
j=1

mj

(
Pi

ρ2
i

+ Pj

ρ2
j

+ Πij

)
∇iW (xi − xj, hi), (3.48)

dui

dt = 1
2

Nngh∑
j=1

mj

(
Pi

ρ2
i

+ Pj

ρ2
j

+ Πij

)
(vj − vi)∇iW (xi − xj, hi). (3.49)

Here, the term Πij is the artificial viscosity, introduced by hand to deal
with shocks and discontinuities (Monaghan and Gingold 1983, Balsara 1995,
Monaghan 1997). Since artificial viscosity damps the signal at small scales, it is
desirable to keep its effects as contained as possible. Most modern implementa-
tions follow the idea of Morris and Monaghan (1997), where each particle carries
its own artificial viscosity, which gets activated when undergoing shocks and
decays outside them.

The number of neighbours, Nngh, as well as the order of the kernel, are chosen
as a compromise between resolution, accuracy and computational cost. Many
improvements over this baseline methods do exist, such as the entropy-conserving
formulation (Springel and Hernquist 2002), or schemes with reduced artificial
viscosity (Beck et al. 2016). While Lagrangian methods achieve better resolution
in high-density regions than Eulerian methods with equivalent computational
cost, their treatment of low-density regions is poor by construction. Additionally,
due to artificial viscosity, these techniques have a degradation of their resolution
in shocks, and may have problems in resolving some instabilities (Agertz et al.
2007). For a thorough review on SPH methods, the reader is referred to, e.g.,
Price (2012).

3.2.2.3 Hybrid methods

The arbitrary Eulerian-Lagrangian formulation of the equations (Eqs. 3.15-3.17)
can be applied to construct mesh codes where the grid is allowed to move freely.
Such is the case of Arepo (Springel 2010), where a set of mesh-generating
points that move with the fluid are used to define the grid through a Voronoi
tessellation. In this way, the grid follows the fluid flow, continuously deforming
and adapting to the local properties of the fluid, but while keeping the advantages
of Eulerian methods. In the last decade, mesh-free codes based on an arbitrary
Eulerian-Lagrangian formulation have also triggered considerable interest (e.g.,
Hopkins 2015, Groth et al. 2023).
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Besides comparisons with results from other simulation codes (for in-
stance, the ones contained within Secs. 6 and 8.2, and papers A5 and

A6), the majority of the results reported within this Thesis correspond to the
analysis of simulations carried out with MASCLET (Mesh Adaptive Code for
CosmologicaL structurE evoluTion; Quilis 2004, Quilis, Martí, and Planelles
2020), which combines a Eulerian description of the collisional component with
a PM scheme for DM and other collisionless species, both implemented on top of
an AMR scheme. In this Chapter, the main features of the code, together with
its recent developments during the last years, are presented. In particular, in Sec.
4.1, the fix-grid hydrodynamics, N -Body and gravity solvers are described. Their
AMR implementation is discussed in Sec. 4.2, while the particularities of the
additional physics included in MASCLET are presented in Sec. 4.3, together
with some comments on the analysis tools specifically created for MASCLET
in Sec. 4.4.
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4.1 The monolithic solvers
Here, I describe the basic hydrodynamics (Sec. 4.1.1), N -Body (Sec. 4.1.2) and
gravity (Sec. 4.1.3) solvers implemented in MASCLET for the base grid1, which
also constitute the basic ingredients for the following AMR implementation.

4.1.1 The hydro solver

For addressing the evolution of the collisional component, MASCLET makes use
of Eulerian, HRSC methods, which have been introduced in some detail in Sec.
3.2.2.1. Although MASCLET implements several reconstruction mechanisms,
Riemann solvers, and time integrators, this section is restricted to the most
usual configuration.

Reconstruction. Most frequently and, in particular, for all applications within
this PhD Thesis, MASCLET uses the PPM reconstruction scheme (Colella and
Woodward 1984), following the prescriptions and parameters of Martí and Müller
(1996), on the set of primitive variables (V = {δ, vx, vy, vz, u}) in order to get
the values at left-hand side and right-hand side of each interface. Reconstructing
the specific internal energy, u, instead of the total energy density, E, prevents
the former to be dominated by numerical error in kinetically-dominated flows
(ρu≪ E).

Besides the standard PPM reconstruction (which includes several controls
to avoid non-monotonic reconstructions and detect shocks, in which cases the
reconstruction order is downgraded to constant), the order of the reconstruction
is additionally lowered to linear or constant in some situations:

• For the borders of the grid (i.e., for the ghost cells used to enforce the
boundary conditions, i = 0 and i = Nx + 1), the reconstruction is zeroth-
order, while for cells i = 1 and i = Nx it is first-order.

• In low-density regions (δ < −0.99), the reconstruction is also zeroth-order,
since these cases are easily contaminated from arithmetic error stemming
from the conversion between primitive and conserved variables (1 + δ ≪ 1).

Riemann solver. The standard Riemann solver in MASCLET is HLLE
(Harten and Hyman 1983, Einfeldt 1988), which provides a conceptually simple,

1Here, base grid makes reference to the uniform grid (usually cubic) covering the whole
domain with constant resolution, in contrast to the refinement patches that will be introduced
in Sec. 4.2.
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robust and computationally cheap solution, even though it is known to produce
excessive numerical diffusion in the case of contact discontinuities (Toro, Spruce,
and Speares 1994). According to this method, the prescription for computing
the flux at the x-interface between cell i and cell i+ 1, FHLLE

i+1/2, is the following2:

1. Compute the maximum and minimum signal velocities at the interface3,
Smax

i+1/2 and Smin
i+1/2, respectively, as:

Smax
i+1/2 = max

[
0,
vR

x,i+1/2 + cR
s,i+1/2

a
,
vL

x,i+1/2 + cL
s,i+1/2

a

]
(4.1)

Smin
i+1/2 = min

[
0,
vR

x,i+1/2 − c
R
s,i+1/2

a
,
vL

x,i+1/2 − c
L
s,i+1/2

a

]
(4.2)

where a is the ΛCDM expansion factor and cs is the sound speed. Hence,
note that Smin

i+1/2 < 0 < Smax
i+1/2 corresponds to subsonic motion of the gas,

while Smin
i+1/2 ≥ 0 or Smax

i+1/2 ≤ 0 corresponds to supersonic motion.

2. Compute the left and right fluxes, FL
i+1/2 = F(UL

i+1/2) and FR
i+1/2 =

F(UR
i+1/2), where UL

i+1/2 and UR
i+1/2 are the left and right states at the

interface, respectively.

3. Compute the HLLE flux as:

FHLLE
i+1/2 =

Smax
i+1/2FL

i+1/2 − S
min
i+1/2FR

i+1/2 + Smax
i+1/2S

min
i+1/2(UR −UL)

Smax
i+1/2 − S

min
i+1/2

(4.3)

Note that, according to this expression, in the trivial case of supersonic
motions (Smin

i+1/2 ≥ 0 or Smax
i+1/2 ≤ 0), the HLLE flux will be determined

by the left or right flux alone, respectively, since information is unable to
propagate upstream of the shock.

Time integration. Although a third-order Runge-Kutta scheme is also avail-
able in MASCLET, the standard time integrator is a second-order Runge-Kutta,
or Heun’s method, which is a predictor-corrector scheme (i.e., the second-order
case described by Shu and Osher 1988). Explicitly, the time integration is as
follows:

2The three-dimensional case is addressed analogously, as discussed in Sec. 3.2.2.1. Here,
the process is discussed in just one spatial dimension for conciseness.

3Through this discussion, I shall use calligraphic S for the signal velocities, to avoid
confusion with the source vector, S.
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Upred
i,t+∆t = Ui,t + ∆t

[
−

Fi+1/2 − Fi−1/2

∆x + Si

]
Ui,t

,

Ui,t+∆t = 1
2Ui,t + 1

2Upred
i,t+∆t + ∆t

2

[
−

Fi+1/2 − Fi−1/2

∆x + Si

]
Upred

i,t+∆t

.

(4.4)

Naturally, in the three-dimensional case, the reconstruction and Riemann
solver are performed separately in each Cartesian direction, and the time ad-
vancement is only performed at the end of this process, adding also the G and H
terms of Eq. (3.43) (see Eq. 3.44 for the three-dimensional, first-order accurate
evolution rule). It is worth noting that the source term due to gravity is assumed
to be frozen during the substeps of the Runge-Kutta, i.e., for the computation
of Si|Upred

i,t+∆t
, the gravitational acceleration is the same as the one in Si|Ui . This

avoids the necessity of having to couple the substeps within the integrators of
the hydrodynamics and gravity solvers.

4.1.2 The N-Body solver

The N -Body solver in MASCLET is an implementation of the PM scheme
(see Sec. 3.2.1.1, where this technique has already been introduced in detail).
The description in this section restricts to the particularities of the DM density
assignment onto the grid and the time integration, while the solution for the
gravitational potential is discussed in Sec. 4.1.3.

Density assignment. MASCLET uses a TSC scheme for density assignment,
i.e., a given particle will contribute to the cell containing it, and its 33 − 1
immediate neighbours. The mass assignment function is quadratic and is
separable in the three Cartesian directions, in such a way that the mass on a
given cell (with indices i, j, k) is

mijk =
Npart∑
n=1

mn W

(
|xn − xg

i |
∆x

)
W

(
|yn − yg

j |
∆y

)
W

(
|zn − zg

k |
∆z

)
, (4.5)

where mn is the mass of the n-th particle, xn, yn, zn are the particle coordinates
and xg

i , y
g
j , z

g
k are the coordinates of the cell centre. W is the one-dimensional

mass assignment function which, for TSC, is defined as
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W (d) =


3
4 − d

2 if d < 1
2

1
2
( 3

2 − d
)2 if 1

2 ≤ d <
3
2

0 otherwise

(4.6)

In a uniform grid, the contribution of a particle is only non-zero for the 33

mesh points closest to the particle, and it is normalised so that
∑3

i,j,k WiWjWk = 1.

Time integration. N -Body particles are advanced in time using a second-
order accurate, Runge-Kutta integrator involving an intermediate step at tn+1/2 =
tn + ∆t/2. Explicitly, the temporal discretisation of Eqs. (3.4) and (3.5) is as
follows:

1. The intermediate step, n+ 1/2, is computed as:

xn+1/2 = xn + ∆t
2

vn

an
, (4.7)

vn+1/2 = vn − ∆t
2

(
∇ϕn

an
+Hnvn

)
, (4.8)

where superindices correspond to the timestep, and an ≡ a(tn), Hn ≡
H(tn) are the expansion factor and Hubble parameter at time tn, respec-
tively.

2. Then, the final step, n+ 1, is computed as:

xn+1 = xn + ∆tv
n+1/2

an+1/2 , (4.9)

vn+1 = vn −∆t
(
∇ϕn+1/2

an+1/2 +Hn+1/2vn+1/2
)
. (4.10)

Here, the gravitational force at tn+1/2 is computed by linear extrapolation
of ϕ from the values at tn and tn−1, thus avoiding the necessity of solving
Poisson’s equation during the substep.

In both substeps, the gravitational field is computed by taking second-order
accurate, centred differences from ϕ in the 23 cells closest to the particle position,
and linearly interpolating it back to the particle position.

4.1.3 The gravity solver

Gravity at the base level (without any mesh refinement) follows what has been
described in general within Sec. 3.2.1.1, implying that, by design, periodic
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boundaries are always assumed. For the sake of a fast, parallel implementation
of the FFT, the library FFTW (Frigo and Johnson 2005) is used.

4.1.4 Time-stepping

To preserve the stability of the integration, several constraints on the timestep
are imposed. These include the following (each of them depending on a free
parameter, ηi):

• Particle cell-crossing time, to prevent particles from moving more than a
given fraction of the cell side length in a single timestep (since the code is
using a PM approach). If vmax is the maximum absolute value amongst the
Cartesian components of all particles’ peculiar velocities, the associated
timestep is

∆t1 = η1
a∆x
vmax

. (4.11)

• Dynamical time, to prevent a fast, unresolved collapse of a cold (pres-
sureless) overdensity. If δmax

T is the maximum value of the total density
contrast (including gas, DM, as well as stars and BH, if present), the
associated timestep is then:

∆t2 = η2

√
3π2

4GρB(z)(1 + δmax
T ) . (4.12)

• Courant time, as discussed in Sec. 3.2.2.1. In the three-dimensional case,
it is customary to compute the most stringent one-dimensional signal
velocity,

vmax = max
ijk

[max(|vx|, |vy|, |vz|) + cs] , (4.13)

and then define the timestep as

∆t3 = η3
a∆x√
3vmax

, (4.14)

where the
√

3 factor arises as a conservative estimate of the maximum
signal velocity in the three-dimensional case given the one-dimensional
maximum.

• The timestep associated to the expansion factor is set so that a(t) does
not change by more than a given fraction, η4, in a single timestep:

∆t4 = η4
a

ȧ
≡ η4

H(t) . (4.15)
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• If cooling is present, the timestep is also constrained by the cooling time,
which is defined as the ratio between the thermal energy density and the
cooling rate, τcool = ρu/|Λ|. The timestep is then defined as

∆t5 = η5 min
ijk

τcool. (4.16)

• Stability condition: to prevent sudden changes in the timestep that may
lead to the onset of instabilities, the timestep is additionally constrained
to increase less than a maximum factor, η6, in a single timestep:

∆t6 = (1 + η6)∆told. (4.17)

Typically, all the ηi parameters are set to some value smaller than 1, although
the particularities may change depending upon the application. In some cases,
some of the criteria can be disregarded: for instance, in simulations with gas
cooling but no efficient mechanisms to offset it, the criteria ∆t2 and ∆t5 may
yield prohibitively small integration times as result of the strong dynamics
of a negligible region (in terms of volume or mass), and are often dropped
provided they are no cause of numerical instabilities. With the suitable set of
timestep constraints selected, once within the evolution, the most restrictive of
the timescales is chosen at each integration step, i.e.,

∆t = min [∆t1,∆t2,∆t3,∆t4,∆t5,∆t6] . (4.18)

4.2 The Adaptive-Mesh Refinement (AMR) strat-
egy

To overcome the lack of resolution inherent to Eulerian techniques, MASCLET
implements a block-based AMR strategy, in the manner of Berger and Colella
(1989). This is done in such a way that, each global timestep, the code picks the
regions in the original domain that must be refined according to some criteria
(Sec. 4.2.1) and maps them with a set of finer grids (the refinement patches).
This is done a number of times in a hierarchical manner achieving high dynamical
ranges. The equations from the coupled evolution of DM and baryons are then
solved with increased spatial and temporal resolution (Sec. 4.2.2), with some
modifications to the base solvers that need to be taken into account in the
presence of mesh refinement (Secs. 4.2.3 to 4.2.5).
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4.2.1 Creation of the mesh

Before beginning each global timestep of the simulation, the whole grid hierarchy
is rebuilt to keep tracking the regions that need to be resolved with enhanced
resolution. This is always done hierarchically, from a first level of refinement,
ℓ = 1, to a maximum level, ℓ = nℓ. Although AMR implementations in the
literature vary, in MASCLET all refinement patches halve the cell size with
respect to their progenitor patches. That is to say, the resolution at level ℓ is
∆xℓ = ∆x/2ℓ.

Even though the criteria may change depending on the application, for typical
cosmological structure formation simulations focusing on high-density regions,
these criteria include:

• Pseudo-Lagrangian criterion based on baryonic density: a cell at level ℓ is
flagged as refinable if its baryonic overdensity, ∆B, exceeds ∆thr

ℓ = fB8ℓ−1,
where fB is the cosmic baryon fraction. In practice, a value smaller than 8
can be used for the basis of the exponential, to favour the refinement of
high density regions. Additionally, in simulations with BH formation and
AGN feedback, the regions around BH particles are flagged as refinable at
all levels.

• Pseudo-Lagrangian criterion based on DM density: similarly to the former,
a cell is flagged as refinable if its DM overdensity, ∆DM, exceeds ∆thr

ℓ =
fDM8ℓ−1, where fDM is the cosmic DM fraction.

• Jeans length criterion: if the Jeans length, λJ =
√

15kBT/(4πGmpartρ),
is unresolved, λJ < 4∆x, the cell is flagged as refinable.

• If the cell is physically collapsing, i.e., ∇r · u = 1
a∇ · v + 3H(t) < 0, it is

flagged as refinable.

• Cells at a given level, ℓ, containing particles that were within a refinement
level ℓ′ > ℓ in the initial conditions, are flagged as refinable4.

Once the whole set of refinable cells at level ℓ is obtained, the mesh creation
routine generates the patches at level ℓ+ 1 as follows (exemplified in Fig. 4.1):

4In MASCLET, the AMR strategy is also customarily used at the level of the initial
conditions. This is done by performing a low-resolution simulation, from which the regions of
interest at z = 0 are flagged. The DM particles within these regions at z = 0 are traced back
to z = zini, and the initial conditions can be regenerated with a number of refinement levels
covering the Lagrangian surroundings of the regions of interest. DM particles belonging to a
level-ℓ patch at z = zini also get divided in 8ℓ particles.
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Step 1 Step 1 Step 2

Step 2 Step 3 Step 4

Figure 4.1: Schematic representation of the mesh creation strategy in MASCLET. Crosses
represent refinable cells, while the circled cross represents the cell maximising the refinability
condition. A 32 coarse cells patch is considered around this cell, and it is subsequently enlarged
in each direction if new refinable cells are included during step 2. Step 3 shows the conclusion
of the growing procedure, if no more refinable cells are to be added. In step 4, the patch has
been mapped with twice the resolution of its parent patch.

1. The cell maximising the refinement condition (in the order specified above)
is chosen, and extended to a cubic, 53-coarse cells region around it.

2. Iteratively, the patch is extended along each of its six faces, only if at least
one refinable cell is included by the extension.

3. The iteration is stopped once the largest of the dimensions of the patch
reaches a maximum value, Nmax

patch. This is done because, due to of reasons
of efficient memory layout, the AMR fields are stored in four-dimensional
arrays of fix size (Nmax

patch)3 ×Npatches.

4. The patch is accepted if the smallest of its dimensions has a minimum
number of cells, Nmin

patch. Otherwise, the patch is rejected, and the considered
cell is removed from the list of refinable cells.

5. The new, child patch is mapped with twice the resolution of its parent
patch, and the parent cells are removed from the list of refinable cells.

The process is repeated until all refinable cells have been either refined or
discarded. Once the whole set of patches at level ℓ + 1 has been generated,
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the values of its conserved variables are obtained. For each cell, there are two
possibilities:

• If the cell was already refined at level ℓ+1 in the previous timestep, the value
of the variable is obtained by copying the value from the corresponding
cell at the end of the previous timestep.

• If the cell was not already refined at level ℓ+1, then the value of the variable
is obtained by trilinear interpolation from the values of the highest-available
level of refinement, ℓ′, with ℓ′ ≤ ℓ.

By this procedure, and unlike other AMR implementations based on octrees5,
the patches at level ℓ+ 1 may overlap with each other. While each patch works
as an independent computational domain during the evolution, subject to the
boundary conditions imposed by the coarser levels, overlapping regions need
to be synchronised after each AMR step of the hydrodynamics solver (see Sec.
4.2.2 for a description of the time-stepping in the presence of AMR), so that
any quantity has a unique value at a given position and time, and different,
overlapping patches do not present divergent solutions due to their possibly
different boundary conditions. Likewise, to maintain the conservation properties
of the scheme, when the patches at level ℓ+ 1 reach the time of patches at level
ℓ, the values of the conserved variables at level ℓ+ 1 are averaged to update the
values at level ℓ. The mesh creation strategy also needs to take into account the
overlaps to avoid refining the same region twice.

4.2.2 Time-stepping in the presence of mesh refinement

In its current version, MASCLET employs the same time-stepping scheme for
DM and hydrodynamics when AMR is activated. Once the base grid has been
advanced in time from t to t+ ∆t following the procedure described in Sec. 4.1,
the refinement levels need to be evolved. Patches at level ℓ will require 2ℓ steps,
each of ∆tℓ = ∆t/2ℓ.

At any given moment, both for the hydro solver and for the gravity solver
(see Secs. 4.2.3 and 4.2.5 below), it may be necessary to establish the boundary
conditions of the patch from the information available at coarser levels. Since
finer levels do more timesteps than coarser ones, the information of the coarser
levels is generally not directly available at the times of the steps of the finer

5In an octree-AMR implementation, the refinement is performed in a cell-wise basis, instead
of in patches, as described here for MASCLET.
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Figure 4.2: Schematic representation of the time-stepping scheme in MASCLET AMR
implementation. Left-hand side panel shows the heuristic order in which the different levels
are integrated. Right-hand side panel shows the time advancement of the different levels, with
the arrows indicating the order of the integration.

levels, and is obtained by linear interpolation from the values at the immediately
previous and next steps of the coarser level.

Therefore, the coarser levels always need to be evolved before the finer
ones. This is achieved in MASCLET by a W-like cycle, which is represented
graphically in Fig. 4.2. Besides this graphical representation, it might be useful
to explicitly describe the process for a simple case (nℓ = 2). In this case, the
time-stepping scheme is as follows:

1. The base grid is evolved from t to t+ ∆t.

2. The level ℓ = 1 is evolved from t to t+ ∆t/2, and its boundary conditions
are set by the base grid at t.

3. The level ℓ = 2 is evolved from t to t+ ∆t/4, and its boundary conditions
are set by the ℓ = 1 level at t.

4. The level ℓ = 2 is evolved from t + ∆t/4 to t + ∆t/2, and its boundary
conditions are set by interpolation of the ℓ = 1 level at t and t+ ∆t/2. At
this moment, level ℓ = 2 has caught up with level ℓ = 1, and hence the
coarse level can be updated with the average of the fine level.

5. The level ℓ = 1 is evolved from t + ∆t/2 to t + ∆t, and its boundary
conditions are set by interpolation of the base grid at t and t+ ∆t. At this
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moment, level ℓ = 1 has caught up with the base grid, and hence the base
grid can be updated with the average of the ℓ = 1 level.

6. The level ℓ = 2 is evolved from t+ ∆t/2 to t+ 3∆t/4, and its boundary
conditions are set by the ℓ = 1 level at t+ ∆t/2.

7. The level ℓ = 2 is evolved from t + 3∆t/4 to t + ∆t, and its boundary
conditions are set by interpolation of the ℓ = 1 level at t+ ∆t/2 and t+ ∆t.
Again, ℓ = 1 patches can be updated with the average of the ℓ = 2 level.

It is worth to mention that, in MASCLET’s AMR implementation, a given
cell at level ℓ can be refined, not by a child patch, but by the child patch of
any other patch at the same level ℓ which overlaps it (a nephew patch). In
this case, the fine-to-coarse averaging procedure also needs to update these
values accordingly. Similarly, the necessary boundary conditions for a given
patch may not be available within its parent patch (e.g., because the child
reaches the edge of its parent), but in a sibling of the parent patch. These
aspects increase the complexity of block-based AMR codes, as well as their
parallelisation, beyond that of octree codes. However, the block-based approach
brings several advantages, such as a smaller fraction of the domain corresponding
to fine-coarse interfaces, where corrections have to be made (see below, Sec.
4.2.3) and numerical instabilities can arise.

An additional complexity brought up by the AMR scheme is that, due to the
time synchronisation scheme imposed, it is possible that the Courant condition
(or any other of the time-stepping constraints) is violated during the AMR steps,
since it is computed just once per global timestep. This normally demands the
use of more conservative values for the ηi parameters in the timestep constraints
(see Sec. 4.1.4).

4.2.3 Hydrodynamics on an adaptive mesh

The hydrodynamics solver on the AMR refinement patches is equivalent to the
one on the base grid, relying on PPM reconstruction, HLLE Riemann solver and
the two-step, predictor-corrector Runge-Kutta time integrator. However, a few
details relating to the treatment of boundaries are worth to be mentioned:

Boundary conditions and ghost cells. Let a given refinement patch at level
ℓ have Npatch

x cells along the x direction, which correspond to the domain that
the mesh-creation strategy has determined that needs to be refined. However,
in order to perform the PPM reconstruction around the i-th cell, the shock
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detector needs the values of some quantities (in particular, pressure) in the
cells i − 3 and i + 3. This requires three ghost zones along each direction
(i = −2,−1, 0, Nx + 1, Nx + 2, Nx + 3), which are not evolved but are used only
for the reconstruction.

These cells are obtained, if possible, by copying the value from a patch at
the same level of refinement ℓ. If the corresponding region is not refined, the
value is linearly interpolated in space and time from the values of the highest
level ℓ′ < ℓ possible.

Conservation properties at the fine-coarse interfaces. The conservation
properties of HRSC methods, as described in Sec. 3.2.2.1, rely on the fact that
whatever quantity is subtracted from the cell at the left-hand side of an interface
corresponds exactly to what is added to the cell at its right-hand side. Since the
fluxes are non-linear functions of the set of primitive variables, fluxes computed
at different resolutions do not necessarily match, posing a serious shortcoming
due to the explicit violation of the conservativity of the method.

This problem is mitigated by the flux correction, or refluxing, scheme of
Berger and Colella (1989). In simple terms, the basic idea, applied to the
interface between cells at level ℓ and non-refined cells at level ℓ− 1 located at
their right (e.g., the situation in the rightmost column of the bottom, right panel
in Fig. 4.1), is to compute the difference between the fine fluxes that have been
used to integrate the cells of the ℓ-level grid at the left of the interface, and the
coarse fluxes that have been used to integrate the cells of the (ℓ− 1)-level grid
at the right of the interface, and ascribe the resulting difference in the conserved
quantities to the coarse cell as a manual correction after the evolution.

Focusing on a particular ℓ− 1 cell, the flux mismatch would be computed as

δF = −Fcoarse + 1
8
∑

2 AMR
steps

∑
4 neigh-

bouring cells

Ffine, (4.19)

that is, the difference between the coarse flux, and the average of the fine flux
over the 2 AMR timesteps and the 4 fine cells touching the coarse cell. This
difference is then added to the coarse cell, so that it gets updated as

U← U + δF ∆t
∆x. (4.20)

In practical applications, even though this procedure where a cell is modified
‘by hand’ guarantees conservativity exactly, it has some drawbacks. First, it
can introduce instabilities due to the modification of the cell conserved values,
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especially in regions of low density or kinetically dominated. Additionally, it
implies the necessity of saving the fine and the coarse fluxes at the boundaries of
the refinement patches. Last, there is not such a simple solution for performing
a correction in the case of a boundary between a cell at level ℓ and a cell at level
ℓ′ < ℓ− 1.

4.2.4 N-Body on an adaptive mesh

Particles in MASCLET AMR simulations get assigned a level, which corresponds
to the level of refinement of the highest-resolution patch the particle has ever
been embedded in. That is to say, if a particle enters a higher-resolution region,
it gets promoted to a higher level, but it never gets demoted. Particles get
evolved following the same scheme as described in Sec. 4.2.2, i.e., a particle at
level ℓ performs 2ℓ AMR timesteps of size ∆t/2ℓ during a global timestep of the
simulation.

The integration process for each AMR step is similar to the one described for
the monolithic N -Body solver, but the gravitational fields are computed from
finite-differences of the potential at the highest resolution available. If the level
of the most well-resolved patch containing the particle of level ℓ is ℓpatch = ℓ, the
process is straightforward. If ℓpatch < ℓ, the force at the timestep of the particle
is computed by linear interpolation in space and time. By construction, the case
ℓpatch > ℓ cannot happen, since the particle would have then been promoted to
a higher level.

4.2.5 Gravity on an adaptive mesh

In order to solve Poisson’s equation for the gravitational potential within the
refinement patches, iterative solvers have to be used, as mentioned in Sec. 3.2.1.1.
In the case of MASCLET, a successive over-relaxation (SOR; see, for instance,
Press et al. 1992) method is applied on the discretised version of Poisson’s
equation.

The potential in the interior of the patch is initialised by the solution of the
previous AMR timestep, which is usually a close approximation to the updated
gravitational potential. The boundary conditions are imposed in a ghost zone
around the patch, and are obtained by linear interpolation from the parent
patch. Subsequently, the value of the potential can be iteratively updated in a
chessboard pattern as:

ϕnew
i,j,k = ωϕ∗

i,j,k + (1− ω)ϕold
i,j,k, (4.21)
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where

ϕ∗
i,j,k = 1

6
[
ϕold

i+1,j,k + ϕold
i−1,j,k + ϕold

i,j+1,k + ϕold
i,j−1,k + ϕold

i,j,k+1 + ϕold
i,j,k−1

− (∆xℓ)2fi,j,k

]
,

(4.22)

being fi,j,k the value of Poisson’s equation source, i.e., fi,j,k = 4πGa2ρBδT,i,j,k

(see Eq. 3.7), and 1 < ω < 2 is the overrelaxation parameter, which is set
according to the Chebyshev acceleration procedure (see Press et al. 1992).
Having the potential at the previous timestep as a guess for the solution, this
process usually converges in a few iterations. Nevertheless, in order to save
computing time, in MASCLET, Poisson’s equation at a given level ℓ of the
AMR hierarchy is only solved when level ℓ catches up with level ℓ−1. Otherwise,
the forces are linearly extrapolated in time. In this way, the computational
cost is cut by half, and the boundary conditions can be imposed trivially, since
the patches at level ℓ and their parent patches are at the same time. Shall
the boundary conditions need to be interpolated from an even coarser level,
ℓ′ < ℓ− 1, then linear interpolation in space and time is used.

4.3 Other ingredients

Besides gravity and adiabatic hydrodynamics, MASCLET includes several
additional physics modules, such as cooling, star formation and a basic chemical
enrichment model, supernova feedback, AGN feedback, etc. These, together
with a glimpse to the MHD version of MASCLET, are briefly described in the
following pages.

4.3.1 Gas cooling

MASCLET implements cooling as an additional source term to be added to
the energy evolution equation (Eq. 3.10). The cooling function is tabulated as a
function of gas temperature, density, and metallicity, and linearly interpolated
in logarithmic space. The abundances of the different chemical species (H, Hi,
He, Hei, Heii, as well as e−) are obtained by iteratively solving the equations
of collisional ionisation equilibrium for a given temperature, following Katz,
Weinberg, and Hernquist (1996). From these values, the cooling terms due to
bremsstrahlung and Compton are obtained using the tables of Sutherland and
Dopita (1993). These abundances are also used to compute the heating rates
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due to the UV background, following Haardt and Madau (1996) and Theuns
et al. (1998).

When high resolutions are involved, the cooling term can be rather strong
and, in particular, the cooling time, τcool = ρu/Λ of a cell can be several orders
of magnitude below the Courant time and the rest of timescales. To prevent
numerical problems with such stiff source terms, the cooling rate Λ is always
limited superiorly by ρu/∆tℓ. While other possibilities exist to deal with these
terms (e.g., implicit methods or subcycling; Hernquist and Katz 1989, Zhu,
Smith, and Hernquist 2017), in this way an excessive cooling that would produce
unphysical results is prevented without strong alterations of the time-stepping
scheme.

4.3.2 Star formation, chemical enrichment and supernova
(SN) feedback

In MASCLET, star formation, as well as all its associated feedback mechanisms,
is performed only each global timestep. For a cell to be candidate to form stars,
it must fulfil several conditions, including an upper threshold on temperature
(∼ 2 × 104 K), a metallicity-dependent lower threshold on gas density (with
typical values around ∼ 1mp cm−3; Schaye 2004), a cooling time shorter than its
dynamical time (τcool < τdyn), negative velocity divergence (∇ · v < 0), or being
Jeans-unstable (mcell > MJeans = c3

s/
√
G3ρ, with cs the local sound speed).

From this cell, a maximum fraction of the gas mass (mSFR ∼ 0.25mgas) is
allowed to convert into stars. The real amount of stellar mass that is formed is
determined by a star formation efficiency, ϵSFR ∼ 0.02, which sets the typical
fraction of gas mass that is able to form stars per dynamical time τdyn. Since the
typical mass of a stellar particle (ms, usually similar to the smallest DM mass
in the simulation) is typically much smaller than mSFR, many stellar particles
would be generated if all the gas mass was to be converted to stars. Hence,
the efficiency is implemented stochastically, by generating ⌊mSFR/ms⌋ random
numbers, r ∈ [0, 1], and only accepting the particle if r < ϵSFR∆t/τdyn. Spawned
stellar particles are then associated a random position within the cell, and their
initial velocity gets interpolated from the underlying gas velocity field.

For a given time, ∆tactive ∼ 10 Myr, stellar particles are considered ‘active’,
in the sense that they produce feedback in the form of mass and energy release.
In particular, stars progressively yield a fraction, β ∼ 0.1, of their mass back to
the gaseous phase, with a fixed metal yield (∼ 0.02). Thermal feedback from
type-II SNe is distributed in a cloud around the cell containing the particle, and
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its magnitude is set assuming a 1051 erg release per SN event and a Salpeter
(1955) initial mass function (see Dalla Vecchia and Schaye 2012), together with
some efficiency ϵSN ∼ 0.1.

All values quoted here with a ‘∼’ symbol are just to be taken as informative
guesses, while the actual values used in galaxy-formation simulations need to be
carefully tuned to match several observables, such as the cosmic star formation
rate history or the stellar mass function, amongst others (see, e.g., Oh et al.
2020).

4.3.3 Active galactic nuclei (AGN) feedback

While the simulations analysed within this Thesis do not include AGN feedback,
it is succinctly described here for completeness. Similarly to star formation
and SN feedback, BHs in MASCLET are only formed in global timesteps.
BHs are collisionless particles that form out of gas mass in regions of high
stellar and gaseous density (ρ∗ ≳ 1mp cm−3, ρgas ≳ 10mp cm−3), which are
additionally required to have a minimum velocity dispersion (∼ 100 km s−1) to
restrict BH seeding to gravitationally-bound objects. This mechanism overcomes
the necessity of performing an on-the-fly halo finding, as it is customarily done in
many codes (e.g., Springel, Di Matteo, and Hernquist 2005, Sijacki et al. 2007).
In MASCLET, BHs are typically seeded with a fix mass, ∼ 105 M⊙.

Subsequently, BHs can accrete gas from their surroundings, with a Bondi-
Hoyle accretion rate capped by the Eddington accretion rate (as described in
Sec. 3.1.2.1). The implementation of thermal feedback from AGN, as well as
additional interactions such as the drag force experimented by the BH particle,
fall beyond the scope of this revision, but generally follow the ideas of Booth and
Schaye (2009), Teyssier et al. (2011), and Chapon, Mayer, and Teyssier (2013).

4.3.4 Magnetohydrodynamics

Rather than being a relatively simple addition on top of the basic solvers, as in
the case of the previous feedback mechanisms, the incorporation of magnetic
fields to the basic hydrodynamic system, even in the context of ideal magnetohy-
drodynamics (MHD), as done in MASCLET, implies significant changes on top
of the basic scheme presented in Secs. 4.1.1 and 4.2.3. The magnetic field, B,
gets introduced within the fluxes and sources of the system of conservation laws
(Eq. 3.43), and evolves according to the induction equation, which is stated in
terms of the comoving magnetic field, B′ ≡ a2B, as
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∂B′

∂t
− 1
a
∇× (v×B′) = 0. (4.23)

This needs to be complemented with a method to ensure the divergence-free
condition of the magnetic field, ∇ · B′ = 0, which is not guaranteed by the
evolution equation. This is achieved in MASCLET by the divergence-cleaning
algorithm of Dedner et al. (2002), which consists in the addition of a new scalar
field, ψ, which acts as a Lagrange multiplier on the induction equation enforcing
the divergence-free condition. For more details on the particular implementation
in MASCLET, see the original paper by Quilis, Martí, and Planelles (2020).

4.3.5 Tracer particles

During the course of this PhD Thesis, ghost or tracer particles have been
added as a new feature of MASCLET, to overcome the inherent limitation
of Eulerian methods to trace a specific Lagrangian fluid element. This can be
especially useful in the study of the formation history of different objects. In
their current implementation, ghost particles are seeded at a given redshift,
zghost

ini , by randomly sampling the gas mass distribution. These particles get
then advected with the gas velocity field on global timesteps. The limitation of
performing this advection on global timesteps is imposed for the sake of keeping
the modularity of this feature, in such a way that tracer particles do not need
to be intertwined with the more complex AMR machinery. This implies that
the integration of the tracer particles’ trajectories cannot use the information of
arbitrarily fine AMR levels, since this procedure would be numerically unstable.
Instead, a maximum level of refinement (typically ℓ = 2 or 3) can be used for
interpolating the velocity field on tracer particles, which is usually enough to
study accretion flows onto galaxy clusters, but may not suffice to extend this
study to, e.g., galaxies.

4.4 Analysis codes
Alongside the development of MASCLET, a series of analysis codes have been
developed to post-process the simulation outputs. Many of these codes have
been initially envisioned to be directly coupled to the outputs of MASCLET.
As a part of this PhD Thesis, some of them have been evolved into fully-
standalone, public tools that can be applied on the outcomes of any cosmological
simulation (see Sec. 6, as well as Appendices A2 and A5). Amongst the
codes either developed, optimised or extensively-used during the course of this



4.4 Analysis codes 77

PhD Thesis, are a spherical-overdensity DM halo and galaxy finder (ASOHF;
Planelles and Quilis 2010, Vallés-Pérez, Planelles, and Quilis 2022), a shock
finder (Planelles and Quilis 2013), two cosmic void finders (Ricciardelli, Quilis,
and Planelles 2013, Vallés-Pérez, Quilis, and Planelles 2021), and a code to
perform a Helmholtz-Hodge and Reynolds decomposition on cosmic velocity
fields (vortex, Vallés-Pérez, Planelles, and Quilis 2021b, Vallés-Pérez, Planelles,
and Quilis 2021a).
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Part of the results presented within this PhD Thesis (in particu-
lar, Sec. 8) are related to phenomena associated to the non-linearity of

the hydrodynamic equations. Here, a succinct description of the most salient
non-linear phenomena arising within the study of cosmic flows is presented.
These include turbulence (Sec. 5.1) and shock waves (Sec. 5.2). In Sec. 5.3, the
relevance of these phenomena on galaxy cluster formation is described, while
some of their observational implications are discussed in Sec. 5.4.

5.1 Turbulence

Turbulence is present in astrophysical flows on many different scales, ranging
from the interior of stars to galaxy clusters (see, e.g., Brandenburg and Nordlund
2011 for a general review on astrophysical turbulence). Regarding galaxy clusters,
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turbulent motions can be driven by different processes, including galaxy cluster
mergers (or, generally, intense gas accretion), galactic motions through the ICM,
AGN feedback, or the sloshing of a cool core, amongst others (Brüggen and
Vazza 2015, for a review).

Turbulence is customarily defined, in a loose manner, as a property of fluid
flows being highly irregular, both in space and time (e.g., Landau and Lifshitz
1987; even sometimes dubbed as chaotic and studied within the context of
dynamical systems’ theory). Two fundamental qualitative aspects of hydrody-
namical turbulence, as described by Spiegel (2011), are: (i) there is a continuous
interchange of energy between various states of motion, to be understood as an
energy transfer between motions or modes at different scales; and (ii) viscosity
plays a central role in the dynamics of turbulence, by being the only mechanism
available for the fluid to dissipate the injected energy.

Given the importance of the energy transfer between different scales, it is
customary to describe turbulent velocity fields in Fourier space. Using a discrete
representation for the Fourier transforms for ease of the notation (the same
expressions can be stated in terms of integrals with the proper normalisation),
the Fourier components of the velocity are introduced as

v(x) =
∑

k

vke
ik·x, (5.1)

where k is the wavevector. Averaging over a given volume V , the mean specific
kinetic energy can be written in Fourier space as

1
2v2 = 1

2
∑

k

|vk|2 −→
1
2

V

(2π)3

˚
|vk|2d3k, (5.2)

where the first equality corresponds to Parseval’s identity, and the last one
represents to the continuum limit of the sum. From here, the turbulence
spectrum is defined as the specific kinetic energy per unit volume in Fourier
space (except for a factor of 1/2), i.e.,

P (k) = V

(2π)3 |vk|2. (5.3)

The three-dimensional power spectrum, P (k), especially in the case of
isotropic turbulence, is customarily simplified in the one-dimensional power
spectrum, P (k),

P (k) = V

(2π)3 ⟨|vk|2⟩k̂ = ⟨P (k)⟩k̂, (5.4)
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where ⟨·⟩k̂ denotes averaging over the directions of k, i.e., over the wavevectors
such that |k| = k.

It is also frequent to introduce, in the case of isotropic turbulence, the
one-dimensional spectrum, often referred to as the energy spectrum, defined as

E(k) = 2πk2P (k), (5.5)

implying that the mean specific kinetic energy can be written as

1
2v2 =

ˆ ∞

0
E(k)dk. (5.6)

Hence, the energy spectrum, E(k), measures the specific kinetic energy in
the fluid around a scale l = 2π/k, per unit k. That is to say, E(k)dk is the
specific kinetic energy contained in scales [k, k + dk].

While turbulence in real astrophysical scenarios, and in particular in galaxy
clusters, can be much more complex, it is still useful to introduce a baseline
model due to Kolmogorov (1941) for the description of fully-developed, isotropic,
solenoidal turbulence. In an intuitive description, the model assumes that
turbulent motions span a wide range in scales, from a macroscale, where energy
is injected into the flow in the form of bulk motions, to a microscale, where
kinetic energy is dissipated by viscous forces. The non-linear interactions between
different scales are responsible for passing the energy from larger to smaller
scales, as stated in the poem by Richardson (1922):

Big whirls have little whirls
That feed on their velocity,
And little whirls have lesser whirls
And so on to viscosity.

– L. F. Richardson

Mathematically, the basic predictions of Kolmogorov’s theory stem from two
hypotheses, or principles of similarity:

(i) There is a range of scales, called the inertial range, between the macroscale
and the microscale, where the spectrum (or any other related quantity)
does not depend on the boundary conditions of the fluid, but only on
the rate at which (specific) energy is injected into the flow, ε, and on the
viscosity of the fluid, ν.

(ii) In the inviscid limit, ν → 0, these spectra and associated quantities depend
exclusively on ε.
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Exploiting the dimensional character of [ε] = L2T−3 and [ν] = L2T−1, where
L and T are the units of length and time, respectively, it is possible to construct
length and velocity scales that depend only on these quantities. The viscous
length is defined as

η =
(
ν3

ε

)1/4

, (5.7)

which indicates the scale below which viscous dissipation becomes dominant. A
quantity with units of velocity would be constructed as

V = (νε)1/4. (5.8)

From this, given that the dimensions of E(k) are L3T−2 = V 2L, the energy
spectrum must be of the form

E(k) = ν5/4ε1/4f

[
k

(
ν3

ε

)1/4]
, (5.9)

where f is a function of the dimensionless quantity kη. Using hypothesis (ii), by
which E(k) is independent of ν, and assuming a power-law behaviour for f , it
follows that f ∝ ν−5/4 and, therefore, f(x) ∝ x−5/3. Hence, the Kolmogorov
spectrum must be given by:

E(k) = Cε2/3k−5/3, (5.10)

where C is a constant. This spectrum is valid for kη ≪ 1, i.e., for scales much
larger than the viscous scale, but still below the macroscale, where the velocity
field retains the imprint of the boundary conditions and the particularities of
the energy injection. The energy spectrum is thus a power-law with a slope of
−5/3 within the inertial range.

From the scaling properties of the energy spectrum, it is possible to derive a
scaling for the magnitude of solenoidal velocity fluctuations in the inertial range.
By inspection of Eq. (5.6), it follows that the characteristic velocity fluctuations
on a scale l ≡ 2π/k, δvl, scale as δv2

l ∝
´
E(k)dk ∝

´
k−5/3dk ∝ k−2/3, and

therefore δvl ∝ l1/3. It is also frequent to use the velocity structure functions of
order p, defined as

Sp(l) = ⟨|v(x + ln̂)− v(x)|p⟩x,n̂, (5.11)
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which contain equivalent information to the energy spectrum, and where the
averaging is performed over positions x and directions n̂. Within the Kolmogorov
theory, structure functions of order p scale as Sp(l) ∝ lp/3.

5.2 Shock waves

Cosmological flows originated by the gravitational collapse of structures often
enter the supersonic regime, where the speed of the material infalling into the
potential well of the structure exceeds the local speed of sound. Hydrodynamic
flows are fundamentally different depending on whether they are subsonic or
supersonic. One of the most distinctive features of motions in the supersonic
regime is the development of shock waves, that arise as surfaces of discontinuity
for various quantities of the fluid (e.g., density, pressure, velocity) that can
propagate around the medium (Landau and Lifshitz 1987). Perhaps the best
example of these phenomena in the context of cosmological structure formation
are the large-scale accretion shocks that surround galaxy clusters (Quilis et al.
1998, Miniati et al. 2000, Ryu et al. 2003). For a review on the physics of the
cosmological plasma in shocks, see Bykov, Dolag, and Durret (2008).

Some quantities must be conserved through the surfaces of discontinuity
associated to shocks. These can be directly derived from the equations of
hydrodynamics (Eqs. 3.8-3.10), which, in the non-cosmological case, without
sources, and in one spatial dimension for the sake of simplicity, can be written
as:

∂tρ+ ∂x(ρv) = 0, (5.12)

∂t(ρv) + ∂x(ρv2 + P ) = 0, (5.13)

∂tE + ∂x [(E + P )v] = 0, (5.14)

where ∂t ≡ ∂
∂t and ∂x ≡ ∂

∂x . Assuming the discontinuity to be located at x = 0
and using the rest frame of the shock surface, one can integrate the equations
from x = −ϵ to x = +ϵ, where ϵ→ 0. This yields the Rankine-Hugoniot jump
conditions,

ρ1v1 = ρ2v2, (5.15)
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ρ1v
2
1 + P1 = ρ2v

2
2 + P2, (5.16)

1
2ρ1v

2
1 + ρ1u1 + P1 = 1

2ρ2v
2
2 + ρ2u2 + P2, (5.17)

which relate the properties in the pre-shock medium (upstream of the shock
surface) and the post-shock medium (downstream of it). Notating ‘1’ for the
pre-shock medium and ‘2’ for the post-shock medium (v1 > v2, ρ1 < ρ2), using
the equation of state (Eq. 3.11) in terms of the adiabatic coefficient γ, and
defining the shock Mach number as the quotient between the pre-shock velocity
and the pre-shock speed of sound, M ≡ v1/c1, the jump conditions can be
written as (Landau and Lifshitz 1987):

ρ2

ρ1
= v1

v2
= (γ + 1)M2

(γ − 1)M2 + 2 , (5.18)

P2

P1
= 2γM2 − (γ − 1)

γ + 1 , (5.19)

T2

T1
=
[
(γ − 1)M2 + 2

] [
2γM2 − (γ − 1)

]
(γ + 1)2M2 . (5.20)

The jump conditions are thus fully determined by the Mach number of the
shock. The case whereM≫ 1 is usually called a strong shock, as it is the case of
the outermost accretion shocks of galaxy clusters, where the pre-shock velocity is
high and the sound speed is rather small, since the gas is still cold. In this limit,
the jumps in pressure and temperature can be arbitrarily high (T2/T1 ∝ M2,
P2/P1 ∝M2), while the density jump saturates to ρ2/ρ1 → (γ + 1)/(γ − 1).

5.3 The role of turbulence and shock waves in
structure formation

Turbulence and shocks appear as a natural consequence of the non-linear collapse
of cosmic structures, and, in particular, of galaxy clusters. As the initially
cold baryonic matter falls and collapses into walls, filaments and clusters, its
supersonic motions induce the generation of shock waves (Ryu and Kang 1997,
Quilis et al. 1998). These shocks are one of the main actors shaping the thermal
history of the ICM, since they provide an essential mechanism for heating the
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gas to the ICM-like temperatures around 107 K, from the dissipation of the
kinetic energy involved in the collapse.

As studied by, e.g., Miniati et al. (2000), Miniati (2002), and Ryu et al.
(2003), cosmic shocks associated to the collapse of galaxy clusters can be broadly
subdivided in two categories: external, accretion shocks, which surround the
cluster at distances of ≳ 2Rvir and emerge in regions of low density and tempera-
ture, with high Mach numbers (M∼ 50− 1000); and internal shocks associated
to mergers or to gas flows of previously-shocked gas, with much smaller Mach
numbers (M ∼ 2 − 10). The aforementioned works found that, despite their
modest intensity, most of the energy dissipation in the ICM is due to these
weaker, internal shocks, relegating the accretion shocks to a more subdominant
role in energetic terms. Further works involving high-resolution simulations, both
using HRSC and SPH methods, have confirmed these results and explored in
detail several aspects of the role of shocks in the evolution of the thermodynamics
of the ICM (e.g., Vazza et al. 2010, Planelles and Quilis 2013, Planelles et al.
2021).

Besides their thermodynamic role, cosmic shocks (especially the internal
ones) are also able to convert a significant fraction of kinetic energy, due to
incomplete plasma thermalisation, in cosmic-ray energy, i.e., in the acceleration
of particles (generated at the accretion shocks, Kang, Ryu, and Jones 1996; or
either ejected by radio galaxies, e.g. Vazza et al. 2023) to relativistic energies
(Blandford and Ostriker 1978, Vazza et al. 2015). These mechanisms are, in
turn, associated with the presence of diffuse radio emission, as discussed in Sec.
5.4.

Regarding turbulence, many different mechanisms stir the ICM and generate
motions that cascade down to smaller scales in a Kolmogorov-like picture.
Amongst the most important ones are those associated to the hierarchical
nature of structure formation, such as galaxy cluster mergers. Extensive work
with numerical simulations has shown how clusters of similar mass but in very
distinct dynamical states, have extremely different fractions of their volumes
hosting significant turbulent motions (Subramanian, Shukurov, and Haugen 2006,
Iapichino and Niemeyer 2008, Vazza et al. 2011). Additionally, core sloshing
(Markevitch, Vikhlinin, and Mazzotta 2001), galaxy motions (Faltenbacher et al.
2005, Ruszkowski and Oh 2011), or AGN outflows (Quilis, Bower, and Balogh
2001, Vazza, Roediger, and Brüggen 2012, Gaspari 2015) have been also studied
in the context of turbulence generation in galaxy clusters. Furthermore, shocks
themselves can also be responsible for generating small-scale solenoidal motions
(Vazza et al. 2017, Wittor et al. 2017).
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Once generated, turbulent motions are significant actors in the evolution of
clusters. On the one hand, they contribute significantly to support the ICM
against gravity, acting as a non-thermal contribution to pressure (Dolag et al.
2005, Subramanian, Shukurov, and Haugen 2006, Biffi et al. 2016, Vazza et al.
2018b). Turbulence is also able to accelerate cosmic rays in extended regions
through the second-order Fermi process (Fujita, Takizawa, and Sarazin 2003,
Cassano and Brunetti 2005), and to amplify magnetic fields through the small-
scale dynamo mechanism (Porter, Jones, and Ryu 2015, Beresnyak and Miniati
2016, Vazza et al. 2018a).

5.4 Observational implications

Besides the interest they trigger on a more fundamental level, shocks and tur-
bulence are intimately connected to observational properties of galaxy groups
and clusters and, in particular (although not exclusively), the properties of their
non-thermal emission. In the following, a brief description of some of these ob-
servational implications is presented, without the aim of being exhaustive. Some
reviews that cover extensively the topics associated to non-thermal phenomena
and their implications for X-ray observations, as well as radio emission in galaxy
clusters, are Rephaeli et al. (2008) and Ferrari et al. (2008), respectively.

Turbulence has a direct impact on the X-ray emission from galaxy clusters,
through the broadening of spectral lines (e.g., Churazov et al. 2008, Sanders et al.
2010, Sanders, Fabian, and Smith 2011; see also §3.5 of Böhringer and Werner
2010 for a review). Nevertheless, direct measurements of turbulent velocities are
still rare. Before its unexpected early demise, the Hitomi satellite was able to
measure velocity fluctuations of ∼ 200 km s−1 on scales of ∼ 60 kpc in the central
region of the Perseus cluster (ZuHone et al. 2018). Planned X-ray missions,
such as Athena, could importantly enhance the current prospects of resolving
turbulent motions in clusters (Roncarelli et al. 2018).

Indirect evidence of the existence of turbulent motions can be obtained from
the analysis of X-ray brightness fluctuations, associated to density fluctuations
introduced by the stirring of the ICM by (compressive) turbulent motions
(Schuecker et al. 2004, Churazov et al. 2012, Gaspari et al. 2014, Zhuravleva et al.
2014). This interpretation is further backed by the spatial correlation between
these brightness fluctuations and the loci of diffuse radio emission (Eckert et al.
2017, Bonafede et al. 2018). Nevertheless, recent simulation work has shown how
the relation between density and velocity fluctuations is not a straightforward
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Figure 5.1: Composite image of Abell 3266: radio (ASKAP 943 MHz, red channel; and ATCA
2.1 GHz, green channel) + X-ray (XMM-Newton 0.5-2 keV, blue channel), overlaying an
optical RGB image (i, r, and g bands from DES DR2). The dashed silver cicle marks a radius
of 1 Mpc from the cluster centre. RG labels indicate active radio galaxies, while D labels
indicate diffuse sources. For instance, D1 is a (wrong-way) radio relic. Below the discrete
sources, there is a low-surface brightness radio halo. Figure reproduced from Riseley et al.
(2022) with permission.

one, and it is affected by significant scatter that could hinder the possibility of
measuring turbulent velocities by this method (Simonte et al. 2022).

Connected to turbulence and at the very foundation of X-ray cluster cosmol-
ogy, the fact that turbulent motions act as a non-thermal pressure component
against the gravitational collapse of the ICM biases the measurement of masses
by the hydrostatic equilibrium assumption (Biffi et al. 2016, Vazza et al. 2018b,
Angelinelli et al. 2020, Bennett and Sijacki 2022).

Radio observations of galaxy clusters have also provided compelling evidence
for the presence of significant turbulent motions. For instance, the polarisation
angle of the synchrotron emission of cluster galaxies gets changed by the presence
of magnetic fields, in a very well-known effect known as Faraday rotation. The
study of this Faraday rotation reveals the presence of small-scale, ∼ 1µG, tangled
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magnetic fields, suggesting the existence of turbulent motions at these scales
(Vogt and Enßlin 2005, Vacca et al. 2010, Bonafede et al. 2010).

Closely related to the processes of acceleration of cosmic rays by shocks and
turbulence mentioned in Sec. 5.3, the presence of diffuse radio emission is a
clear signature of their existence and their location within in galaxy clusters.
While the first detections of extended radio emission from galaxy clusters date
back to Large, Mathewson, and Haslam (1959) and Willson (1970) observations
of the Coma cluster, the advances in sensitivity of subsequent radio facilities
have allowed to unveil a rich diversity of extended radio emission in clusters.
For thorough reviews, the reader is addressed to Ferrari et al. (2008) and Feretti
et al. (2012).

Very broadly, the two most salient classes are radio haloes and radio relics,
which are exemplified in a composite (radio+X-ray) image of Abell 3266 in
Fig. 5.1. While both classes share several properties, such as the nature of the
emission and a steep radio spectrum, they mainly differ on their morphology
and location:

• Radio haloes are Mpc-scale sources of diffuse radio emission, located
towards the centre of galaxy clusters. They show no obvious connection
with a galaxy, but instead appear to display a rather regular morphology,
usually similar to that of the X-ray emission. They appear to be located at
the centres of merging clusters, although not all disturbed systems exhibit
a radio halo.

• Radio relics, on the other hand, are elongated (∼ 1 Mpc long), arc-like
sources of radio emission, located at the outskirts of their hosts, and with a
clear connection to the presence of a merger shock. Normally, their major
axis is perpendicular to the direction of the cluster centre.

The understanding of the formation mechanisms for both these classes of
extended radio emission is still not fully closed and falls beyond the scope of
this short review, but generally involves the acceleration of relativistic particles
by either shocks, turbulence or a combination of both.
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During the course of this PhD Thesis, a significant amount of effort
has been devoted to either the development of new analysis tools for

cosmological simulations, or the renewal of existing ones. In all cases, these tools
have been made publicly available. A substantial focus has also been placed
on the generalisation of these tools so that they can be applied, not only to
AMR simulations, but also to the outcomes of other simulation codes, including
particle-based simulations. This is reported in the subsections of each heading.
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6.1 A Helmholtz-Hodge decomposition algorithm
for cosmological simulations

This Section is based on Vallés-Pérez, Planelles, and Quilis (2021b)1, and the
full paper can be found in Appendix A2. The implementation of the algorithm
presented in this publication is publicly available.2

Overview

Context. The study of turbulent velocity fields (among many other disciplines
where it may also be relevant) often requires the decomposition of a vector field
in its compressive (curl-free) and its solenoidal (divergence-free) components.
This is a well-known mathematical problem, known as the Helmholtz-Hodge
decomposition (HHD). The HHD, provided suitable boundary conditions are
given, can be performed in a reasonably simple way when data is uniformly
sampled. However, in the context of non-uniform grids such as the ones used
through the simulations in this Thesis, the HHD becomes a more complex
problem.

Aims. The development of a computationally-efficient algorithm for performing
an HHD on velocity fields defined on a block-based AMR set of grids.

Methods. The method is based on the formulation of the HHD as a set of
elliptic PDEs, formally equivalent to the Poisson equation. The algorithm uses
the standard machinery for solving these equations (the same as described for
MASCLET in Secs. 4.1.3 and 4.2.5), i.e., a combination of FFT for the base,
periodic grid and iterative solvers for the refinement patches. The code, named
vortex, has been implemented in Fortran and parallelised according to the
OpenMP (OMP) standard directives.

Results. The code is tested against a set of idealised and more complex test
cases. The decomposition is performed with typical errors below 1% at the
95-percentile in the idealised tests, and around ∼ 1% median errors in the
complex tests where velocity fields including fluctuations on almost 3 orders of
magnitude in scale are considered.

1D. Vallés-Pérez, S. Planelles, and V. Quilis. “Unravelling cosmic velocity flows: a
Helmholtz-Hodge decomposition algorithm for cosmological simulations.” In: Computer
Physics Communications 263, 107892 (June 2021). doi: 10.1016/j.cpc.2021.107892

2https://github.com/dvallesp/vortex.

https://doi.org/10.1016/j.cpc.2021.107892
https://github.com/dvallesp/vortex
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Conclusions. The procedure introduced in this paper provides a reasonably-
accurate, computationally-efficient method for performing an HHD, and has been
applied to subsequent studies within and outside this PhD Thesis. Furthermore,
it can be adapted to other types of simulations, including particle-based ones.

6.1.1 An HHD algorithm for particle-based simulations

The results reported in this section correspond to the work developed during a stay
at the Universitäts-Sternwarte München, from May 2023 to July 2023, under
the supervision of Prof. Klaus Dolag. The simulations shown here have been
carried out by Tirso Marín-Gilabert and Frederick Groth, whom I thank for their
feedback during the development of the code. These results constitute the basis
for a forthcoming publication, which has already been submitted to the journal
Computer Physics Communications.3

With the aim of generalising the methods developed within the frame of
this PhD Thesis and making them publicly available, the code vortex has
been adapted to work with particle-based (or moving-mesh) simulations. In this
short section, I briefly summarise the main features of the code and show some
preliminary results on idealised tests and applications to SPH and meshless finite
mass (MFM) simulations with OpenGADGET. The code is publicly available.4

6.1.1.1 The algorithm

In the spirit of preserving as much from the original vortex code as possible,
the algorithm relies on the interpolation of the particle-based velocity field onto
an ad-hoc hierarchy of AMR grids. The elliptic equations yielding the potentials,
from which the velocity components are subsequently obtained, are solved as
described in the original paper (Paper A2). In the end, the results can be output
either with the AMR structure, or reinterpolated back to particles. Hence, the
main differences with respect to the original code restrict to:

Mesh creation. First, a cubic base grid of dimensions N3
x covering the whole

domain of interest must be defined. As it is the case of the simulations shown
below (Sec. 6.1.1.3), many SPH resimulations of a cluster involve a large domain
(e.g., a 1 Gpc box), but only the ∼ 20 Mpc around the central cluster are

3D. Vallés-Pérez et al. “vortex-p: A Helmholtz-Hodge+Reynolds decomposition algorithm
for particle-based simulations.” In: Computer Physics Communications (2024, in press).

4https://github.com/dvallesp/vortex-p/.

https://github.com/dvallesp/vortex-p/
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populated with SPH particles (or mesh-generating points, in the case of MFM;
hereafter, I shall refer exclusively to particles for simplicity). In this case, the
base grid can be defined to cover a side length slightly larger than this, so that
the imposition of periodic boundary conditions does not affect the resulting
decomposition in the region of interest. A reasonable rule-of-thumb is to set the
base grid resolution, Nx, as the closest power of 2 such that N3

x ∼ Npart, where
Npart is the number of particles in the region of interest.

Once the base grid is set, the code needs to define the AMR hierarchy. The
process is parallel to the one followed in the new implementation of ASOHF (see
Paper A5, its §2.2.1). Essentially, at any refinement level ℓ, all cells comprising
more than nrefine

part particles (a free parameter) will be flagged as refinable. Since
SPH quantities at a given position are defined as a kernel-weighted average over
the nearest Nngh ∼ 50− 300 neighbours, nrefine

part does not generally need to be
set to a very restrictive (small) value. Subsequently, the mesh-creation routine
loops over the refinable cells and covers them as efficiently as possible with a
set of ortohedral patches with half the cell size. The free parameters for this
mesh-creation process are the same ones as in ASOHF and can be found in
Table A5.1.

Velocity interpolation. Velocity needs to be smoothed and assigned from
the particles to the multi-resolution grid in such a way that it preserves the
details in the regions of high particle density, but is sufficiently smooth so as to
apply the Helmholtz decomposition theorem. In vortex-p, the values at each
cell represent cell-centre values, and are obtained at a position x by an average
of the particle individual velocities, vi, over a length h(x) = max(lNngh ,∆x),
where lNngh is the distance to the Nngh-th nearest neighbour, while ∆x is the
cell size at the AMR level considered:

v(x) =
∑

i∈ngh vi W (|x− xi|, h(x))∑
i∈ngh W (|x− xi|, h(x)) . (6.1)

Several kernels, W (·, ·), have been implemented in the code, including the
cubic spline (M4; see Monaghan and Lattanzio 1985) and Wendland’s (1995) C4

and C6 kernels. Since this process requires locating Npart particles onto O(Npart)
cells, a naive implementation would have computational complexity scaling as
O(N2

part), prohibitive for practical applications. Instead, vortex-p makes use
of an implementation of a k-dimensional space-partitioning tree in the library
Coretran5, which reduces the computational complexity to O(N logN).

5https://github.com/leonfoks/coretran.

https://github.com/leonfoks/coretran
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Since this is a computationally-expensive process, especially in low-density
regions, where it might be necessary to walk the tree out to large distances to
find the required number of particles, part of the computational cost of the base
grid can be alleviated in the case of simulations around a massive object. In
this case, it is possible for the code to automatically detect the cube within
the original domain containing all particles. Outside this cube, the velocity
field is only evaluated in one out of each 43 cells, and filled in by interpolation.
A second cube can be defined inside the previous one, delimited along each
direction by the 1st and 99th percentiles of the list of particle coordinates. Inside
the cube, the velocity field is evaluated in all cells, while outside the cube, it can
be evaluated each 23 cells, and filled in by interpolation. This is a reasonable
process, since in these regions of low-particle density, which correspond to a
large fraction of the volume, the velocity field is expected to be smooth and is
only required to appropriately set the boundary conditions.

Reynolds decomposition. In Paper A3 (see Sec. 8.1), the multi-scale filter of
Vazza, Roediger, and Brüggen (2012) and Vazza et al. (2017) was implemented in
vortex with the aim of decomposing the velocity field into its bulk and turbulent
components. According to this procedure, the bulk velocity is computed as the
volume-weighted average over a sphere of radius L(x). This filtering length
is locally determined by an iterative procedure in which L(x) grows until the
turbulent velocity converges (indicating the outer scale of turbulence has been
reached), or until a strong shock enters the sphere. This last condition is necessary
because the averaging of pre-shock and post-shock velocities would prevent the
convergence of the procedure and could introduce spurious measurements of
the turbulent velocity. While, in the original implementation, the code is fed
with the outputs of a mesh-based shock finder, in vortex-p there are two
possibilities:

• If the simulation has been run together with an on-the-fly shock-finding
scheme (e.g., Beck, Dolag, and Donnert 2016), then this quantity can be
mapped onto the grid in the same way as the velocity, and the Reynolds
decomposition can be performed as in the original vortex code.

• If this information is not available, strong shocks are detected in a
computationally-cheap way by establishing a lower threshold on artifi-
cial viscosity, and an upper threshold on velocity divergence (only in SPH
simulations). While this procedure is not as accurate and introduces two



96 Numerical tools

58 137 356
Nngh

1

2

3

4
M
 (%

)
M4 kernel
C4 kernel
C6 kernel

0% 20% 40% 60% 80% 100%
Particle quantile

10 5

10 4

10 3

10 2

10 1

100

101

Re
la

tiv
e 

er
ro

r i
n 

th
e 

 in
te

rp
ol

at
ed

 v
el

oc
ity

Median error: 2.6%

Figure 6.1: Left-hand side panel: Relative error on the interpolation of the mass onto the grid,
for three kernels (M4, C4 and C6) and three numbers of neighbours. The grey, dashed line
joins three values with the same width, σ. Right-hand side panel: Anti-cumulative distribution
function of the relative error between the original velocity of the SPH particles and the
re-interpolated velocity from the grid, for the M4 kernel with Nngh = 137.

free dimensional parameters, it overcomes the necessity of performing a
more expensive shock-finding procedure within the code.

6.1.1.2 Tests

By design, the interpolation procedure introduced above is not conservative,
i.e., the sum of the interpolated values over the cells does not necessarily equal
the sum of the values over the particles, due to the necessity of obtaining a
smooth interpolation for cell-centred values (and not the cell-averaged ones).
This is not necessarily a problem, since the quantity that is being interpolated
is not a conserved quantity itself. However, it is still worth assessing the level of
conservativity of such an interpolation. This is shown in the left-hand side panel
of Fig. 6.1 for the interpolation of the mass, for different kernels and numbers
of neighbours. The result clearly points out that, the lower the width of the
kernel (higher-order and smaller number of neighbours), the more conservative
the interpolation.

Another fact worth bearing in mind is that, if the results are to be interpolated
back to particles, the re-interpolated values will never coincide with the original
SPH particle velocities, since the former represent the smoothed velocities at
the location of each particle. This is shown, in the form of an anti-cumulative
distribution function of the relative errors between the original and the re-
interpolated velocities, in the right-hand side panel of Fig. 6.1, for the particular
case of the M4 kernel with Nngh = 137, with a median error of ≈ 3.2%.
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Figure 6.2: Results from Test 3 in Vallés-Pérez, Planelles, and Quilis (2021b) applied to
vortex-p. Left-hand side panel: Distribution of errors in vcomp for several kernels and number
of neighbours. The inset shows the medians and the (16 − 84)% region of the distributions.
Right-hand side panel: Thin slice of the absolute error for the case of the M4 kernel with
Nngh = 137, together with the distribution of particles and the AMR grid (levels 1 and 2, in
purple and blue, respectively).

The performance of vortex-p has been subsequently validated with the
same set of tests introduced in Paper A2. Fig. 6.2 exemplifies this with Test
3 in the original vortex paper (see Fig. A2.4 for its results in the AMR
version of vortex). This test introduces a combination of low spatial frequency,
compressive and solenoidal, sinusoidal oscillations in a periodic box, with known
decomposition. To perform these tests in a situation where mesh refining is
relevant, a mock particle distribution is generated by considering a background
distribution of particles in the unit cube, randomly sampled from a uniform
distribution (Nbkg

part = 5× 105 particles), and a number of blobs (Nblobs = 100,
for a total of Nblobs

part = 1.5× 106 particles), each generated by sampling a three-
dimensional Gaussian distribution with σ = 0.02 and a random displacement
within the domain.

The distribution of errors is shown in the left-hand side panel of Fig. 6.2
as a function of the number of neighbours and the kernel used for the inter-
polation. The inset summarises the distribution of median and (16 − 84)%
error percentiles for each setting. As a general trend, the relative errors (in the
order of ∼ 10−3) increase with the number of neighbours and with less compact
kernels. This is reasonable, since the interpolation does not necessarily preserve
the solenoidal/compressive character of the input fields and, hence, the more
local the interpolation is, the lesser amount of cross-talk between these two
components there will be. The right-hand side panel of Fig. 6.2 shows the error
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map for the case of the M4 kernel with Nngh = 137, together with the particle
distribution and structure of the AMR grid for reference. No significant errors
associated to the AMR boundaries are found.

6.1.1.3 Application

This section intends to show some applications of the vortex-p to actual
simulation data, without the aim of being exhaustive in their discussion but
just to exemplify different contexts where the code is currently being used.
In particular, Fig. 6.3 compares graphically the velocity structure of an SPH
(left) and an MFM (right) simulation of the same massive galaxy cluster, with
the same nominal resolution, at z = 0. Looking at the density maps (top
row), while SPH seems to resolve more gaseous substructure, MFM captures
more sharply the discontinuities associated to shocks (e.g., in the centre of
the panel). Subsequent rows compare the total, compressive and solenoidal
velocity magnitudes, respectively. The difference between SPH and MFM is
more evident when comparing the compressive velocity field, where MFM shows
a sharp description of shocks, while in SPH they are smoothed out.

These differences can be quantified through the energy power spectra, E(k)
(see its definition in Sec. 5, Eqs. 5.5 and 5.6), which are shown in the top row of
Fig. 6.5. The left hand-side panel shows the total, compressive and solenoidal
spectra for SPH (solid lines) and MFM (dashed lines). Although the trends are
similar, as shown in the right-hand side panel, MFM shows an overall higher
normalisation (up to 70% higher) at almost all scales and for all components,
but especially at intermediate scale (k ∼ [5− 10]hMpc−1). This implies higher
kinetic energy in MFM, perhaps as a consequence of a greatly reduced numerical
dissipation.

In Fig. 6.4, a similar comparison is shown for two SPH simulations of the same
cluster, without (left) and with (right) physical viscosity. Both simulations have
numerical resolution 10× with respect to the ones shown above. The differences
are striking even when looking at the density slices, with the simulation with
physical viscosity showing a much more complex morphology of clumps and
filamentary structures. The third and fourth rows show the compressive and
solenoidal components of the turbulent (small-scale) velocity field, as extracted
by the multi-scale filter in vortex-p. While in the non-viscous simulation shock
surfaces are clearly apparent in the compressive turbulent velocity field, when
physical viscosity is added, compressive velocities get strongly damped and the
shock surfaces are smoothed out. Also, when considering the solenoidal velocity,
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SPH MFM

Figure 6.3: Comparison, performed with vortex-p, of the density and velocity structure of an
SPH (left-hand side column) and an MFM (right-hand side column) simulation of the same
cluster, with equivalent resolution, at z = 0. From top to bottom, the different rows show thin
slices of gas density, total velocity, compressive velocity and solenoidal velocity, respectively.
In the velocity maps, the background colour shows the magnitude, while the arrows show the
directions and magnitude of the xy projection.
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Ideal Viscosity

Figure 6.4: Comparison, performed with vortex-p, of the density and velocity structure of an
SPH simulation without viscosity (left-hand side column) and with viscosity (right-hand side
column) of the same cluster in Fig. 6.3, with 10 times the resolution, at z = 0. From top to
bottom, the different rows show gas density, total velocity, compressive part of the turbulent
velocity and solenoidal part of the turbulent velocity, respectively. In the velocity maps, the
background colour shows the magnitude, while the arrows show the directions and magnitude
of the xy projection.
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SPH vs. MFM (Figure 6.3)
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Figure 6.5: Top panels: Comparison of the kinetic energy spectra (for the total velocity, in
blue; and for the compressive and solenoidal, in orange and green, respectively) for SPH (solid
lines) and MFM (dashed lines). For better comparison, the right-hand side panels show the
ratio of the MFM to SPH spectra. Bottom panels: Same as above, but for the ideal (solid
lines) vs. viscosity (dashed lines) comparison, only for the total velocity.

it becomes apparent from the maps that viscosity is suppressing solenoidal
turbulence on small scales.

This is shown more quantitatively through the energy spectra in the bottom
panels of Fig. 6.5. The left-hand side panel shows the energy spectra of the
total velocity for the case without viscosity (blue) and with viscosity (orange).
To better highlight the differences, the right-hand side panel shows the ratio
between these two spectra. Interestingly, while at medium scales (1hMpc−1 ≲
k ≲ 10hMpc−1) viscosity is suppressing velocity fluctuations by up to ∼ 40%,
it seems that the viscous case has higher velocity fluctuations on smaller scales
(k ≳ 10hMpc−1). An interpretation for this apparently counter-intuitive result
could be that, while viscosity is damping velocity fluctuation on small scales,
the fact that this suppresses gas mixing is generating the more extreme density
fluctuations seen in the upper panels of Fig. 6.4. In turn, this may be causing the
velocity field to display higher fluctuations on these small scales, as a consequence
of the more complex mass distribution.
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While giving a thorough physical interpretation of these results is beyond the
scope of this short section, the examples presented above show the potential of
vortex-p as a tool for analysing the velocity field in particle-based simulations.

6.2 A deep revision of the ASOHF code

This Section is based on Vallés-Pérez, Planelles, and Quilis (2022)6, and the full
paper can be found in Appendix A5. The algorithm presented in this publication
is publicly available7 and documented.8

Overview

Context. One of the main analyses customarily performed on cosmological
simulations is the identification of structures. In this context, DM haloes are the
building block of the LSS, generating the gravitational potential wells that trigger
the collapse of the observed galaxies and galaxy clusters. Even when a DM halo
is just a locally overdense, gravitationally bound structure, there is not a single
operative definition and many halo-finding techniques have been developed in
the past decades. Additionally, the ever-increasing trend in computational power
has allowed simulations to grow in size and resolution, in such a way that the
analysis of the simulations becomes a pressing computational problem itself.

Aims. The overhaul of the already-existing, spherical-overdensity halo finder
ASOHF, aimed to: (i) improve its parallel performance and its ability of handling
very large simulations, (ii) boost its capabilities of dealing with substructure,
(iii) identify galaxies within DM haloes.

Methods. ASOHF is based on the spherical-overdensity paradigm, together
with a multi-resolution density interpolation to detect substructure. The most
salient new additions to the code include the new definition of substructure, the
recentring schemes, the ability to identify galaxies, the domain decomposition
strategy, a revamped merger tree procedure, among others. The algorithm
is implemented in Fortran and parallelised according to the OMP standard
directives.

6D. Vallés-Pérez, S. Planelles, and V. Quilis. “The halo-finding problem revisited: a deep
revision of the ASOHF code.” In: Astron. Astrophys. 664, A42 (Aug. 2022), A42. doi:
10.1051/0004-6361/202243712

7https://github.com/dvallesp/ASOHF.
8https://asohf.github.io.

https://doi.org/10.1051/0004-6361/202243712
https://github.com/dvallesp/ASOHF
https://asohf.github.io
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Results. The code has been tested against a battery of idealised tests aiming
to verify the performance of different critical processes of the halo-finding scheme.
Additionally, its performance has been compared to other publicly-available halo
finders on actual simulation data, showing a generally good agreement and a
remarkable performance in substructure detection.
Conclusions. The new, public version of ASOHF produces remarkable results
in terms of halo, subhalo, and galaxy finding capabilities, parallel performance
and a reduced computational cost.

6.2.1 ASOHF as a galaxy finder: Application to DIANOGA
simulations

As a further verification of the capabilities of ASOHF as a galaxy finder, in
this Section I show results from its application to the DIANOGA D1-BH2015
simulation (Planelles et al. 2014, Rasia et al. 2015)9. The halo-finding is restricted
to the central 40h−1 Mpc. Typical wall time (per snapshot) in this configuration
is between ∼ 20 s and ∼ 3 min, depending on the choice of the free parameters,
using 24 cores on a desktop workstation.

In the pages below, the results are briefly summarised in comparison with
the galaxy catalogues extracted from Subfind (Springel et al. 2001, Dolag et al.
2009) outputs. To produce the galaxy catalogues from Subfind, all subhaloes
(excluding the central one, if there is more than one subhalo per group) containing
at least 15 stellar particles are considered.

For reference, the ASOHF catalogues have been obtained with the parameters
(see the precise definition in the code paper, Table A5.1):

• Auxiliary mesh: Nx = 128, nℓ = 8, Npatch
min = 12, nrefine

part = 3. Kernel length
assigned by local density, with stars using an ℓ = 6 kernel.

• Minimum number of particles for DM (sub)haloes: nmin
part = 15.

• Stellar halo finding parameters: fmin = 5, ℓgap = 1 ckpc, fB = 1, maximum
(physical) radius for delimiting the extent and collecting stars of a BCG
candidate, 200 kpc.

Fig. 6.6 shows a thin slice of the spatial distribution of DM and stellar
particles in a ∼ 20 Mpc wide region around the central cluster. The panel on the
left shows the galaxies detected by ASOHF as pink dots, while the corresponding

9We are grateful to Giuseppe Murante for granting us access to the DIANOGA simulations
and their associated Subfind catalogues.
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Figure 6.6: Left panel: In grey scale, the density of DM + stars in a box ∼ 20 Mpc wide
and ∼ 1 Mpc deep around the central cluster. Blue dots represent a sampling of the DM
particles, while red dots represent stellar particles. Pink dots represent the stellar particles
inside the galaxies identified by ASOHF. Right panel: Same as the left panel, but with the
haloes identified by Subfind. Here we show a cross for the centre of each Subfind subhalo.

results for Subfind are contained in the right-hand side panel. Overall, ASOHF
identifies 1406 galaxies, while Subfind obtains 1859 according to the selection
cuts imposed. Of these, 1227 can be matched between the two, so that Subfind
identifies 632 haloes that ASOHF does not; while ASOHF identifies 179 that
Subfind does not.

A summary of the properties of the galaxies identified by ASOHF is given
in Fig. 6.7. Galaxies detected by ASOHF have a peaked distribution in sizes,
with half-stellar mass radii ranging (1-10) kpc. Galactic stellar masses have a
narrow peak between (1− 2)× 1010 M⊙, associated to the details of the feedback
scheme used in the DIANOGA BH2015 run. In this direction, differential trends
are found for M1/2,∗ ≶ 1010M⊙ in the stellar mass vs. radii and stellar mass vs.
DM mass. Note that all axes (except ellipticity) are logarithmic.

As a comparison, Fig. 6.8 shows a subset of these properties for the galaxies
identified by ASOHF (orange) and by Subfind (blue). The most striking
difference regards the radii distribution, since ASOHF delimits the extent of
stellar haloes by the half-stellar mass radii, as opposed to the half-total mass radii
of Subfind catalogues. Since stellar mass is very concentrated towards the centre
of the halo, the impact on the corresponding galaxy mass is marginal. Looking
at the two lower panels, Subfind also captures some differential behaviour below
and above ∼ 1010 M⊙, with obvious differences with respect to ASOHF due to
their different radius prescriptions (i.e., here Subfind reports much larger radii).
One can also look at the relation between the stellar to DM mass (lower right
panel). Here, the DM mass for ASOHF is the mass of the underlying DM halo
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Figure 6.7: Summary of the properties of ASOHF galaxies, over the DIANOGA D1 BH2015
simulation at z = 0. Top left: distribution of half-stellar mass radii. Top right: distribution
of half-stellar mass. Middle left: Half-stellar mass vs. half-stellar mass radius. Middle right:
Stellar mass (inside R1/2) vs. DM halo mass. Bottom left: 3D velocity dispersion vs. stellar
mass. Bottom right: ellipticity vs. stellar mass.

(instead of the DM mass within the half-stellar mass radius). Thus, ASOHF
tends to report higher DM halo masses.

Last, in order to validate the performance of ASOHF as a galaxy finder,
it can be interesting to study the properties of the Subfind galaxies that are
missed by ASOHF. This is shown in Fig. 6.9, where blue lines correspond to
the Subfind catalogue, and orange lines correspond to the Subfind haloes that
cannot be matched to any ASOHF halo.
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Figure 6.8: Same plots as the two upper rows of Figure 6.7, but this time comparing Subfind
(blue) to ASOHF (orange).

Looking at the bottom panels, it is clear that the majority of haloes missed
by ASOHF correspond to small haloes. Moreover, focusing on the lower right
panel, it becomes obvious that the majority of haloes missed by ASOHF are
DM-deficient (e.g., 55% of the missed haloes contain less than 25 DM particles,
and 90% of the missed haloes contain less than 100). This limitation is inherent
to ASOHF, since the identification of galaxies is built upon the detection of
their underlying DM halo, even though the final galaxy may have different centre
and bulk properties than the original DM halo.

6.3 Future directions

The code paper for vortex-p, containing a complete description of the algorithm,
a thorough test set, and several applications, although not included in this Thesis,
has been very recently submitted to Computer Physics Communications. The
more complex and realistic tests, including velocity modes spanning several orders
of magnitude in scales, allow to estimate the accuracy of the code when applied
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Figure 6.9: Statistics of the Subfind haloes that are missed by ASOHF. The two upper
panels present radii and masses histograms, analogous to the previous figures, where the blue
lines correspond to the Subfind catalogue, and the orange lines correspond to the Subfind
haloes that cannot be matched to any ASOHF halo. Note the scale of the vertical axes in the
histograms are logarithmic.

to extremely high-resolution simulations, such as the ones recently presented
by Steinwandel et al. (2023), who resolve a cluster of mass Mvir ∼ 2× 1015 M⊙

with SPH particle masses of mSPH ∼ 4× 105 M⊙.
Naturally, applying vortex-p to the previously mentioned very high-resolution

simulations will require a careful optimisation of many routines of the code. On
the one hand, more efficient versions of the critical algorithms must be sought
for in order to improve the computing time. Nevertheless, if the code is to be
applied to simulations of this unprecedented size, the parallelisation of the code
for shared-memory platforms (MPI) through a domain-decomposition strategy
is imperative. In principle, this should not be particularly complex, since the
grid hierarchy already provides a natural domain decomposition. However, the
fact that patches use large buffer zones to minimise boundary effects requires
boundary conditions to be sought for in patches different from their parent patch,
complicating the communications. Additionally, load balancing could also be a
critical issue. Therefore, these enhancements are mid-term goals for the code.
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Also in the mid-term, both for the grid-based and the particle-based versions
of vortex, it would be interesting to implement a new, coordinate unsplit (e.g.,
Skillman et al. 2008, Schaal and Springel 2015) shock-finder as an additional
(optional) module for the code. This would overcome the necessity to supply
the code with external, Mach number information to perform the Reynolds
decomposition, or to use rough approximations as the ones currently implemented
in vortex-p. Furthermore, this would turn vortex into a general framework
for performing a wide range of analyses on the velocity fields of cosmological
simulations.

Regarding ASOHF, even though the code has already been made use of
on a variety of simulations both inside and outside our group, a simple step
forward towards improving its public adoption would be the inclusion of reader
routines for the most widely used simulation codes (e.g., GADGET, AREPO,
RAMSES, Enzo, etc.). In the mid-to-long term, even though the domain
decomposition strategy implemented in the present version of the halo finder,
which is performed externally in a semi-automatic manner, provides excellent
results for simulations of large volumes, it would be interesting to implement
an internal, MPI-based parallelisation to deal with high-resolution simulations
of small volumes, where the current domain decomposition strategy is not as
efficient due to the need of large buffer zones.

Concerning the cosmological code developed and used in our group, MAS-
CLET, a first line of work that could be addressed in the short-to-mid term
is its interoperability with widely-used, public libraries for handling simulation
data. Including interfaces for natively loading MASCLET outputs into, for
instance, nbodykit (Hand et al. 2018) or yt (Turk et al. 2011) would enable
a direct application of their tools for easily analysing the large-scale structure
properties and to produce high-quality graphics from the simulation data, re-
spectively. Although a few steps in this direction have already been made (i.e.,
an internal reader for yt has already been implemented during this PhD Thesis),
full exploitation of the AMR grid (without the need of construction uniform
grids from the multi-resolution data; and keeping the parallel support) is still
missing.

In a longer timeframe, an important step-up for MASCLET would be its MPI
parallelisation, in order to be able to efficiently run simulations in distributed-
memory platforms with thousands of cores. This demands a thorough revision
and rewriting of the code, due to the complexity and the dynamical nature of the
AMR grid, but would ultimately enable the code to perform simulations with
an unprecedented number of resolution elements. In this direction, offloading
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some of the most computationally-expensive routines to GPUs would also be
an important step forward, aligned with the current trend in high-performance
computed towards the exascale era (Gagliardi et al. 2019). This is supported
by the OpenMP 4.5 standard, which allows for the offloading of code to GPUs
in a relatively simple manner by using the NVIDIA Compute Unified Device
Architecture (CUDA; Nickolls et al. 2008). In the field of grid-based cosmological
codes, GPU implementations have been attained, for instance, in ENZO and
RAMSES (Gheller et al. 2015).
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The assembly of galaxy clusters determines many of their properties,
from their stellar populations to the thermodynamical states and the

kinematics of the ICM. This section summarises the works conducted within this
PhD Thesis aimed to explore the description of the assembly of galaxy clusters,
and its impact on the properties of these objects, from the study of accretion
rates and dynamical state indicators.

7.1 On the accretion history of galaxy clusters

This Section is based on Vallés-Pérez, Planelles, and Quilis (2020)1, and the full
paper can be found in Appendix A1.

1D. Vallés-Pérez, S. Planelles, and V. Quilis. “On the accretion history of galaxy clusters:
temporal and spatial distribution.” In: Mon. Not. R. Astron. Soc. 499.2 (Dec. 2020),
pp. 2303–2318. doi: 10.1093/mnras/staa3035

https://doi.org/10.1093/mnras/staa3035
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Overview

Context. Galaxy clusters and groups grow through the highly-anisotropic
accretion of matter from the surrounding cosmic web, as well as through merger
events between similarly-sized structures. Past works have confirmed the re-
lation of accretion to several ICM properties, such as the profiles of several
thermodynamic quantities, the position of clusters with respect to the scaling
relations, or the ellipticity of the ICM.

Aims. The characterisation of the accretion history of a small sample of galaxy
clusters from a numerical simulation, aiming to examine different proxies for the
accretion rate, as well as the impact of accretion on the internal properties of
the cluster, and the spatial distribution of accretion flows.

Methods. Several proxies for the mass accretion rate (MAR), including Γ200m

computed from the full merger tree of haloes, α200m computed from the velocity
profile, and the integrated mass flux through the virial boundary are compared
amongst themselves. Γ200m is additionally compared to the presence of merging
events and the densities surrounding the cluster. Finally, the spatial distribution
of mass accretion flows is estimated using a pseudo-Lagrangian approach on the
Eulerian gas data of the simulation, and studied through multipolar analysis.

Results. The different MAR proxies are loosely correlated amongst themselves,
highlighting the difficulty in finding good measures of cluster growth associated
to the arbitrariness in the definition of the cluster boundary. Both the baryonic
and total MAR correlate with the presence of merging events but, when measured
at R200m, are kept high for a long time after the merger episodes. The novel
approach to study the angular distribution of accretion flows highlights the very
anisotropic behaviour of mass flows at the virial boundary, and its multipolar
analysis shows significant differences in some thermodynamic properties such as
the entropy of the accreted gas.

Conclusions. In the advent of surveys that will be able to probe the outskirts
of clusters, the characterisation of accretion rates and its comparison with cluster
observables is of paramount importance. This exploratory work exemplifies some
tentative approaches, but work with larger samples is required to draw robust
conclusions.
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7.2 The assembly state of dark matter haloes
through cosmic time

This Section is based on Vallés-Pérez et al. (2023)2, and the full paper can be
found in Appendix A6.

Overview

Context. The dynamical state and the morphological features of galaxies and
galaxy clusters, as well as those of their DM counterparts, are tightly connected
with their assembly history through a wide redshift interval. Hence, these
features may encode crucial information about the formation and the evolution
of such cosmic structures.

Aims. This work intends to critically examine how the assembly state of these
structures, understood as the presence of recent mergers or periods of strong
accretion, can be best assessed from a series of properties at a given redshift.

Methods. By using the combination of centre offset, virial ratio, mean radial
velocity, sparsity and ellipticity of the DM haloes extracted from a moderate-
volume simulation, we study how the thresholds on these parameters, as well as
their relative weights to define a single, combined indicator, should evolve with
redshift to best correlate with the merging and accretion activity inferred from
complete merger trees.

Results. The resulting classification, involving a totally relaxed, an unrelaxed,
and an intermediate (marginally relaxed) categories, correlates strongly with the
merging activity extracted from the merger trees, as well as with the accretion
rates. This has been also tested against data from a different simulation from the
publicly available CAMELS project (Villaescusa-Navarro et al. 2021, Villaescusa-
Navarro et al. 2023).

Conclusions. A dynamical state classification focused on the assembly history
(presence of mergers and accretion rates) must take into account that different
indicators may yield more insight than others at a particular redshift. Likewise,
the thresholds that must be applied to these indicators to produce the best
classification also appear to be redshift-dependent.

2D. Vallés-Pérez et al. “On the choice of the most suitable indicator for the assembly state
of dark matter haloes through cosmic time.” In: Mon. Not. R. Astron. Soc. 519.4 (Mar.
2023), pp. 6111–6125. doi: 10.1093/mnras/stad059

https://doi.org/10.1093/mnras/stad059
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7.2.1 The inclusion of substructure fraction as a dynamical
state indicator

As acknowledged in the discussion contained in §2.3.6 of Paper A6, the use of the
substructure fraction, fsub, as an indicator of the assembly state of DM haloes
did not produce satisfactory results in the analysis presented in the paper, and
was hence discarded. The mass contained in substructures within a larger halo
is particularly sensitive to, both, the mass and force resolution of the simulation,
and the definition of the extent of the substructures themselves. In this Section,
I present results from the analysis of a new simulation, equivalent to the one used
in Paper A6, but with new initial conditions using around ∼ 3 times more DM
particles and improvements to the N -Body solver that result on a better effective
force resolution in the AMR patches, allowing a more accurate treatment of
substructures. While the qualitative results (i.e., the trends of the thresholds
and weights on each parameter with cosmic time) are essentially unchanged, it
is still worth presenting here the new results including substructure fraction for
the sake of completeness.

Fig. 7.1 shows the updated version of Figs. A6.3 (left-hand side column,
showing the evolution of the thresholds on each indicator) and A6.4 (right-hand
side column, showing the evolution of the corresponding weights) on Paper A6.
While the fits change, they are generally consistent with the former ones within
their confidence regions. Substructure fraction (bottom row) appears to be now
a useful parameter to assess the assembly state of haloes at intermediate and
low redshift (z ≲ 3). Regarding its threshold, reaching f thr

sub ∼ 0.02 at z ∼ 0, it
must be borne in mind that the definition of substructure mass in ASOHF is
much more conservative than that used in other halo finders (see the discussion
in Paper A5, its §4.1).

The new fits for the parameters are given by:

∆thr
r (z) = 0.0716(23) + 0.0323(58)z − 0.0146(37)z2 + 0.00192(65)z3 (7.1)

ηthr(z) = 1.3411(51) + 0.162(13)z − 0.0463(84)z2 + 0.0038(14)z3 (7.2)

⟨ṽr⟩thr(z) = 0.0858(24) (7.3)

sthr
200c,500c(z) = 1.550(10) + 0.0558(87)z (7.4)

εthr(z) = 0.2798(27) (7.5)

f thr
sub(z) = 0.0178(17)− 0.0080(16)z + 0.00092(33)z2 (7.6)
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Figure 7.1: Evolution of the thresholds on the parameters (left column) and of their relative
weights (right column) to provide the best assembly state classification. These figures are
equivalent to Figs. A6.3 and A6.4 on Paper A6.
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Figure 7.2: Overall fitted redshift evolution of the weights on the dynamical state indicators.
This figure is equivalent to Fig. A6.5 on Paper A6.

While, for the weights:

w[∆r](z) = 0.1781(79) + 0.0297(69)z (7.7)

w[η](z) = 0.1722(47)− 0.1510(84)z + 0.0259(24)z2 (7.8)

w[⟨ṽr⟩](z) = 0.093(12) + 0.051(11)z (7.9)

w[s200c,500c](z) = 0.2034(38) (7.10)

w[ε](z) = 0.175(12) + 0.057(33)z − 0.054(21)z2 + 0.0074(34)z3 (7.11)

w[fsub](z) = 0.1492(42) + 0.1052(58)z − 0.0297(11)z2 (7.12)

To better visualize the performance of each indicator at different cosmic
epochs, the fitted evolution of the weights is shown in a single panel in Fig.
7.2. Again, the qualitative results from the paper are kept: centre offset and
mean radial velocity are still the most relevant indicators at high redshift, which
gradually decline its weight at lower redshifts. At z ∼ 0, all indicators add
relevant insight about dynamical state, while substructure fraction is, as a
matter of fact, the most insightful measure of assembly state at z ∼ 1− 2. The
only mildly significant difference (∼ 2σ) with respect to the previous results
appears with ellipticity at high redshift, which, in the new results, is much more
irrelevant.
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7.3 Future directions

The natural continuation of the studies presented within this Chapter go along
the lines of extending the previous studies with new simulations, such as the
one presented in Paper A6 and higher-resolution versions of it, in order to
study the effects of the assembly of the cluster (galaxy cluster mergers and gas
accretion) onto several cluster properties and observables using a considerably
larger sample.

Therefore, in the short-term, as already started projects (albeit in a prelim-
inary stage, so that no results are presented within this PhD Thesis), several
topics that we aim to cover include:

• Impact of accretion rates and assembly states on the internal structure of
galaxy clusters, by the effect on their profiles. This has been previously
explored by, e.g., Lau et al. (2015), who find a noticeable dependence of the
radially-averaged profiles of temperature, entropy, gas pressure and density
in the outskirts of clusters with their accretion rates, using a non-radiative
simulation.

• Dependence of the X-ray and SZ scaling relations (e.g., LX −M , TX −M ,
YX −M , YSZ −M) with the accretion rates and assembly states. Several
recent studies (e.g., Chen et al. 2019) point at a connection between the
recent accretion rate of the cluster and the residuals with respect to the
mean TX −M relation. Given that ongoing and future X-ray missions will
reduce the instrumental uncertainties to the point where the scatter around
the scaling relations will be dominated by the astrophysical uncertainties
(Hofmann et al. 2017), a deeper understanding of these connections can be
of utmost importance to improve cluster mass estimates.

• The angular distribution of gas accretion flows onto galaxy clusters and
its time evolution, using the methodology introduced in Paper A1, will be
extended to a sample of clusters, to study its connection with dynamical
state indicators, cosmic time, and other cluster properties.

In the short-to-mid range, besides these more fundamental studies, it would
also be important to explore the impact of cluster assembly on mock observations
of galaxy clusters throughout the electromagnetic spectrum. To this end, the
full-radiative transfer code SPEV (Mimica et al. 2009, Cuesta-Martínez, Aloy,
and Mimica 2015, Mimica et al. 2016) has been already used to produce multi-
wavelength mock observations out of MASCLET-simulated clusters (Planelles
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et al. 2018). In this context, I have participated in a project aimed to assess
the impact of the assembly state of galaxy clusters on their kSZ signal (Monllor-
Berbegal et al. 2024; see App. B). In order to improve on the aforementioned
works, next steps should include a more detailed treatment of the metal distribu-
tion and feedback mechanisms, the inclusion of relativistic corrections for the SZ
signal (Itoh, Kohyama, and Nozawa 1998, Nozawa, Itoh, and Kohyama 2005),
and the consideration of the instrumental response of current or forthcoming
observational facilities.

Lastly, on a longer timeframe, we also plan to develop the necessary numerical
techniques for identifying and extracting catalogues of the cosmic-web filaments
out of our simulation data. The interest for this is, at least, two-fold. On the
one hand, the interfaces between filaments and cluster outskirts are particularly
interesting regions because of their departures from self-similarity, presence of
dynamically relevant non-thermal gas motions, density inhomogeneities, accretion
and merger shocks, lack of equilibrium between electrons and ions, etc. (Walker
and Lau 2022, for a review). On the other hand, the study of the properties of
filaments themselves can be of special interest to several fields, from galactic
environments (e.g., Bonjean et al. 2018, Kuchner et al. 2022) to cosmic magnetism
(Gheller et al. 2016, Banfi, Vazza, and Gheller 2021, Vernstrom et al. 2021).
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As discussed in Chapter 5, turbulent motions and shock waves are two
phenomena associated to the non-linearity of the fluid dynamics equations

that have far-reaching consequences for, both, the physics of the ICM, and its
observable properties. In this Chapter, two studies regarding these phenomena
are presented.

8.1 Turbulence, enstrophy and helicity from the
assembly history of the intracluster medium

This Section is based on Vallés-Pérez, Planelles, and Quilis (2021a)1, and the
full paper can be found in Appendix A3. The methods developed to perform a

1D. Vallés-Pérez, S. Planelles, and V. Quilis. “Troubled cosmic flows: turbulence, enstrophy,
and helicity from the assembly history of the intracluster medium.” In: Mon. Not. R. Astron.
Soc. 504.1 (June 2021), pp. 510–527. doi: 10.1093/mnras/stab880

https://doi.org/10.1093/mnras/stab880
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Reynolds decomposition on velocity fields defined on a block-based AMR set of
grids have been included in the public code vortex.2

Overview

Context. Turbulence is a pervasive phenomenon in astrophysical flows and,
in particular, in galaxy clusters. However, it is particularly difficult to model
numerically due to its intrinsically multiscale nature, which demands high
resolutions. Additionally, previous works have shown that turbulence is tightly
connected to the formation history of the ICM.

Aims. Explore the connection of the generation and dissipation of turbulence
in the ICM with the assembly history (both of DM and baryons) of galaxy
clusters.

Methods. The public code vortex has been extended to include the possibility
of performing a bulk+turbulent (Reynolds) decomposition prior to the HHD.
This, applied to the two most well-resolved clusters of the simulation, allows
extracting global statistics (e.g., compressive and solenoidal structure functions)
and local statistics (e.g., enstrophy) of the turbulent flows.

Results. While structure functions show an important dependence on cluster-
centric radius and this is due, to a large extent, to the non-constant resolution,
the study of the evolution of the second-order structure functions at fixed scales
(comoving with Rvir) still reveals a clear correlation with accretion rates and
merger periods. Following the temporal evolution and the spatial and phase-
space distribution of enstrophy, an indicator of solenoidal motions, our results
confirm a previously proposed scenario where volume-filling solenoidal motions
are generated, first, by baroclinicity at the outermost shocks surrounding the
cluster, and then enhanced by compression and channelled downstream of the
shocks by vortex stretching.

Conclusions. Although the measurement of quantities related to the turbulent
flow in AMR data, where different regions have been evolved with different
resolutions at different times, is far from straightforward, the results reported
in this paper show that it may be possible to extract meaningful information
about the turbulent flow in the ICM with these simulations.

2https://github.com/dvallesp/vortex.

https://github.com/dvallesp/vortex
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8.2 Cosmic accretion shocks as a tool to measure
the mass of galaxy clusters

This Section is based on Vallés-Pérez, Quilis, and Planelles (2024, in press)3,
which has been accepted for publication in the journal Nature Astronomy. The
manuscript is included below, after the overview, in its original form (previous
to peer review) as per licence permissions of the publisher.

Overview

Context. Cosmological accretion shocks created during the formation of galaxy
clusters are a ubiquitous phenomenon all around the Universe. These shocks
and their features are intimately related with the gravitational energy put into
play during galaxy cluster formation.
Aims. We aim to study the scaling relations linking the mass of galaxy
clusters with the radius and intensity of their accretion shocks, and to explore
the possibility of using these relations to measure the mass of galaxy clusters.
Methods. We study a sample of galaxy clusters and galaxy groups extracted
from a Eulerian cosmological simulation of moderate size (100h−1 Mpc on a
side) and resolution (peak resolution of ∆x ∼ 9 kpc). Shocks are identified
in the simulation using a coordinate-split shock-finding algorithm based on
temperature jumps, and the outermost accretion shock surfaces are subsequently
characterised based on a series of heuristic criteria.
Results. We show that objects in our sample sit in a plane within the three
dimensional-space of cluster total mass, shock radius, and Mach number (a
measure of shock intensity).
Conclusions. Using this relation, and considering that forthcoming new ob-
servations will be able to measure shock radii and intensities, we put forward
the idea that the dark matter content of galaxy clusters could be indirectly
measured with an error up to around 30 per cent at the 1σ confidence level.
This procedure would be a new and independent method to measure the dark
matter mass in cosmic structures, and a novel constraint to the accepted ΛCDM
paradigm.

3D. Vallés-Pérez, V. Quilis, and S. Planelles. “Cosmic accretion shocks as a tool to
measure the dark matter mass of galaxy clusters.” In: Nat. Astron. (2024, in press). doi:
10.1038/s41550-024-02303-x

https://doi.org/10.1038/s41550-024-02303-x
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ABSTRACT

Cosmological accretion shocks created during the formation of galaxy clusters are a ubiquitous phenomenon all around the
Universe. These shocks, and their features, are intimately related with the gravitational energy put into play during galaxy
cluster formation. Studying a sample of simulated galaxy clusters and their associated accretion shocks, we show that objects
in our sample sit in a plane within the three dimensional-space of cluster total mass, shock radius, and Mach number (a
measure of shock intensity). Using this relation, and considering that forthcoming new observations will be able to measure
shock radii and intensities, we put forward the idea that the dark matter content of galaxy clusters could be indirectly measured
with an error up to around 30 per cent at the 1σ confidence level. This procedure would be a new and independent method to
measure the dark matter mass in cosmic structures, and a novel constraint to the accepted ΛCDM paradigm.

Galaxy clusters and galaxy groups sit at the top of the hierarchy of gravitationally-bound cosmological structures, as the
result of a hierarchical formation history which has lasted for around 14 Gyr [1, 2, 3]. While their matter content is dominated
by dark matter (DM), which accounts for roughly 85% of the gravitational mass, baryons (most of them, in the form of a
diffuse, multiphase plasma; see, e.g., [4, 5, 6, 7], for reviews) also play a pivotal role in their evolution and, especially, in the
modelling of their observational properties [e.g., 8, 9, 10].

The singular place of galaxy clusters makes them valuable tools for precision cosmology [11, 12, 13], yet the determination
of their masses is not straightforward and can only be done by different indirect approaches, often relying on rather strong
assumptions. For instance, radial profiles of some thermodynamic properties of the intracluster medium (ICM; the bulk of
baryonic mass in galaxy clusters) that can be obtained from X-ray or Sunyaev-Zeldovich (SZ) observations can be used to
constrain the total mass, under the assumption of sphericity and hydrostatic equilibrium [e.g., 14, 15]. Related to this, masses
can also be obtained from integrated properties invoking self-similarity [16]. Both these approaches depend crucially on
baryonic physics and feedback mechanisms, are affected by biases in the order of (10− 30)% [14], and usually break at
the group scale [e.g., 17]. Alternatively, masses can be determined by weak-lensing measurements [18], or looking at the
kinematics of galaxies in the cluster (e.g., through the caustic technique, [19]), which are ultimately probes of the underlying
gravitational potential. A more in-depth, recent review on current mass estimation techniques for galaxy clusters can be found
in [20].

As a direct consequence of the collisional nature of the baryonic component, shock waves appear as pervading phenomena
in cosmological structure formation. They play a central role in the evolution of galaxy groups and clusters, by providing the
necessary non-adiabatic heating of the diffuse plasma up to the temperatures observed within cosmic structures [21, 22, 23]
at the expense of removing kinetic energy from bulk flows, so that the infalling baryons can virialise within the gravitational
potential wells of DM haloes. In particular, both analytic models [24, 25] and simulations [26, 27] have studied the location of
the outermost accretion shocks of galaxy groups and clusters, whose position and evolution are ultimately determined by the
gravitational collapse of the given structure.

The detection of these elusive features in observations has been devoted considerable attention recently, being the target of
numerous surveys using new telescopic facilities. Although very preliminary, first detections of large-scale shocks have been
reported by using very different observational approaches: pressure jumps using Sunyaev-Zeldovich effect observed with the
Planck satellite and the South Pole Telescope (SPT) [28], γ-ray observations with the VERITAS Cherenkov array [29] or the
Fermi Large Area Telescope [30], using UV absorption spectroscopy [31], or by measuring polarisation in radio observations
[32].

In this work, we propose that total masses of clusters can be inferred from the physical size of the accretion shock shell and



its intensity, and calibrate these relations across a broad redshift interval using high-resolution cosmological simulations. We
refer the reader to the Methods section and the Supplementary Material for technical details, while we summarise our main
results below.

Results
We exemplify and further discuss our procedure for detecting the accretion shock shell and its equivalent radius, Rsh, and
strength, quantified through the average Mach number, Msh, in the Methods section and in Supplementary Section A. Below,
we discuss our results regarding the calibration of the multi-dimensional scaling relation, its evolution, and its scatter.

Multivariate relation between total mass, shock intensity and shock radii
Following the approach described in more detail in the Methods section, we use our simulation data to fit a linearised relation
log10 M(< 2Rvir) = f (log10 Rsh,Msh). The choice of measuring the mass in spherical apertures of 2Rvir is motivated by the
fact that accretion shocks are located most of the times between 2Rvir and 3Rvir (see Supplementary Section B for a statistical
summary of our sample), and hence this radius is a reasonable proxy for the mass producing the collapse of the overdensity and
driving the shock evolution. However, we note that using sensibly smaller aperture radii leads to similarly accurate results (see
Supplementary Section C for the equivalent results using M(< Rvir)).

Our best-fit relation for the sample at z = 0 can be represented by the functional form

log10
M(< 2Rvir)

M⊙
= 12.760+1.910log10

Rsh

Mpc
+0.0117Msh, (at z = 0) (1)

and is presented graphically in the upper panel of Fig. 1. The mean scatter around this relation is σlogM = 0.134, implying
1σ errors of +36%

−27% on the total mass measured within 2Rvir apertures. The relation marginalised over shock intensities (the
mass-shock radius relation, which we will hereon refer to as 2d relation, in contrast to the complete 3d relation), has an
intrinsic scatter of σ2d, logM = 0.177 ( +50%

−34% errors) at z = 0, suggesting that the inclusion of information about shock intensity is
crucial to recover more precise mass estimates. The slope of the 2d relation is marginally consistent with a self-similar scaling
(M(< 2Rvir) ∝ R3

sh) within a 1σ interval (see Supplementary Section D for more details on the 2d relation).
The lower panel of Fig. 1 contains the same information at z = 1, which is best-fitted by the relation,

log10
M(< 2Rvir)

M⊙
= 12.440+1.122log10

Rsh

cMpc
+0.0225Msh, (at z = 1) (2)

whose intrinsic scatter, σlogM = 0.144, implies typical errors of +39%
−28% on the estimation of the mass enclosed by two virial radii.

Also in this case, the addition of information about shock intensity decreases the error figure importantly, from a 2d value of
σ2d,logM = 0.209 ( +62%

−38% errors).
Additional information about the fits in equations (1) and (2) can be found in Supplementary Section E. We have also

checked that the mass accretion rate, when determined at the virial radius, does not correlate significantly with the position of
the shock (see Supplementary Section F), and hence including it does not improve our results.

Evolution of the relation and fitting formulae
We have studied the evolution of our three-dimensional scaling relation with cosmic time, for the redshift interval 0 ≤ z ≲ 1.5.
The resulting evolution can be fitted by a generalisation of the relation in equations (1) and (2), as

log10
M(< 2Rvir)

M⊙
= γ(z)+α(z) log10

Rsh

cMpc
+β (z)Msh, (at 0 ≤ z ≲ 1.5) (3)

where radii are expressed in comoving coordinates and the functions α(z), β (z) and γ(z) encapsulate the redshift evolution,
which can be well-fitted by the polynomial forms below:

α(z) = 1.523+0.208z−0.386z2 (4)

β (z) = 0.01721−0.00374z+0.00704z2 (5)
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Figure 1. Best-fit relations log10 M(< 2Rvir) = f (log10 Rsh,Msh), for z = 0 (upper panel) and for z = 1 (lower panel). In both
panels, the information is presented as follows. Dots represent each individual cluster or group used for the fit, with their colour
encoding the distance to the plane, darker being closer. The blue plane represents the best-fitting relation, which is spanned by
the red and orange directions (representing the first and second principal components of the standardised data, respectively).
The yellow line represents the third principal component. The plane is defined by setting this component to 0 (its mean value).
The insets present the three marginal distributions, with the dashed, red line representing the best-fit linear relation to the
marginal distribution. 3/13
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Figure 2. Scaling relation evolution summary. In all panels, dots represent the determinations at each redshift, with the bars
accounting for (16−84)% percentiles obtained through bootstrap resampling. Solid lines with their shaded regions represent
the best polynomial fits accounting for the evolution, with their 1σ confidence region. Top left: evolution of the coefficient of
the shock radius. Top right: evolution of the coefficient of Mach number. Bottom left: evolution of the independent term.
Bottom right: evolution of the scatter (in dex) around the three-dimensional scaling relation (blue line), and around the
bidimensional scaling relation (orange line).

γ(z) = 12.75−0.143z−0.144z2 (6)

The results for α(z), β (z) and γ(z) are presented graphically in the upper left, upper right, and lower left panels of Fig.
2, respectively. The lower right panel contains instead the evolution of the scatter around the fitted relation, evaluated over
the same sample, σlogM . Here the blue line refers to the scatter on the three-dimensional relation, which obeys a slightly
decreasing trend (from σlogM ≲ 0.16 dex at z ≃ 1.5 to σlogM ≲ 0.14 dex at z ≃ 0). As a comparison, the orange line presents
the corresponding evolution for the bidimensional relation, i.e., the one not using information on shock intensity, confirming
the behaviour observed in the examples in the previous section: adding information about shock intensity decreases the scatter
across the whole redshift interval considered, and appears to be crucial in recovering precise mass estimates. We refer the reader
to Supplementary Section G for more details on the evolution of the fit results. The corresponding evolution, for M(< Rvir), is
also presented in Supplementary Section C.

Assessment of the relation and its scatter
The study of the residuals and the scatter around our best-fit relations can be used as a calibration of the goodness of the fit
and a prediction on the error intrinsic to the relation. At the same time, it is useful to assess the validity of the underlying
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Figure 3. Distribution of the masses recovered by our best-fit relation (equation 3, with the fits given in equations 4-6) to
assess its intrinsic scatter. In both cases, the vertical axis presents a conditional probability density estimation of the logarithmic
error (in dex; shown as a percent error on the right of each panel), for a given redshift (left-hand panel) or for a given mass
(right-hand panel; at z = 0). That is to say, each vertical line depicts, colour-coded (the brightest, the highest), the probability
distribution of the residuals, for a given redshift or mass. The thick, red line presents the mean value, while thin, red lines
enclose the (16−84)% confidence region. Similarly, the thin, pink line contains the (16−84)% confidence region around the
bidimensional, log10 M(< 2Rvir) = f (log10 Rsh) relation.

assumptions and discussing the limitations of the model.
In the left panel of Fig. 3, we represent the evolution with cosmic time (decreasing redshift towards the right) of the scatter

around our relation. For each value on the x-axis (i.e., for each redshift), the colour along the y-axis represents the distribution
of the residuals with respect to our relation, the brightest being the most probable. Our relation is hence unbiased with redshift,
in the sense that the mean value of log10 Mfit/Mtrue averages to 0 at all times. Here, red [pink] thin lines enclose the (16−84)%
confidence region for the complete log10 M(< 2Rvir) = f (log10 Rsh,Msh) [bidimensional, log10 M(< 2Rvir) = f (log10 Rsh)]
relation, showing again how the inclusion of shock intensity information makes the predictions considerably more precise.

At z = 0, the residuals with respect to our scaling relation are presented as a function of the true mass in the right-hand
side panel of Fig. 3. The mean of the probability distribution of log10 Mfit/Mtrue (thick, red line) presents a noticeable,
although rather small (≲ 0.03dex, corresponding to a ≲ 7% bias), trend with mass. Note, however, that the mode of the
distribution of log10 Mfit/Mtrue peaks at around 0.07dex for log10 M(< 2Rvir)≲ 13.8, meaning that the most likely bias on the
mass determination of a single low-mass group would be ≈ +17%. This behaviour, which is consistent with redshift (see
Supplementary Section H), is a natural consequence of having assumed a linearised model (equation 3). While this model
captures to a reasonably high extent the trends of the data, the fact that this behaviour with mass is consistent accross cosmic
times, and not just a result of a statistical fluctuation, would imply that it can be easily corrected. We defer this possibility for
future works using simulations with more statistics.

Discussion
By using cosmological simulations, which track the coupled evolution of baryons and DM through the formation history of
galaxy groups and clusters, we have studied the locations, intensities, and evolution of the outermost accretion shocks linked
to these structures, where the collisional nature of baryonic matter enters into play and produces distinctive features on their
structural, dynamical, thermodynamical and, potentially, observable profiles.

Our main results show that location and intensity of these shocks, together with the total mass of the hosting structures, lie
on a two-dimensional plane. We have calibrated this relation to provide an empirical, fitting formula for obtaining the total
(dark and baryonic) mass of galaxy groups and clusters within large aperture radii of 2Rvir, valid in the broad redshift interval
0 ≤ z ≲ 1.5.

From the numerical standpoint, future simulation works with enhanced statistics should go in the direction of confirming
this relation with varying physical models and simulation codes, as well as deepening our understanding on possible residual
biases. From the physical perspective, while the impact of star formation physics and associated feedback mechanisms are
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unlikely to make any noticeable difference on the fate of external shocks (see, for example, [6]), other physical processes, such
as physical viscosity or thermal conduction, might be worth considering when describing cluster outskirts [7, 33].

The determination of galaxy cluster masses is a long-standing problem that has been studied extensively and intensively in
the literature. Several methods and observational strategies have been designed to tackle this issue, each of them having its
own limitations and intrinsic biases. For instance, using galaxy kinematics, [34] quote a 35% scatter between caustic and true
masses. Studies based on the hydrostatic equilibrium assumption estimate masses that are affected from a bias from the breach
of this condition, which usually lies in the range (10−30)%, as reported by different works [35, 14, 36], while other factors
(e.g., gas clumping, temperature inhomogeneities, etc.) may contribute to the scatter with similar magnitude [37]. Regarding
weak-lensing masses, the uncertainties introduced by the contamination by background, unlensed galaxies may reach for errors
up to 40% [38], to be added to uncertainties due to the mass modelling in the order of ∼ 10% [39].

In this context, we put forward the idea that, provided that new strategies and observational facilities will detect and
characterise these very large scale shocks, the results in the present work would allow to measure galaxy clusters masses
within large apertures with 1σ errors in the order of ∼ 30%. Given these error figures, this novel method would become a new
and independent manner to measure galaxy cluster masses that would be fully complementary, and with similar degree of
uncertainty, to the previously mentioned procedures.

As a result, our work would lead to an independent method to indirectly constrain the dark matter content in cosmological
structures, and hence the currently accepted ΛCDM paradigm.
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Methods
In this section, we describe the simulation where the results have been extracted from, the algorithm employed to detect and
characterise shocks in the simulation outputs, the sample of galaxy groups and clusters extracted from the simulation, the
method devised to identify the outer accretion shock of each object from our sample and, finally, the procedure we follow to
perform the fits shown in this article.

The simulation
In this work, we analyse the outcomes of a ΛCDM simulation of a L3 = (100h−1 Mpc)3 cubic volume, run with the adaptive-
mesh refinement (AMR; 40) code MASCLET [41]. The evolution of the collisionless dynamics of dark matter is addressed
by means of a multilevel and multispecies particle-mesh (PM; 42), which takes advantage of the AMR grid to increase the
force resolution of a monolithic PM as long as the mesh is refined. For the baryonic component, we make use of Eulerian,
high-resolution shock-capturing techniques (higher-order versions of the method by [43]), based on the piecewise parabolic
method (PPM; 44, 45). These methods provide a faithful description of flow discontinuities and, therefore, are especially
well-suited to handle shock waves without the need of introducing explicit artificial viscosity, and accurately describing the
energy conversion processes (see, e.g., the discussion in [46]).

The simulation assumes periodic boundary conditions and a flat cosmology with fiducial values for the cosmological
parameters, which are consistent with the latest Planck Collaboration reported values [47]: matter density parameter Ωm = 0.31,
baryonic density parameter Ωb = 0.048, Hubble dimensionless parameter h = 0.678. The initial conditions correspond to a
realisation of a Gaussian random field with spectrum P(k) = Akns T (k), whose spectral index is ns = 0.96 and the amplitude
yields a normalisation σ8 = 0.82 on 8h−1 Mpc scales. T (k) is a CDM transfer function at z = 1000 [48]. These conditions
are evolved, using the Zeldovich approximation [1], up to zini = 100, where the evolution with MASCLET starts. In order to
refine the initial conditions taking advantage of the AMR scheme, we perform a first evolution on a N3

x = 2563 cubic grid, from
whose results at zfin = 0 we choose the Lagrangian regions which will be mapped with enhanced resolution (using three nested
levels of initial conditions) back at zini, with a final best DM mass resolution of 1.48×107 M⊙ and a total of around 392 million
DM particles.

During the evolution, we dynamically and recursively refine regions based on a pseudo-Lagrangian criterion (local DM
or baryonic density), as well as other criteria based on converging flows, Jeans length, or the presence of DM particles from
refined regions in the initial conditions. With nℓ = 6 refinement levels and ∆xℓ+1/∆xℓ = 1/2, we achieve a peak resolution of
∆x6 ≃ 9kpc. Besides gravity and hydrodynamics, the simulation includes cooling [49] and a parametrization of heating from
an extragalactic UV background [50], but does not include star formation nor other feedback mechanism. While feedback from
supernovae and active galactic nuclei may have an important impact on the distribution of weak, internal shocks, they are most
likely irrelevant for the study of accretion shocks [see, e.g., 51].

The shock finder
In post-processing, shock waves in each snapshot of the simulation are detected and characterised making use of the shock
finder presented by [52], which exploits the whole multi-resolution information of the outputs of our AMR code. The basic
steps can be summarised as follows:

1. Tentative shocked cells are flagged as those with a converging gas flow (∇ · v⃗ < 0) and aligned temperature and entropy
gradients (∇T ·∇S > 0).

2. For each tentative shocked cell, we move to its left and to its right along the x axis (equivalently, we repeat the process
with the y and z axes), until we reach a non-shocked cell. We shall refer to these cells with the subindex ‘pre’ and ‘post’
(standing for preshock [or upstream of the shock] and postshock [or downstream of the shock], respectively), where
Tpost,x > Tpre,x. For a cell to be shocked, we also require that the gas densities verify ρpost,x > ρpre,x in consistency with
the Rankine-Hugoniot jump conditions [e.g., 53].

3. The one-dimensional Mach number, Mx, is computed from the Rankine-Hugoniot relation,

Tpost,x

Tpre,x
=

(5M 2
x −1)(M 2

x +3)
16M 2

x
, (7)

whose inversion yields

M 2
x =

8q−7+4
√

4q2 −7q+4
5

, with q ≡ Tpost,x

Tpre,x
> 1. (8)
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4. The three-dimensional Mach number is obtained when combining the three directions as M =
(
M 2

x +M 2
y +M 2

z
)1/2.

Thus, the shock finder corresponds to a coordinate-splitting strategy [23, 46], in which projection effects and numerical
artefacts due to the Cartesian geometry are minimised by the averaging over the three spatial directions. This artificially
imposed geometry is overcome by other family of shock finders, often dubbed coordinate-unsplit, which use the direction
of the local temperature gradient to identify the pre- and post-shock states [54, 55]. While splitting and unsplit algorithms
differ significantly when dealing with weak, internal shocks, remarkable convergence is found for strong, external shocks [54,
their figure 4]. Finally, while there are other possibilities to solve for the Mach number than the temperature jump, such as the
velocity jump, [46, 56] report generally comparable results for both methods.

Halo catalogues
For each snapshot of the simulation, we have extracted halo catalogues using the public halo finder ASOHF [57, 58, 59], which
uses the spherical overdensity definition [60] to delimit the extent of haloes around density peaks, together with a number of
particularities regarding unbinding mechanisms and handling of substructures. The extent of haloes is defined in our case by
the virial radius, Rvir, which is the radius enclosing an overdensity ∆c = ⟨ρ⟩/ρc = 18π2 +82x−39x2, where x = Ωm(z)−1
and Ωm(z) being the matter density parameter at a redshift z [61].

At z = 0, the simulated volume contains 31 well-resolved clusters with masses above 1014 M⊙ (the largest of them having a
mass of 5.7×1014 M⊙), as well as 358 groups with DM masses exceeding 1013 M⊙.

Merger trees
Haloes amongst different snapshots are connected using the auxiliary mtree.py code of the ASOHF package, which identifies
all objects contributing to a particular halo in a posterior snapshot. In particular, this code also determines the main progenitor
of each halo at the immediately previous snapshot, using a criterion based on the most-bound particles. For more details, we
refer the interested reader to the original paper of the halo finder [59]. Using the main branch we can compute the accretion rate
proxy Γ∆ [62],

Γ∆ =
∆ logM∆
∆ loga

, (9)

where a = (1+ z)−1 is the scale factor of the FLRW metric, and M∆ is any spherical-overdensity mass. While in [63] we
characterised the instantaneous accretion rates using Savitzky-Golay [64] filters, here we have chosen to compute the accretion
rate over the last dynamical time, given that the main effect we are studying in this work, i.e. the propagation of the external
accretion shock, is the result of the continued accretion history over the object’s history, rather than a quantity linked to the
instantaneous growth of the halo at a particular overdensity.

Dynamical state classification
At any given time, we split our sample of galaxy groups and clusters in a totally relaxed, a marginally relaxed and a disturbed
class, following the methodology introduced by [65], who calibrated redshift-dependent thresholds and weights on several
parameters, such as centre offset (∆r), virial ratio (η), mean radial velocity (⟨ṽr⟩), sparsity (s200c,500c) and three-dimensional
ellipticity ε of the dark matter halo, so as to correlate with the presence of mergers and/or strong accretion periods.

By z = 0, out of the 31 clusters, 5 (16%) are classified as totally relaxed, 15 (58%) as marginally relaxed, and the rest (11, a
35%) are disturbed.

Accretion shock characterisation
While above we have described the procedure to identify shock waves throughout the computational domain, here we describe
the procedure by which we identify the outermost accretion shock of each group or cluster, and how we characterise it.

We start by computing directional profiles of the Mach number, using Nθ ×Nφ = 50×50 bins in solid angle, equally spaced
in cosθ and φ . Alongside each angular direction, we take the directional profile of the Mach number, M , from rmin = Rvir to
rmax = 5Rvir, using logarithmically spaced bins with ∆r = 0.01dex. For these regards, unshocked cells are considered to have
M = 0. The directional profiles are taken using linear interpolation from the data at the highest resolution (coarser than ∆r)
available at each point.

For each directional profile, Mθ ,φ (r), we consider it crosses the accretion shock surface at a radial distance r = Rsh(θ ,φ) if
this distance corresponds to the largest local maximum of Mθ ,φ (r) in the interval [rmin,rmax], and its value exceeds a given
threshold on the Mach number to be regarded as a strong shock, which we have set at M strong

thr = 10. Naturally, it may happen
that these conditions are not met for a particular angular bin, in which case we consider that there is no crossing with the
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accretion shock shell in this direction. Objects where Rsh(θ ,φ) is not identified in at least 75% of the directions are purged
from the sample.

In Suppl. Fig. 1, we show several visual impressions of the accretion shock shells recovered by this process, in order to
demonstrate the robustness of the procedure. Besides the characterisation of Rsh(θ ,φ), we also extract additional information,
which we describe below:

Accretion shock equivalent radius. In order to characterise the size of the accretion shock shell, we aim to obtain a single
equivalent, or effective radius, Rsh. Near the interface between the accretion shock of the halo (where matter is infalling
smoothly) and a filament, the radius may get increased (see Suppl. Fig. 1, e.g. its left panel), causing the distribution of values
of Rsh(θ ,φ) to be right-skewed. Therefore, the mean may be strongly biased high by these directions, even if they correspond
to a small fraction of the solid angle around the halo. While the median is a more robust indicator, it is also sensitive to the
presence of extreme values, especially when the number of directions (≤ Nθ Nφ = 2500) is not very high. The mode, or the
most probable value of the distribution of Rsh(θ ,φ), however, is insensitive to this skewness.

In order to determine the mode of the values of Rsh(θ ,φ), which is a continuous variable, we estimate its probability
density function (PDF), f (R), by means of a kernel density estimation using Gaussian kernels (see Suppl. Fig. 2), whose
bandwidth is fixed according to Scott’s rule [66]. The shock radius is then set to the absolute maximum of the resulting PDF,
Rsh = argmax f (R).

Accretion shock Mach number. From the accretion shock shell, we can obtain the distribution of Mach number across it in a
straightforward way, by setting Msh(θ ,φ) = Mθ ,φ (r = Rsh(θ ,φ)). In order to obtain the characteristic strength of the shock,
we define the effective Mach number as the average of Msh(θ ,φ) over the shock shell.

Fits for the multi-dimensional scaling relations
We describe here the procedure we follow to fit the multi-dimensional (linear) scaling relations that we show in Fig. 1. We may
exemplify it here with a bivariate relation, Z(X ,Y ), although the procedure is totally analogous for relations of higher or lower
number of independent variables.

Outlier removal
Even though the variable Z may be strongly correlated to X and Y , the presence of outliers can significantly bias the fitting
of linear relations and, thus, hinder our ability to recover the underlying relation. These outliers can correspond to a variety
of effects, ranging from underresolved objects, to complex configurations where the outer shock detection algorithm has not
reached a satisfactory solution, or either it is strongly disrupted. Therefore, before proceeding with the fits, we clean the sample
from data points which depart significantly from the underlying trend.

Since Z will most often be the mass, and this variable is not uniformly distributed (but instead there is an important
preponderance of low-mass objects with respect to high-mass ones) care must be taken in this procedure so as not to get rid of
the objects in the high-mass range.

To this end, we compute the conditional probability distribution of Z given (X ,Y ), by

ρ(Z|X ,Y ) =
ρ(X ,Y,Z)
ρ(X ,Y )

, (10)

where ρ(X ,Y ) is the two-dimensional probability density function of X and Y (marginalised over Z), and ρ(X ,Y,Z) is the
complete, three-dimensional probability density function of X , Y and Z. Both of them are estimated via a Gaussian kernel
density estimation procedure, in a similar manner to what we have described before for the accretion shock location procedure.
Then, we choose to remove the 5% most unlikely data points (the ones with smallest value of ρ(Z|X ,Y )) from our sample to fit
our scaling relations. While this threshold is arbitrary, in our experiments it seems sufficient to prune the values that are visually
far away from the general trend.

Filtering out of objects with a high uncertainty in Rsh. In some cases, as discussed in Supplementary Section A (see the
right panel of Suppl. Fig. 1), the distribution of values of Rsh(θ ,φ) is not monomodal, thus difficulting the determination of the
equivalent radius, Rsh. Aiming to filter out these cases to prevent these uncertainties from propagating to our results, we have
constructed an ad-hoc criterion to flag them. Given a kernel-density estimate (KDE) distribution f (R) of the values of Rsh(θ ,φ),
we consider it to be multimodal (and thus we discard it) if there is at least one local minimum of f that simultaneously fulfils:

• Its value is below 0.8 times the minimum of the relative maxima that surround it.

• Both these maxima are above 0.5 times the absolute maximum of f .
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Strictly, f would be multimodal if there it has at least one relative minimum. The first condition prevents that objects are
discarded due to a relative minimum between two maxima that is not significant, and may be present due to sampling noise.
The second condition prevents that we discard objects that exhibit fluctuations in the tails of the KDE, which do not introduce
confusion in our determination of Rsh.

Fit using principal component analysis
We describe here the process we follow in order to find the best plane (or, equivalently, the line or the hyperplane, for fewer or
higher dimensions) fitting our data. Although a straightforward possibility would be to use ordinary least squares (OLS) to fit
Z(X ,Y ) to the desired functional form, we do not pursue this procedure here. The main reason behind this is the fact that, by
minimising the residuals between Zi and Z(Xi,Yi), the symmetry amongst variables is broken, i.e., the result of a fit Z(X ,Y )
would be different from a fit X(Y,Z) or Y (X ,Z). Aiming to find a general relation between these variables, we find no reason
to break this symmetry, and perform instead a total least squares fit (TLS), where the distance from the points to the plane is
minimised (instead of just the Z-axis distance, as it is done with OLS). Naturally, in doing these fits, we work with standardised
variables, since otherwise the distances we made reference to, and hence our resulting fit, would depend on the unit system,

x̃ =
X −µx

σx
, ỹ =

Y −µy

σy
, z̃ =

Z −µz

σz
, (11)

where µx(,y,z) and σx(,y,z) are, respectively, the mean and standard deviation of X(, Y , Z).
To find the plane that these data best fit to, we apply standard principal component analysis (PCA; [67]). We compute the

covariance matrix,

Σi j =
N

∑
k=1

x̃i
(k)x̃

j
(k), where {x̃i

(k)}3
i=1 = {x̃(k), ỹ(k), z̃(k)} (12)

which is symmetric and hence diagonalisable with real eigenvalues and orthogonal eigenvectors. Therefore, there exists a basis
in which the correlation matrix is diagonal, implying that a change of basis would make the components uncorrelated. These are
the so-called principal components ({PCi}3

i=1). The eigenvalue associated to each principal component represents, if properly
normalised, the fraction of the variance explained by this component (λi). Therefore, if we sort the principal components
in non-increasing order of their eigenvalues (λ1 ≥ λ2 ≥ λ3), then the best-fitting plane will be the one spanned by PC1 and
PC2, i.e., it will be orthogonal to the third eigenvector. It must be borne in mind that this orthogonality is not preserved when
going back to the original variables from the standardised ones. Therefore, if we call v⃗3 the eigenvector associated to PC3, the
best-fitting plane would then be

v(1)3 x̃+ v(2)3 ỹ+ v(3)3 z̃ = 0, (13)

which, converted back to the original variables would read:

Z =
σz

v(3)3

[(
v(1)3 µx

σx
+

v(2)3 µy

σy
+

v(3)3 µz

σz

)
− v(1)3

σx
X − v(2)3

σy
Y

]
. (14)

This methodology can be extended in a straightforward way to fit a (N −1)-dimensional hyperplane to N-dimensional data.

Fits for the evolution of the parameters
In order to produce the fits shown in Fig. 2, we have followed a similar methodology to the one described in [65]. The evolution
with redshift of each of the quantities shown is fitted, by ordinary least squares weighted to the inverse variance (which had
been estimated through bootstrap resampling), by polynomials of increasing degree, until the highest degree coefficient is
insignificant (p-value above 0.046 or reduced chi-squared below 0.25).
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Supplementary material
A Visual impression of the accretion shock identification procedure

Suppl. Fig. 1. Visual impression of the shock shell identification results. The three panels correspond to three different
galaxy clusters at z = 0, one of each dynamical state category. The colourmaps show thin (∼ 36kpc) slices of the gas densities
(in units of the cosmic mean gas density) through the cluster centres. The virial radius is indicated by the black, dotted circle.
The green, dashed lines indicate the shock shell, in the directions where it can be located. The line in the bottom left corner
shows a 1Mpc ruler for visual reference.

With the aim of showcasing the typical appearance of our detected accretion shocks, as well as presenting a visual test of
the trustworthiness of our detection process, we present in Suppl. Fig. 1 three panels corresponding to three galaxy clusters at
z = 0, each of them corresponding to a different dynamical state at the present time according to our classification. In these
panels we overplot the the virial sphere (black, dotted line) and the shell corresponding to the accretion shock in the directions
it has been detected (green, dashed line).

The left panel corresponds to our most massive galaxy cluster, CL101, which is disturbed by z ≃ 0 due to a recent merger
with mass ratio 1:5 at z ≃ 0.19, that has proceeded from the bottom-right of the slice. Also in this direction, another massive
structure is approaching the cluster. Thus, the accretion shock shell is disrupted in this direction, and correspondingly not
detected by our procedure. In the remaining directions, the algorithm delimits correctly the location of the outer accretion
shock, which can be seen as a jump in the underlying density map.

The middle panel shows a slice through CL102, which is a marginally relaxed cluster which suffered its last merger, with a
mass ratio of ∼1:9, at z ≃ 0.3. In this case, the shock shell is rather asymmetric, mainly due to its anisotropic environment,
dominated by several filaments, and to several minor mergers at z ≃ 0.5. In this case, it can be seen how our shock shell
identification procedure naturally excludes the directions of the filaments, where the accretion shock is not present.

Finally, the right panel of Suppl. Fig. 1 corresponds to a totally relaxed cluster, CL202. This object suffered a minor merger
(mass ratio of 1:8) at z ≃ 0.3, but unlike the example in the middle panel, where the merger was almost head-on, in this case the
merger had a larger impact parameter. This may justify why in this case the cluster has had time to fall back to relaxation, when
assessed at the virial volume, while outside the virial radius the gas density shows a more disturbed morphology, with a very
anisotropic accretion shell. This cluster is on the verge of a merger with another structure, proceeding from the lower part of
the slice. It is worth mentioning how, in this situation, our algorithm is picking the accretion shock boundary of the infalling
structure as part of the accretion shell of the main cluster. Generally, when two haloes are merging and their accretion shocks
join, it is not trivial to establish since when they must be regarded as a single object for the purpose of identifying its joint outer
shock. However, our accretion shock equivalent radius definition, based on the mode of the PDF of the angular distribution of
distances to the shock shell, unlike other statistics such as the arithmetic mean, gets minimally biased by these events (since the
mode is robust to the presence of tails in the distribution).

Given that, in what follows, we aim to represent these shock shells with a single value of a so-called equivalent radius, in
Suppl. Fig. 2 we comment on this issue by presenting the distribution of radial distances to the accretion shock shell, Rsh(θ ,φ)
(top row), and the distribution of Mach numbers through the accretion shock shell, Msh(θ ,φ) (bottom row), for the same three
clusters displayed in Suppl. Fig. 1.

In most cases (such as CL101 or CL102; left and central figures), the distribution of shock radii is monomodal and
right-skewed, implying that the mean and, to a lesser extent, the median get dragged towards larger values by the tails of the
distribution. In these cases, however, the peak of the PDF is well-defined and provides a robust measurement of the shock
radius, in the sense that it does not depend on the particular value of rmax (which has a large influence on the right tail of
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Suppl. Fig. 2. Examples on the determination of Rsh and Msh, on the same clusters as Suppl. Fig. 1. The top rows present
the distribution of values of Rsh(θ ,φ), with a histogram (blue line) and with its corresponding Gaussian kernel density
estimation (orange line). The green arrow indicates the most frequent value (i.e., the peak of the probability density function, or
mode), which we associate to the shock radius (Rsh), while the two black arrows show the mean (R̄sh) and median (R̃sh) values,
for comparison. The bottom row contains the same information regarding the distribution of Msh(θ ,φ). The upper panels also
inform about the shock coverage fraction, i.e., the fraction of the solid angle around the object in which we identify the shock
cell.

the distribution). In the vast majority of these cases, also the distribution of Msh(θ ,φ) is monomodal, with typically small
differences between the mean, median and mode of the distribution.

On the other hand, in some cases the distribution of values of Rsh(θ ,φ) might be multimodal. Such is the case of CL202
(right column), where three peaks are captured by the kernel density estimate. Additionally, in this case, a smaller fraction of the
solid angle around the cluster is found to contain the shock shell, indicating a disrupted morphology, most likely associated to
the presence of the infalling object in the lower direction (see right panel of Suppl. Fig. 1). Also the Mach number distribution
appears to be bimodal in this case. In cases like this, though infrequent, the characterisation is not so straightforward. This is
why we have cleaned our sample from multimodal distributions of Rsh(θ ,φ) (see the Methods section).

It is interesting to highlight how shock morphologies, at least from the qualitative point of view, do not seem to be
significantly correlated to our usual measures of dynamical state. This must not be surprising, since these measures are
associated to a particular aperture (i.e., Rvir) much smaller than the typical volume enclosed by the shock shells (a factor
2−3 in radius). Indeed, we may find clusters that are dynamically disturbed, when looking at the virial volume, that exhibit
rather spherical accretion shocks (e.g., CL101; see Suppl. Fig. 1); or highly relaxed clusters with more complex-shaped outer
boundaries (such as CL202).

B Statistical summary of the sample
Suppl. Fig. 3 presents a summary, in statistical terms, of our sample, both at z = 0 and at z = 1 (left-hand side and right-hand
side panels, respectively). For each cosmic epoch, we present a corner-like plot, including the univariate distributions of shock
radius Rsh, mean Mach number Msh, total mass within 2Rvir, accretion rate Γvir, and Rsh/Rvir; and scatter plots between each
pair of variables to illustrate their correlations or lack thereof.
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C Fits for the mass measured in an aperture of Rvir

While in the results that we report in the main article we consistently use 2Rvir as our mass definition, and this is the mass
that we have proposed to infer using shock sizes and intensities through our fitting relation, there is no particular reason to
choose this specific aperture. In principle, the properties of the shock shell would be best correlated to the gravitational mass
driving the collapse of the structure and, hence, the generation and propagation of the accretion shock. However, in a fully
three-dimensional picture, it is not straightforward to agree on the definition of this mass. Therefore, the mass aperture could be
varied in a sensibly large interval, as long as it is still a good estimate with the mass driving the collapse of the galaxy cluster or
group.
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Suppl. Fig. 4. Scaling relation evolution summary, totally analogue to Fig. 2 in the main text, for the fit measuring the masses
within Rvir. Here, all plot elements correspond the fits within Rvir, except for gray lines, which contain the fits for 2Rvir that
were shown in Fig. 2, for reference. Top left: evolution of the coefficient of the shock radius. Top right: evolution of the
coefficient of Mach number. Bottom left: evolution of the independent term. Bottom right: evolution of the scatter (in dex)
around the three-dimensional scaling relation (blue line), and around the bidimensional scaling relation (orange line).

In Suppl. Fig. 4, we show this by presenting the results for the three-dimensional scaling relation (Eq. 3), taking the
masses within Rvir, instead of 2Rvir. The four panels in the figure are completely analogous to Fig. 2 in the main text, with the
addition of the gray lines, which contain the original fits within 2Rvir for a better visual comparison. Generally, the evolution
of the fit coefficients α and β (the coefficients of log10 Rsh and M , respectively) with redshift vary minimally, pointing at a
consistent behaviour at different radial apertures as stated. Naturally, the normalisation decreases when shifting from 2Rvir to
Rvir. Regarding the scatter evolution, while at z ∼ 0 masses can be determined with similar accuracy at both radial volumes, at
high redshift choosing the larger aperture reduces very significantly the scatter around our relation.
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D Results marginalised over Msh: the 2d relation
The bidimensional relation (i.e., marginalised over the shock intensity, log10 M(< 2Rvir) = f (log10 Rsh)) is a useful baseline to
compare our results with. While in Fig. 2 of the main text we have already compared the magnitude of the scatter around both
relations, it is still interesting to study the logarithmic slope of the bidimensional relation. A logarithmic slope of 3 (M ∝ R3

sh)
would indicate a self-similar scaling of the marginalised data (even though, when shock intensity is considered, this additional
information is capable of dramatically reducing the scatter). The evolution of this slope of the marginalised relation with
cosmic time is shown in Suppl. Fig. 5, which is similar in its presentation to Fig. 2 of the main text. Even though this quantity
exhibits a clear evolution, from ≃ 3.2 at z ≃ 1.5 to ≃ 2.8 at z ≃ 0, once the uncertainties associated to our limited statistics are
considered, the slope of the marginalised relation is consistent with a self-similar behaviour (in the sense that it cannot be ruled
out). Far from meaning that 1013M⊙ groups and 5×1014M⊙ clusters behave likewise (the large scatter around the marginalised
relation reflects that the behaviour is far from being that simple), this serves as a sanity check for our shock shell identification
procedure.
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Suppl. Fig. 5. Evolution of the logarithmic slope of the bidimensional relation, log10 M(< 2Rvir) = f (log10 Rsh). Here, the
dots correspond to the determinations of the slope at each snapshot, with the error bars obtained through bootstrap resampling.
The dark contour indicates the 1σ statistical errors associated to the dispersion with respect to the fit, while the light countour
contains, in addition to that, the systematic uncertainties associated to the magnitude of the error bars.

E Further details on the fitted relations
In equations 1 and 2 of the main text we have introduced our best fits for z = 0 and z = 1. Here, we provide some further
information about the results of these fits. In particular, Suppl. Fig. 6 presents graphically the uncertainties and correlations
associated to the fit parameters α (the coefficient of log10 Rsh), β (the cofficient of log10 M(< 2Rvir)), and γ (the independent
term), for z = 0 (left) and z = 1 (right). These plots are similar to those of Suppl. Fig. 3, but here each dot corresponds
to a different estimation of the fit parameters (which we have produced through bootstrap resampling). Naturally, there is
a reasonably high degree of uncertainty on each of the parameters, mostly associated to rather tight correlations amongst
themselves. That is to say, upon a particular resampling, the fit might prefer a slightly higher value of the coefficient α , at the
expense of a lower value of the coefficient β , hence yielding a noticeable anticorrelation amongst these two variables.

In Suppl. Fig. 7 we show the fraction of variance retained by each of the principal components, again for z = 0 (left) and
z = 1 (right). In both cases, a single principal component is capable of reproducing ∼ 85% of the variance of the standardised
variables (implying that an only variable would be enough to describe this data, losing only 15% of the scatter). However, even
though the distribution of points in this three-dimensional space is slightly prolate, the second principal component outbalances
the third one by a factor of 3−4 in both cases, implying that, rather than having a component retaining most of the variance
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shown in the upper and lower panels of Fig. 1) and the virial, total mass accretion rate, for the best-fits at z = 0 and z = 1,
respectively, for the left-hand side and right-hand side panels. Written at the bottom right of each panel is the Spearman
correlation coefficient between this pair of variables.

and two uncorrelated, similarly important variables encapsulating the residuals, the addition of a second variable is capable of
breaking most of the degeneracy and hence providing much more precise estimates.

F Relation of the accretion shock location to the virial accretion rate
While simple models for the collapse of an overdensity, assuming for example constant accretion rates, predict that the location
of the accretion shock is determined by the accretion rate [24], the reality in a complex, cosmological context, where the growth
of an object is the result of the integrated, time-dependent accretion rate, with anisotropic accretion and mergers playing a very
significant role, makes these correlations much more insignificant [e.g., 27, their figure 6]. While in the panels of Suppl. Fig.
3 it can already be seen that Rsh/Rvir is only very loosely correlated to the accretion rate proxy Γvir (see its definition in the
Methods section), in Suppl. Fig. 8 we extend on this topic, by presenting the residuals of our three-dimensional relation (at
z = 0, left-hand side panel; and at z = 1, right-hand side panel) as a function of the accretion rate. These two components are
essentially uncorrelated, implying that the addition of information about the mass accretion rate over the last dynamical times
brings very limited or no new information.

G Evolution of the explained variance fractions, uncertainties and correlations amongst the fit parameters
While the evolution of the intrinsic uncertainties in the determination of each of the coefficients can be seen in Fig. 2 of the
main text, similarly to what we have shown in Suppl. Fig. 6 for two specific snapshots of the simulation, in the left-hand side
panel of Suppl. Fig. 9 we present the evolution with decreasing redshift of the correlation amongst the fit parameters, obtained
in an analogous manner to what we have described in Supplementary Section E. Generally speaking, most of the times the
large uncertainties in the parameters seen in Fig. 2 of the main text are not directly relatable to uncertainty in the final solution,
but rather to an important covariance or degeneracy amongst the parameters. Calibrating these relations on larger simulation
volumes, both because they would host larger structures (therefore, increasing our range of values of radii, Mach numbers and
masses) and because they would contain richer statistics, would help to bring down these correlations and therefore decrease
the uncertainty in our parameters.

On the other hand, the right-hand side panel of Suppl. Fig. 9 presents the evolution of the variance retained by each of the
principal components. While the results do not change dramatically with cosmic time, and therefore the interpretation of the
relation can be mantained, there is a clear trend for PC2 to become more relevant with respect to PC3 as the redshift decreases,
meaning that the relation becomes more and more oblate as cosmic time progresses.

H Intrinsic scatter of the relation: redshift evolution of its mass dependence
In the right-hand side panel of Fig. 3 of the main paper, we had presented the mass-dependence of the residuals with respect to
our best-fit relation at z = 0. This figure showed that there is a small bias with mass (of a hundredths of a dex, corresponding
to a ≲ 7% bias), as a consequence that the underlying relation might be non-linear. Interestingly, as we show in the different
panels of Suppl. Fig. 10, the behaviour of this small bias with mass is consistent accross our whole redshift range. This hints at
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a behaviour that could be easily corrected, by calibrating this bias, and therefore would contribute to lower the scatter of our
mass determinations. However, we leave this endeavour for future work with enhanced statistics.
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Suppl. Fig. 10. Distribution of the residuals (log10 Mfit/Mtrue) with respect to our fitted three-dimensional scaling relation, at
different cosmic times (from z = 1.5 to z = 0 in increments of ∆z = 0.3). Each panel is similar to the right-hand side panel of
Fig. 3 of the main text, but here we show only the contours enclosing the (16−84)% percentiles around the three-dimensional
relation (blue) and the two-dimensional relation (ignoring the information about shock intensity; orange). The solid line
corresponds to the mean value of the residuals.
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144 Turbulence and shocks during galaxy cluster assembly

8.3 Future directions

The most immediate continuation of the work presented in this Chapter with
respect to turbulence is the extension of the analyses in Paper A3 to the larger-
volume simulations also referenced in Sec. 7.3. While our current runs (generally
resolving ∼ 60% of the virial mass at ∆x ∼ 20 kpc resolution) are insufficient for
a proper study of turbulent flows, new runs with higher numerical resolution are
already underway. A simulation with a representative number of highly-resolved
galaxy clusters and groups will enable the detailed study of several aspects
related to the evolution of turbulent flows in the ICM, including:

• Dependence and evolution of the (compressive, solenoidal and total) ve-
locity spectra with dynamical state, cluster-centric distance, and other
properties of the cluster. Some effort in this direction has been previously
performed, for instance, by Vazza et al. (2011), who find differences in
the power spectra and third-order structure functions according to their
dynamical state classification. Enabled by the use of a large sample of
clusters, we hope to be able to study in more detail the evolution of the
turbulent velocity fields and their energetics during the assembly of galaxy
clusters, and additionally connect these properties with parameters of
cluster mergers (e.g., mass ratio, impact parameter, relative velocity, etc..)

Linked to this, on a more technical side, it would also be interesting to
study the effects of resolution and the refining strategy on the resulting
turbulence statistics. To this aim, a series of simulations of a single cluster
using either adaptive or static grid refinement have already been run.

• The relation between hydrostatic mass bias and different parameters and
observables associated to cluster assembly. Since the evolution of mass bias
has been shown to be highly non-trivial (see, for instance, Bennett and
Sijacki 2022), it is of great interest to study its relation with observable
cluster properties in order to try to reduce the uncertainties associated to
its scatter.

In close connection to this, with the tools developed within this PhD
Thesis, we also plan to study the evolution of the non-thermal pressure
support in the ICM in the near future.

Regarding the study of shocks in galaxy clusters, in the mid-term, it would be
interesting to perform a more detailed study of the effect of different physics to
the propagation and the evolution of accretion and merger shocks. For instance,
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the relative orientations between shock fronts and magnetic fields have been
shown to have a strong impact on the acceleration of cosmic rays (Brüggen
et al. 2012, Banfi, Vazza, and Wittor 2020). On the other hand, the physical
viscosity of the medium where shocks propagate (Sijacki and Springel 2006)
and the presence of additional, non-gravitational physics (Kang et al. 2007) can
also determine the evolution, fate and distribution of these features. Magnetic
fields and feedback mechanisms are already included in MASCLET, making
this study a feasible aim on a short/mid range. However, physical viscosity is
not present in the code, and even its effective value in the ICM is still a matter
of debate (see, e.g., the discussion in Roediger et al. 2013).

With the MHD version of MASCLET, the amplification of a primordial
magnetic field by the small-scale dynamo mechanism will also be able to be
studied in detail. The close connection between turbulence and dynamical state,
already hinted in Paper A3, suggests that the evolution of magnetic fields in
the ICM will itself be connected to the assembly of the cluster, making this
topic a natural continuation of the work presented here. Nevertheless, although
tentative studies have been performed within this PhD Thesis, properly resolving
the small-scale dynamo mechanism in large volume simulations is challenging,
especially when AMR and the divergence-cleaning algorithm (which is known to
be more dissipative; Balsara and Kim 2004) are involved, demanding resolution
to be pushed to even finer scales than for the study of hydrodynamic turbulence.

Finally, a topic that has not been explored during this PhD Thesis corresponds
to bridging the gap between these theoretical analyses and observations. In
particular, using the full-radiative transfer code SPEV (Mimica et al. 2009,
Cuesta-Martínez, Aloy, and Mimica 2015, Mimica et al. 2016) that has already
been introduced in Sec. 7.3, it would be possible, for instance, to study the
relation between X-ray surface brightness fluctuations and the turbulent velocity
field. Regarding non-thermal radio emission, while in previous works by the
group using hydrodynamical simulations (Planelles et al. 2018) it was estimated
by making assumptions on the magnetic field, this study could now be extended
to include physically-realistic magnetic fields.





CHAPTER 9

Cosmic voids
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Cosmic voids represent an opposite end to galaxy clusters in the cosmic
web description, by being regions that generally evolve by expanding along

the three spatial directions. The study of the properties of voids, together with
the structures (mainly, galaxies) that inhabit them, triggers great interest in
Astrophysics and Cosmology. This Chapter summarises the results of a work
aimed to apply to cosmic voids similar techniques to the ones used in Paper A1
for galaxy clusters.

9.1 Can matter enter voids? Inflows in under-
dense regions

This Section is based on Vallés-Pérez, Quilis, and Planelles (2021)1, and the full
paper can be found in Appendix A4.

1D. Vallés-Pérez, V. Quilis, and S. Planelles. “Void Replenishment: How Voids Accrete
Matter Over Cosmic History.” In: Astrophys. J. Lett. 920.1, L2 (Oct. 2021), p. L2. doi:
10.3847/2041-8213/ac2816

https://doi.org/10.3847/2041-8213/ac2816


148 Cosmic voids

Overview

Context. Cosmic voids are underdense regions that fill up most of the volume
in the Universe and emerge in regions comprising negative initial density fluc-
tuations, which subsequently expand as matter around them collapses to form
walls, filaments and haloes.

Aims. Study the nature of the mass flows through the boundaries of voids,
to determine whether their velocity field is purely outflowing or more complex
patterns arise.

Methods. From the outputs of a cosmological simulation especially set up
to describe with enhanced detail the regions that will form voids and their
surroundings, a sample of voids defined as the largest possible ellipsoids around
expanding, density minima, possibly surrounded by steep density gradients is
extracted. The gas mass fluxes through the boundary of voids are estimated in
post-processing using a pseudo-Lagrangian approach.

Results. Contrary to the common expectation, around 10% of the gas mass in
voids at z = 0 has been inflowed from overdense regions, reaching larger fractions
for some voids (e.g., ∼ 35% at the 84-percentile). Furthermore, by tracking dark
matter inflows, a significant fraction of the mass entering voids lingers on long
periods of time reaching inner void-centric radii.

Conclusions. The results reported in this Letter suggest that, if voids are
defined from the density field as the largest possible regions around density
minima, then it is not possible to affirm that their velocity field is purely
outflowing, even for the largest ones. The existence of inflows into voids, a
fraction of them coming from gas that has inhabited denser regions and has
subsequently been unbound, may have important consequences for the scenario
of galaxy formation within voids.

9.2 Future directions

The evolution of galaxies in low-density environments has triggered a lot of
attention recently, as it is yet to be seen in how far their properties differ from
those of galaxies in denser regions, such as filaments or clusters (Hahn et al. 2007,
Kreckel et al. 2011, van de Weygaert and Platen 2011, Ricciardelli et al. 2014,
Domínguez-Gómez et al. 2023). On the observational side, a significant effort is
being conducted aiming to characterise statistically complete sets of galaxies
inhabiting voids, including their dark and baryonic mass assembly histories, gas
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properties, etc. This is the case, for instance, of the Calar Alto Void Integral-field
Treasury surveY (CAVITY) project.2

Producing and studying the properties of void galaxies in cosmological simu-
lations comes with an additional layer of complexity, since both, particle-based
SPH and Eulerian AMR simulations are naturally biased towards describing
high-density regions. While this is an inherent limitation for finite-mass meth-
ods, in AMR simulations it is in principle possible to define a set of refinement
criteria to gain resolution precisely in low-density regions. This was attempted,
for instance, by Ricciardelli, Quilis, and Planelles (2013) and subsequent works
by the group, where a first level of refinement is set based on a low-resolution
simulation on the Lagrangian surroundings of underdense regions, and standard,
pseudo-Lagrangian AMR is used therein. However, as shown in the aforemen-
tioned references, this was insufficient to produce a reasonable population of
void galaxies. Therefore, it is imperative that future work is devoted to find a
way to sample void regions with sufficient numerical resolution while keeping
the computational cost (i.e., the number of resolution elements) at a reasonable
level.

Once the new simulations are available, it will be possible to study the
evolution of gas within voids and void haloes in great detail, for example by
using the tracer particles introduced in MASCLET during the course of this
PhD Thesis. By doing this, it will be possible, on the one hand, to shed more
light on the nature of gas inflows into voids. Additionally, it will allow exploring
to which extent this gas can be accreted or interact with void galaxies, and how
this affects their evolution.

2https://cavity.caha.es.

https://cavity.caha.es
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CHAPTER 10

Summary, concluding remarks and outlook

This PhD Thesis presents the results of theoretical research on the nature,
the properties, and the evolution of several aspects related to cosmic

velocity flows, with especial attention devoted to galaxy clusters, in the first
place, and cosmic voids, secondly, as the two main astrophysical objects of
study. This research has been primarily conducted by means of the analysis of
cosmological simulations and has required the development of new numerical tools
for computationally-intensive analyses, which have been released as open-source
software packages for the use of the scientific community.

Therefore, the work reported in this dissertation, which is mainly contained
in the six publications that constitute Appendix A and can be generally framed
within the field of Computational or Numerical Cosmology, is a combination of
both theoretical and numerical research. Below, I summarise the main findings,
results and outputs of this Thesis. In its numerical facet, these include:

• The vortex code. In order to enable analyses on the velocity field of
our Eulerian AMR simulations, which do not sample space with uniform
resolution, a new algorithm based on the resolution of elliptic PDEs for
a scalar and a vector potential which yield the Helmholtz decomposition
(compressive+solenoidal) of a vector field has been designed, implemented,
tested, and publicly released. The code has been subsequently extended
with a multi-scale filter to extract the turbulent part of a velocity field,
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following the ideas of the algorithm of Vazza, Roediger, and Brüggen (2012)
and Vazza et al. (2017).

– The particle-based version of vortex. In order to allow these
algorithms to be applied to a wider range of simulations, a fork of the
original vortex code, named vortex-p has been developed. The
velocity field of a particle-based (SPH, MFM, etc.) simulation can be
mapped to an ad-hoc AMR grid hierarchy, and the same algorithms
as in the original version can be applied. While the user-ready version
of this code is still not fully finished, it is already publicly available
and being applied to a range of simulations. A publication describing
it has been submitted to the journal and recently accepted.

• ASOHF, an adaptive spherical overdensity halo finder first in-
troduced by Planelles and Quilis (2010), has been thoroughly redesigned
and rewritten in order to improve several of its features, including its
parallel performance and memory efficiency, its capabilities of dealing with
substructure; and to include new ones, such as the possibility to look for
galaxies within haloes, to perform a domain decomposition, or to build
merges trees robust to the loss of a halo in some intermediate snapshots.
This new version of the code has been publicly released and has been
applied to a variety of simulations.

– The galaxy-finding capabilities of ASOHF have been tested
against a DIANOGA simulation of a massive cluster, and compared
to the results of Subfind in order to contrast the properties of the
galaxies found by each code. In general terms, ASOHF is capable of
finding virtually all galaxies with a significant underlying DM halo,
while it misses most of the galaxies that contain a small amount of
DM particles within the half-mass radius, which is expected given
the nature of the algorithm. However, the properties (e.g., mass
distribution) of ASOHF galaxies match to a large extent those of
Subfind, and around 85% of the galaxies of the former are neatly
matched to a galaxy of the latter.

• Cosmological simulations. During the course of this Thesis, I have been
able to become a user and a contributor of the MASCLET cosmological
code, by means of which I have been able to perform several simulations
and tests. Besides the ability of gaining a deep understanding of the code,
I have also contributed to its development in several areas, including the
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generation of initial conditions, improvements to the AMR time-stepping
scheme for DM and hydrodynamics, or the addition of tracer particles.

Meanwhile, in a more theoretical aspect, the main results include:

• An exploratory analysis aiming to examine several measures of
the accretion rates of galaxy clusters and/or groups has been performed,
finding that different proxies are loosely correlated amongst themselves.
Accretion rates are in clear correspondence with merger events, which are
the main contribution to the mass growth of clusters. Furthermore, we have
introduced a novel method to describe the spatial (angular) distribution
of accretion flows, which are estimated in our Eulerian simulations using
a pseudo-Lagrangian post-processing, and reveal a highly anisotropic
distribution of infalling gas, from which the main contributions can be
extracted and characterised via a multipolar expansion.

• The assembly/dynamical state of dark matter haloes has been
studied through a broad redshift interval (5 ≳ z ≳ 0), devising a charac-
terisation scheme based on properties at a given time measured from the
complete, three-dimensional data yielded by simulation snapshots. This
classification turns out to be highly correlated with evolutionary properties
of haloes, such as their accretion rates or the timings since the last minor
or major merger, hinting that, provided similar insight can be obtained
from two-dimensional data from observations, this information could be
used to constrain the assembly history of galaxy clusters.

• The excitation of turbulent motions within the ICM has been
studied in relation with the assembly history of galaxy clusters. We find
that, while our simulations show some limitations in resolving the turbulent
cascade due to their non-constant resolution, the spectra approximate to a
Kolmogorov-like power law. Additionally, some global and local statistics
of turbulent motions appear to be in clear correlation with assembly history
indicators, e.g. accretion rates. Furthermore, the study of enstrophy as an
indicator of the presence of solenoidal turbulent motions tends to confirm a
scenario previously proposed by Vazza et al. (2017), where vortical motions
are generated by baroclinicity within shocks, and are then amplified by
compression and brought downstream of the shocks by vortex stretching.

• The study of the accretion shocks of simulated galaxy groups
and clusters has yielded a relatively tight correlation between cluster
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total mass, shock radius and shock intensity, measured through its Mach
number. Using a sample of clusters and groups to calibrate this relation,
we have put forward the idea that, provided that future observational
facilities are capable of estimating the size and intensity of these features,
they could be used as an independent proxy for the total mass of the
cluster.

• The study of the velocity field in and around cosmic voids has
revealed that a significant fraction of them, including some of the largest
ones in our simulation, are not purely outflowing, but rather have a
complex structure including significant and long-lived inflows. This may
have important implications for the formation of galaxies within observed
voids, and reflects the complexity in defining these structures.

In the Future directions section of each chapter in Part II, the main immediate
and more mid- and long-term extensions of the work undertaken in this Thesis
and discussed in this dissertation have already been presented. In a brief
summary, the numerical tools designed and developed during the duration of
the PhD, as well as the cosmological code MASCLET of which I have become
a user and contributor, are codes under active, continuous development and
optimisation. On the computational side, the main future lines of work include
new parallelisation strategies to make the codes more efficient and scalable along
with the current trends in high-performance computing architectures, together
with an enhanced interoperability with external codes (support for input from
other simulation codes, in the case of the analysis codes; and native support
for widely-used analysis code, in the case of MASCLET). A more in-depth
discussion of the future lines of work in this regard can be found in Sec. 6.3.

Regarding the theoretical and physical goals of this Thesis, the set of sim-
ulations that are already in preparation will allow extending and broadening
the results presented in this dissertation and the publications that make up
Appendix A. Together with the open version of ASOHF and the one of vortex
for particle-based data, future extensions of the techniques and results on smaller
samples obtained during the course of the last four years will likely be able to
shed more light on the connection between assembly properties and the presence
of non-linear hydrodynamic features (turbulence and shocks) in galaxy clusters,
and their relation with observations. A thorough description of these future
directions is contained in Secs. 7.3 and 8.3 in what regards galaxy clusters,
while the possible extensions of the present work in the field of cosmic voids are
discussed in Sec. 9.2.
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ABSTRACT
We analyse the results of an Eulerian adaptive mesh refinement cosmological simulation in order to quantify the mass growth
of galaxy clusters, exploring the differences between dark matter and baryons. We have determined the mass assembly histories
(MAHs) of each of the mass components and computed several proxies for the instantaneous mass accretion rate (MAR). The
mass growth of both components is clearly dominated by the contribution of major mergers, but high MARs can also occur during
smooth accretion periods. We explored the correlations between MARs, merger events, and clusters’ environments, finding the
mean densities in 1 ≤ r/R200m ≤ 1.5 to correlate strongly with �200m in massive clusters that undergo major mergers through their
MAH. From the study of the dark matter velocity profiles, we find a strong anticorrelation between the MAR proxies �200m and
α200m. Last, we present a novel approach to study the angularly resolved distribution of gas accretion flows in simulations, which
allows to extract and interpret the main contributions to the accretion picture and to assess systematic differences between the
thermodynamical properties of each of these contributions using multipolar analysis. We have preliminarily applied the method
to the best numerically resolved cluster in our simulation. Amongst the most remarkable results, we find that the gas infalling
through the cosmic filaments has systematically lower entropy compared to the isotropic component, but we do not find a clear
distinction in temperature.

Key words: hydrodynamics – methods: numerical – galaxies: clusters: general – large-scale structure of Universe.

1 I N T RO D U C T I O N

Galaxy clusters, as the largest and most massive virialized structures
in the Universe, are essential pieces, both, for constraining the
cosmological parameters and testing the cosmological model and for
improving our understanding of structure formation and evolution
on galactic scales (Allen, Evrard & Mantz 2011). A precise under-
standing of the physics of galaxy clusters, with special focus on the
baryonic component, is of utmost importance for these purposes (see,
for instance, Kravtsov & Borgani 2012 and Planelles, Schleicher &
Bykov 2015 for general reviews on galaxy cluster formation).

In particular, the outskirts of galaxy clusters are dynamically active
regions, where the infall of baryons and dark matter (DM) feeds
the cluster, giving rise to rather complex physical processes of the
gaseous component, such as bulk motions, turbulence, clumping,
etc. (see Walker et al. 2019 for a recent review, and references
therein). The mass growth of cluster-sized DM haloes and their
baryonic counterparts is usually split into two contributions, namely
mergers and smooth accretion. Merger events have already been
studied as a source of energetic feedback to the intracluster medium
(ICM; e.g. Planelles & Quilis 2009), introducing deviations with
respect to the X-ray (Markevitch, Vikhlinin & Mazzotta 2001;
Nagai, Vikhlinin & Kravtsov 2007) and Sunyaev–Zel’dovich (SZ;
Yu, Nelson & Nagai 2015) scaling relations and, thus, potentially

� E-mail: vicent.quilis@uv.es

biasing mass estimations (see Pratt et al. 2019 for a recent review). As
for mass accretion flows, we briefly review the current observational
and numerical state of affairs in the following paragraphs.

Gas bulk velocities (along the line of sight) can be directly
measured from X-ray line shifts for a small number of nearby
clusters (e.g. Tamura et al. 2011, who used Suzaku data to constrain
the bulk motions in Abell 2256). Recently, Sanders et al. (2020)
have used XMM–Newton to map the bulk ICM flows in Perseus and
Coma clusters. However, these measurements are still restricted to
the central regions of clusters, where enough X-ray photons can
be collected. The increased sensitivity of ongoing (e.g. eROSITA1)
and planned (e.g. ATHENA2) facilities will likely extend the X-ray
observations to outer regions, thus being able to probe the dynamics
of gas in cluster outskirts.

Gas motions can also be inferred from microwave observations
through the kinetic SZ (kSZ) effect. Recently, Adam et al. (2017) ob-
tained the first resolved map of kSZ in a galaxy cluster. Future, high-
resolution kSZ observations will likely provide strong constraints on
the dynamics in the outskirts of the ICM. We refer the interested
reader to Simionescu et al. (2019) for an extensive review on the
possibilities of ICM velocity measurements with X-ray and kSZ.

On the other hand, accretion on to galaxy clusters has been
triggering increasing attention in the numerical cosmology commu-

1https://www.mpe.mpg.de/eROSITA/
2https://www.the-athena-x-ray-observatory.eu/

C© 2020 The Author(s)
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Table 1. Summary of the main properties of the selected clusters at z = 0. x, y, and z refer to the DM centre of mass comoving coordinates. The masses MDM

and Mgas are measured inside the virial radius, Rvir, defined according to equations (1) and (2). Temperatures and entropies are computed inside Rvir, assuming
hydrostatic equilibrium (equations 59 and 64 in Voit 2005) and taking a mean molecular weight μ = 0.6.

Cluster x y z Rvir MDM Mgas kBTvir Ke, vir

(Mpc) (Mpc) (Mpc) (Mpc) (1013 M�) (1013 M�) (keV) (keV cm2)

CL01 0.1 0.0 0.1 1.99 42.9 4.56 3.27 1230
CL02 − 3.2 4.9 − 14.9 1.26 10.9 1.33 1.34 520
CL03 17.0 − 3.0 9.4 0.96 4.8 0.66 0.77 290
CL04 10.7 − 2.5 2.0 0.95 4.6 0.44 0.74 279
CL06 − 14.6 − 1.0 − 11.0 0.71 1.9 0.22 0.43 161
CL08 − 15.0 − 4.6 1.9 0.61 1.2 0.12 0.41 117

nity, especially during the last five years. For the dark component,
Diemer & Kravtsov (2014) found a sharp drop in DM density
profiles, corresponding to the so-called ‘splashback’ radius, which
is generated by recently accreted DM particles in their first apocen-
tric passage, as shown in analytical works by Adhikari, Dalal &
Chamberlain (2014) and Shi (2016a). Further works by More,
Diemer & Kravtsov (2015), Diemer et al. (2017), and Mansfield,
Kravtsov & Diemer (2017) have analysed the relation between the
splashback radius and mass accretion rates (MARs), showing that
faster accreting DM haloes have generally smaller splashback radii.
Chen et al. (2020) have used statistical techniques to reduce the
dimensionality of the mass assembly histories (MAHs) of DM haloes,
finding correlations with halo concentrations and other parameters.

Similarly, several works have studied the imprint of mass accretion
on to the ICM. In particular, Lau et al. (2015) have found that the
radial profiles of thermodynamical quantities of the ICM (pressure,
entropy, temperature, etc.) depend on the MAR. It has been further
shown that faster accreting clusters tend to have smaller accretion
shock radii (Lau et al. 2015; Shi 2016b), higher ellipticities (Chen
et al. 2019; see also Lau et al. 2020, who explore the connection
between DM haloes triaxial shapes and several formation history
parameters) and more negative residuals with respect to the TX−M
relation (Chen et al. 2019). Several works have also reported that
dynamically disturbed systems display larger hydrostatic mass biases
and higher levels of gas clumping in outer cluster regions (see e.g.
Biffi et al. 2016 and Planelles et al. 2017, respectively).

It has been seen in N-Body simulations that mergers occur
primarily through the filament connecting the cluster with its nearest
massive neighbour, which is in turn aligned with the major axis of
the cluster (e.g. Lee & Evrard 2007; Lee et al. 2008). However,
the accretion pattern of the gaseous component has not yet been
extensively covered in the literature.

In this paper, we examine a small sample of clusters from a
hydrodynamical, Eulerian adaptive mesh refinement (AMR) cos-
mological simulation including cooling and heating, star formation,
and supernova (SN) feedback. The main aim has been studying
and characterizing the accretion processes on these clusters, paying
special attention to the gaseous component. In that sense, we have
characterized their MAHs and computed several proxies for the
instantaneous MAR (namely, �200m and α200m; see their definitions
in Sections 3.1 and 3.4.1, respectively), their relation to clusters’
environments and merging histories, and the imprint of accretion
on the radial density profiles for massive clusters and for low-mass
clusters or groups, highlighting the differences between these two
classes. Besides, the angularly resolved distribution of gas accretion
flows has been quantified by means of a simple algorithm proposed
in this work. Using multipolar analysis, we have been able to extract
the main contributions to the accretion picture and to quantify the
differences in their thermodynamical quantities.

The manuscript is organised as follows. In Section 2, we present
the numerical details about the simulation and the cluster sample.
In Section 3, we study and compare several MAR definitions and
relate them to the merging history and surrounding densities, while
in Section 4 we present a novel method to evaluate and represent
the angular distribution of mass accretion flows. We summarize our
main findings and conclusions in Section 5. Appendices A and B
discuss in more detail some technical issues regarding the symmetric
logarithmic scale, used in some representations in this paper, and the
real spherical harmonic basis.

2 THE SI MULATION

In this section, the details of the simulation we analyse and the cluster
sample extracted from it are briefly covered. The simulation has
already been employed in previous works (e.g. Quilis, Planelles &
Ricciardelli 2017; Planelles et al. 2018).

2.1 Simulation set-up

The results presented in this paper correspond to the outputs of a
cosmological simulation carried out with the Eulerian, AMR code
MASCLET (Quilis 2004). MASCLET combines a multigrid particle
mesh N-Body implementation for the description of DM dynamics
with high-resolution shock capturing techniques for the evolution of
the gaseous component.

The background cosmology is set by a spatially flat �-
cold dark matter model, assuming a Hubble parameter h ≡
H0/(100 km s−1 Mpc−1) = 0.678 and an energetic content given by
the density parameters �m = 0.31, �� ≡ �/3H 2

0 = 0.69, �b =
0.048. A spectral index ns = 0.96 and a normalization σ 8 = 0.82
characterize the spectrum of the primordial density fluctuations.
These parameters are consistent with the latest results by Planck
Collaboration (2018).

The simulation domain corresponds to a cubic box of comoving
side length 40 Mpc, which is discretised in a coarse grid with 1283

cells, thus providing a harsh resolution of ∼ 310 kpc at the base
level (� = 0). The initial conditions are set-up at z = 100 using a
CDM transfer function (Eisenstein & Hu 1998), with a constrained
realization aimed to produce a massive cluster in the centre of the
computational domain (Hoffman & Ribak 1991). A tentative, low-
resolution run from the initial conditions until present time is first
performed in order to pick the initially refined regions at the AMR
levels � = 1, 2, and 3, which will get their DM mass distribution
sampled by particles 8, 64, and 512 times lighter than the ones used
in the base level.

During the evolution of cosmic inhomogeneities, different regions
can get refined under a criterion based on the local gaseous and DM

MNRAS 499, 2303–2318 (2020)
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Figure 1. MARs of four of the clusters in the sample, for DM (left-hand panel) and for baryons (right-hand panel). The MARs have been computed using a
fourth order Savitzky–Golay filter with window length of 17 points (the MAR curves have been previously resampled with 100 points by linear interpolation,
in order to have uniform spacing in the independent variable, log a). Colours encode the total mass (baryons + DM). The shape of the dots refers to each of the
clusters according to the legend. The colour bar and the legend in the right-hand panel apply to both plots.

densities. The ratio between cells’ side lengths at two consecutive
AMR levels is set to 	x�/	x� + 1 = 2. Up to n� = 9 refinement levels
are allowed in this run, yielding a best spatial comoving resolution
of ∼ 610 pc. The lightest DM particles have a mass of ∼2 × 106M�.
This provides a peak mass resolution equivalent to having the domain
filled with 10243 of such particles.

Our simulation accounts for several cooling processes, such as
atomic and molecular cooling for primordial gases, inverse Compton,
and free–free cooling. Heating by a UV background of radiation is
also included, according to the prescriptions of Haardt & Madau
(1996). The abundances are computed under the assumption of the
gas being optically thin, in ionization equilibrium, but not in thermal
equilibrium (Katz, Weinberg & Hernquist 1996; Theuns et al. 1998).
Tabulated, metallicity-dependent cooling rates from Sutherland &
Dopita (1993) are employed, with the cooling curves truncated below
a temperature threshold of 104 K.

Star formation is parametrized following the ideas of Yepes et al.
(1997) and Springel & Hernquist (2003). For more details on the
particular implementation in this simulation, we refer the interested
reader to Quilis et al. (2017). Massive stars produce type-II SN
feedback. Feedback mechanisms from type-Ia SN or active galactic
nuclei (AGN) are not present in this run. Nevertheless, even though
the lack of a central source of energetic feedback (as AGN) could
bias the thermal distributions in the inner regions of clusters (see e.g.
Planelles et al. 2014; Rasia et al. 2015), it is not expected to have
a noticeable impact on their outskirts, which are the focus of this
work.

2.2 Structure identification and cluster sample

In order to identify galaxy clusters in our simulation, we have used the
DM halo finder ASOHF (Planelles & Quilis 2010; Knebe et al. 2011).
ASOHF is a spherical overdensity halo finder especially designed to
take advantage of the AMR structure of MASCLET, outputs. Using
ASOHF, we identify a total of eight DM haloes with virial masses MDM

> 1013 M� by z = 0. Two of these haloes have been discarded, as they
lie close to the domain boundary and are not faithfully resolved. The
remaining six DM haloes and their baryonic counterparts constitute
our cluster sample. Two of them have masses above 1014 M� and can

be fully regarded as galaxy clusters. The rest correspond to low-mass
clusters or groups. Their main properties at z = 0 are summarized in
Table 1.

In addition to a list of objects for each temporal snapshot, ASOHF

also provides, given a halo at some code output, a complete list of
its progenitor haloes (i.e. the haloes at the previous code output
which have DM particles in common with it). We refer to this
information as the full merger tree of a halo. In order to quantify
the accretion phenomena, the reduced merger tree, containing only
the main progenitor of each halo, needs to be built from the previous
information.

Amongst all the progenitor haloes, the main progenitor has been
picked as the one that contributes the most to the descendant
halo mass (i.e. the one which gives the most mass). This strategy
is also followed in, e.g. Tormen, Moscardini & Yoshida (2004).
Additionally, we have tested other options described in the literature,
like tracing the most bound particles back in time (e.g. Planelles &
Quilis 2010). These alternative definitions yield remarkably similar
results, pointing out the robustness of the reconstructed reduced
merger trees.

We follow the objects back in time from z = 0 up to z = 1.5, for
a total of 41 snapshots. No resimulations have been performed.

3 AC C R E T I O N R AT E S A N D T H E I R R E L AT I O N
TO MERGERS AND CLUSTERS’
ENVI RONMENTS

Through this section, we cover several topics related to the determi-
nation of instantaneous accretion rates (Section 3.1), their relation
to clusters’ environments and merging histories (Section 3.2) and
the impact of accretion on the evolution of the density profiles
(Section 3.3). In Section 3.4, we look at the accretion phenomena
from a more dynamically motivated perspective, by studying the
radial velocity profiles.

3.1 Determination of the mass accretion rates

For each of the DM haloes described in Section 2.2, we determine
their boundaries and enclosed masses according to the usual spherical
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overdensity definition (Lacey & Cole 1994) with respect to the
background matter density:

MDM(< R	m
) = 4π

3
R3

	m
	mρB, (1)

with ρB(z) = �m(z)ρc(z) and ρc(z) = 3H (z)2

8πG
. Along this manuscript

we focus on 	m = 200, as well as on the virial radius, Rvir, defined
as the radius enclosing an overdensity (Bryan & Norman 1998):

	vir,m = 18π2 + 82x − 39x2

�m

(2)

being x ≡ �m(z) − 1 and �m(z) = �m(1+z)3

�m(1+z)3+��
. The computation of

the stellar, gaseous and DM masses for each snapshot constitutes the
MAH of the different material components of the cluster.

Aiming to quantify the strength of accretion on to the objects in
our sample, we define the MAR as the logarithmic slope of the M(a)
curve, where a is the scale factor of the Universe:

�	(a) = d log M	

d log a
. (3)

This definition is more extended in theoretical works (e.g. Adhikari
et al. 2014), while most numerical studies opt for replacing the
derivative by a quotient difference over a fixed, wide interval [a1,
a0], in order to avoid the contaminating effects of the intrinsically
noisy nature of the MAH of clusters (Diemer & Kravtsov 2014;
More et al. 2015; Mansfield et al. 2017; Chen et al. 2019). In these
cases, the resulting MAR oughts to be interpreted as an average over
several Gyr in the accretion history of the cluster. We shall denote
this definition of the MAR as �

[a1,a0]
	 .

Even though the average MAR accounts for the global impact
of accretion on the dynamical state of clusters (as shown in Chen
et al. 2019), it is not as suitable for analysing a number of aspects,
such as the relation of mass infall and clusters’ surroundings or
punctual events like mergers, as the accretion rates get overly
smoothed. In order to measure the instantaneous accretion rate
through a cluster’s history while getting rid of statistical noise,
we implement the computation of the derivatives using Savitzky–
Golay filters (Savitzky & Golay 1964; Press & Teukolsky 1990),
whose parameters have been tuned to offer a compromise between
smoothness and locality of the computed derivatives.

The definition of MAR in equation (3) can be applied indepen-
dently to each material component (i.e. DM and baryons3). It is
also worth mentioning, however, that this is not the only proxy for
the MAR of a cluster (see Section 3.4 for the comparison with an
alternative definition).

3.1.1 Baryonic and DM MARs

We have computed the baryonic and DM MARs of the clusters
in our sample from z = 1.5 to z = 0, with respect to the masses
measured within R200m. A selection of them is presented in Fig. 1,
where the colour scale keeps track of the total mass. In these plots, the
derivatives have been computed using fourth-order Savitzky–Golay
filters with window length of 17 points.

3Baryons account for both, gas and stars. As the total gas mass is not conserved
due to star formation, the MAR of gas would be biased low. This effect may
be almost negligible in massive clusters, but definitely noticeable in low-mass
clusters and groups, where stellar fractions tend to be higher (e.g. Planelles
et al. 2013).

The graphs show similar qualitative behaviour for the DM and
baryonic MARs, reflecting the fact that gas traces DM to a first
approximation. However, the most prominent peaks are typically
more pronounced for the dark component than for their baryonic
counterparts, implying that gas is generally accreting at a slower
pace when compared to DM. This trend has already been pointed out
by other studies (see e.g. Lau et al. 2015, where a similar conclusion is
drawn from studying the radial velocity profiles of both components).
As opposed to collisionless DM, collisional gas is supported by
pressure and experiences ram pressure from the ICM (Tormen et al.
2004; Cen, Roxana Pop & Bahcall 2014; Quilis et al. 2017), shocks,
etc. that contribute to slow down the infall.

A clear distinction is displayed between massive (CL01 and
CL03) and low-mass (CL06 and CL08) objects. Massive clusters
often present pronounced peaks in their MAR curves, typically
associated to major mergers, which are still frequent as clusters
continue growing and collapsing by z ∼ 0. We analyse in further
depth the relation between mergers and accretion rates in Section 3.2.
Less massive clusters show flatter curves, pointing out that either
they do not undergo merger events as significant as their massive
homologues, or they also experience important mass-losses during
these events, as a consequence of their shallower potential wells.
The latter idea is supported by the fact that the differences between
baryonic and dark components are more remarkable in these systems.
Clusters and groups with total mass �5 × 1013 M� do not seem
to dominate as efficiently their neighbourhoods, and are therefore
harassed by other systems.

3.2 Effects of mergers and surrounding densities on the MARs

3.2.1 Identification and classification of mergers

We define mergers as events where two cluster-sized haloes (and their
respective baryonic counterparts) encounter and share a significant
amount of mass (e.g. Planelles & Quilis 2009). The merger tree of
a massive halo can contain many progenitor haloes, most of which
either are low-mass infalling substructures or contribute very little to
the mass of the descendant halo. In order to identify halo mergers,
we have imposed the following conditions:

(i) The distance between the centres of mass of the two progenitor
candidates, i and j, is less than the sum of their virial radii, i.e. their
spheres of radius Rvir intersect:

dij ≤ Rvir,i + Rvir,j (4)

(ii) Each of the progenitor haloes gives, at least, 1 per cent of its
(DM) mass to the descendant halo.

(iii) Each of the progenitor halo masses is greater than 1/10 of the
descendant mass. Mergers with haloes of smaller mass are regarded
as smooth accretion.

These conditions are conceptually similar to those of Chen et al.
(2019), who nevertheless use more stringent values (R500c instead
of Rvir and 10 per cent of shared mass between progenitor and
descendant halo) in order to assess the merging times. We use the
presence/absence of mergers and the maximum mass ratio between
the progenitors to distinguish three accretion regimes in the assembly
history of a cluster, according to the following classification:

• Major mergers: involve two haloes of comparable mass and are
relatively unfrequent. They typically have an important impact on
the structure of haloes. We take a mass ratio of 1: 3 as the threshold
for these events (Planelles & Quilis 2009; Chen et al. 2019).
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Figure 2. Relation between the MARs, accretion regimes (ongoing merger events) and densities in the surroundings of the cluster, for clusters CL01 (left) and
CL06 (right). In each panel, the upper plot shows the MARs for the total mass (the solid line) and baryonic mass (the dashed line). The lower panel displays
the surrounding density in several clustercentric radial bins, in units of the background density of the Universe. The dashed line, corresponding to the baryonic
density, has been normalized to the cosmic baryon fraction (i.e. it has been multiplied by �m/�b). The legend in the left-hand panel applies to both plots.

• Minor mergers: produce less significant disturbance on the
objects, but are generally more frequent. Their mass lower threshold
is slightly more arbitrary and varies through the literature. We use a
ratio of 1:10 as the threshold for minor mergers, as in Planelles &
Quilis (2009).

• Smooth accretion: systems which experience no mergers above
the 1:10 mass ratio threshold are considered to undergo smooth
accretion.

In our sample, clusters CL01, CL02, and CL03 exhibit periods
of major and minor merging activity. CL06 does not experience
any major mergers, but only minor ones. Last, no mergers have
been identified in CL04 and CL08 and they are therefore smoothly
accreting clusters throughout the considered redshift interval, 1.5 ≥
z ≥ 0.

3.2.2 Surrounding densities

A significant part of the accreted mass in major mergers can end
up lying outside the R	 boundary of the final halo, and hence, the
corresponding spherical overdensity masses are not additive in such
events (Kravtsov & Borgani 2012; More et al. 2015). In order to
study how matter is deposited in the outskirts of galaxy clusters, and
how this effect shapes the MAR curves, we quantify the densities
in the surroundings of each cluster and their evolution with cosmic
time in four non-overlapping, equally spaced radial bins, covering
the region 1 ≤ R/R200m ≤ 3.

The results of the joint analyses of MARs, accretion regimes, and
surrounding densities are shown in Fig. 2, for clusters CL01 and
CL06, as paradigmatic cases of a massive cluster that undergoes
numerous major and minor mergers and a low-mass cluster that only

suffers minor mergers, respectively. Both panels show the total (the
solid lines) and baryonic (the dashed lines) MARs, the accretion
regimes (background colour of the plot), and the surrounding
densities (lower panels).

In the case of CL01, the differences in the MAR of DM and
baryons are small in magnitude. Peaks in the MAR are undoubtedly
associated to (major) merger events, as in the case of the displayed
peaks around z ∼ 1.4 and z ∼ 0.8. It is also interesting to note how
high MARs are mantained for a long time after the merger has taken
place (particularly salient is the case of the merger at z ∼ 0.8), as
matter deposited outside R200m continues feeding the cluster – in a
more quiescent way – for several Gyr. In this respect, the lower panel
shows how densities in the 1 ≤ R/R200m ≤ 1.5 region keep above
10ρB until z ∼ 0.5.

Comparing the surrounding total and baryonic densities, the latter
appears to evolve in a much smoother way than the former. At outer
radii, R � 2R200m, baryon surrounding densities (when normalized to
the cosmic baryon fraction) tend to be higher than total densities.
This reinforces the idea that gas, due to its pressure support, is
deposited at larger radii than DM, which can more easily penetrate
to inner regions. We find these general trends to be common for all
the massive clusters in our sample that suffer major mergers.

On the other hand, CL06 exhibits significant differences in the
behaviour of baryonic and total masses. The total MAR experiences
peaks in correlation to the minor merger events. The baryonic
component roughly follows these peaks, although their magnitude
can differ significantly. There are also severe declines in the baryonic
mass (�200m < 0), which reflect the inability of low-mass systems and
groups to keep their gas inside R200m. This gas is typically expelled
to larger cluster-centric radii (as seen in the lower panel) and only
slowly reaccreted afterwards.
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Figure 3. The panels show the evolution of the comoving density profiles of the different material components for three clusters, from z � 1.5 to z = 0. The
profiles have been taken with 100 logarithmically spaced bins, from 100 kpc to 4 Mpc, and taking centre at the potential minima. Densities are always normalized
to the background matter density of the Universe and the colour scale is logarithmic. Radial coordinates are comoving. From top to bottom, panels show DM,
gas and stellar densities. From left to right, these quantities are presented for CL01, CL02, and CL06. The colour scale in the left plot of each row applies for
all plots in the row. The green line in each panel marks the virial radius.

3.2.3 Correlation and time shift between surrounding densities and
accretion rates

As seen in the left-hand panel of Fig. 2, the density in the immediate
neighbourhood of the cluster shows remarkable resemblance to the
behaviour of the MAR, although a time shift between both curves
is evident. In order to have an estimation of this shift, we compute
the Spearman’s rank correlation coefficient,4 ρsp, of ρsurrounding(t) in
the first radial bin with �(t + τ ), and find the τ that maximizes ρsp.
Next, we summarize the results of such analysis:

(i) For cluster CL01, when total masses are considered, an optimal
shift of 900 Myr provides a rank correlation of ρsp = 0.803.
Restricting to the baryonic component enhances this correlation to

4The Spearman’s rank correlation coefficient, ρsp, assesses the monotonicity
of the relation between two variables (without the need to assume linearity).
ρsp is valued in [−1, 1], with higher absolute values implying a more
monotonic relation and positive (negative) values corresponding to increasing
(decreasing) relations.

ρsp = 0.895, while increasing the time shift to 1.1 Gyr, as pressure
effects slow down gas infall. These times are consistent with the shell
crossing time of the fastest DM particles. A similar trend is shown
by cluster CL03, although in this case the correlations are slightly
weaker (ρsp = 0.744 and ρsp = 0.691, respectively).

(ii) CL02, a massive cluster that only experiences a major merger
at high redshift and undergoes a quiescent evolution therein, shows
weaker correlations: ρsp = 0.623 and ρsp = 0.572, respectively.

(iii) Less massive objects do not display significant correlations
between these variables, as a result of their limited ability to capture
matter (especially, gas). Indeed, in the lower panel of Fig. 2 a much
flatter evolution of the surrounding densities is clearly noticeable.

3.3 Impact of accretion on radial density profiles

In this section, we analyse how mergers and strong accretion rates
impact the inner distribution of the different material components in
clusters by computing the comoving density profiles of DM, gas and
stars. We graphically present these profiles for objects CL01, CL02,
and CL06 as a function of redshift in Fig. 3.

MNRAS 499, 2303–2318 (2020)



On the accretion history of galaxy clusters 2309

Note how the virial radii of CL02 (which only undergoes a major
merger at z ∼ 1.4) and CL06 (which only suffers minor mergers) are
roughly constant, while CL01 (undergoing several major mergers)
displays an important growth of this boundary.

Relating to this, the inner regions of DM comoving density profiles
are mostly constant in time for CL02 and CL06, suggesting that these
structures are already collapsed by z ∼ 1 and the innermost radii (r �
R2500m) do not get disturbed by minor mergers and smooth accretion.
This result is consistent with More et al. (2015), who find that the
mass inside 4rs (being rs the scale radius of the NFW, Navarro,
Frenk & White 1997, profile) evolves relatively slowly for z � 1 − 2.
Conversely, CL01 does experience important disturbances in its DM
profile, especially around z ∼ 0.8. The enhanced MAR during 1.1 �
z � 0.7, associated to a major merger event (see Fig. 2), appears to
substantially increase the central density.

Gas density profiles are clumpier than DM ones and are affected
by miscentring issues (specially in the case of CL06). The centres
of the gaseous and dark components do not necessarily coincide
(see e.g. Forero-Romero, Gottlöber & Yepes 2010; Cui et al. 2016),
especially when there is ongoing merging activity (i.e. departures
from dynamical equilibrium). Lines of decreasing radii with de-
creasing redshift reflect the infalling orbits of massive structures
being accreted, mainly in galaxy cluster mergers. These streams of
matter are better recognized in the stellar component, as the stellar
mass is more concentrated towards the centre of the infalling cluster
and leaves a sharper imprint on the density profile. The redshifts
at which these streams cross the halo Rvir boundary appear to be
consistent with the periods of mergers according to the classification
of Section 3.2.

The profiles of the gaseous component also suggest the presence
of gas being deaccreted or expelled outside the virial radius. This is
particularly notorious for CL02 and CL06, and hints that dynamical
interactions between clusters can extract gaseous matter to outer radii
(e.g. through gas sloshing; see e.g. Markevitch et al. 2001; Roediger
et al. 2011).

3.4 Velocity profiles. Alternative MAR definitions

The dynamics of accretion on to galaxy clusters and the differential
behaviour of DM and gas can be explored from the radially averaged
profiles of radial velocity in the cluster outskirts. In Fig. 4, we
present such profiles for the massive central cluster CL01, for four
evenly spaced redshifts from z = 1.5 to z = 0. The magnitude
represented in the figure corresponds to the physical velocity, ur

≡ vr + H(z)r/(1 + z), where r and vr are, respectively, the
comoving clustercentric radial coordinate and the peculiar velocity.
This quantity has been normalized to the circular velocity at R200m,
Vcirc,200m = √

GM200m/R200m.
The interior of the cluster (r � 0.8R200m) does not present

particularly strong inflows nor outflows, as these regions are already
collapsed and relatively stable. Accretion flows are dominant in the
cluster outskirts (r � R200m), where radial velocities drop sharply and
reach a minimum located around 1.5 � r/R200m � 2. The position
of the velocity minimum with respect to R200m does not show a
clear redshift evolution in the case of CL01, in consistency with the
general behaviour pointed out by Lau et al. (2015). At large radii,
radial velocities increase, as the Hubble flow term begins to dominate
the dynamics of both material components.

The magnitude of the velocity at the minima shows a remarkable
redshift evolution. Both, gas and DM, have larger infall velocities
– when compared to the circular velocity – at earlier times and,
consequently, their MARs shown in Fig. 2 are larger. Even though

Figure 4. Radially averaged radial physical velocity profiles for the cluster
CL01 at 4 different redshifts. The solid lines represent the radial velocities
of gas, while the dashed lines correspond to DM. The profiles have been
taken with 100 bins logarithmically spaced between 0.1R200m and 4R200m

and smoothed with a Gaussian filter with window length of four points.

gas and DM radial velocity curves exhibit a similar pattern in the
cluster outskirts, their different magnitudes highlight that DM is
being accreted slightly faster, as it is not pressure supported and does
not feel hydrodynamical effects, such as ram pressure from the ICM,
shock heating, etc. as it falls into the cluster.

3.4.1 Comparing �	 to α	

In Lau et al. (2015), the authors suggest a different proxy for the
instantaneous MAR, defined as the radial infall velocity of DM (vDM

r )
at some radius r = Rα , in units of the circular velocity at R	:

α	 = vDM
r (r = Rα)

Vcirc,	
(5)

More negative α	 indicates more rapid infall of matter, and thus
α	 should be anticorrelated to �	. Lau et al. (2015) report that taking
Rα = 1.25R200m maximizes the anticorrelation of α200m and �

[a1,a0]
	 ,

with a1 = 0.67. Note, however, that �
[a1,a0]
	 is the averaged MAR

over the last ∼ 5 Gyr.
In order to compare α	 to the instantaneous �	 MAR proxy

defined in equation (3), we have computed α	 for all the clusters
in our sample and all the simulation outputs available, from z =
1.5 to z = 0. We find that, taking Rα = R200m, the Spearman rank
correlation between α200m and �200m is ρsp = −0.832. Larger values
of Rα/R200m = 1.25, 1.5 weaken this anticorrelation down to ρsp =
−0.719 and ρsp = −0.556, respectively.

In the upper panel of Fig. 5, we present a scatter plot of
the two instantaneous MAR proxies, where the dots have been
coloured to identify each cluster. All snapshots, from z = 1.5 to
z = 0, are included in this comparison. A non-parametric fit with
smoothing splines is shown as the blue line. To rule out any possible
dependencies of the scatter in this relation with other variables, the
panels below show the distribution of residuals with respect to the fit,
	α200m, as a function of �200m, M200m and redshift z. No significant
residual dependencies on M200m and z are found. Consistently, the
residuals are uncorrelated to these variables, with rank correlation
coefficients ρsp = −0.038 and ρsp = 0.099, respectively. Hence,
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Figure 5. Relation between the instantaneous MAR proxies �200m (used in
this work) and α200m (Lau et al. 2015), combining all the snapshots in 1.5
≥ z ≥ 0. The upper panel contains the scatter plot of both variables and a
non-parametric fit using smoothing splines. The residuals of this fit, 	α200m

are used in the lower panels to rule out redshift or mass dependencies in this
relation, as they appear to be uncorrelated to M200m and z.

α200m and the instantaneous �200m(a) are consistent probes of the
MAR, and their relation is mostly independent of redshift or cluster
mass.

4 A N G U L A R D I S T R I BU T I O N O F T H E M A S S
F L OW S A N D T H E R M O DY NA M I C A L
PROPERTIES

This section focuses on the characterization of the angular distribu-
tion of accreting gas. This topic has not been extensively covered
in the literature, but it is of utmost interest in order to assess the
complex interplay of clusters with their environments, which shapes
the accretion patterns. In Section 4.1, we present a simple method for
estimating and presenting the accretion flows. Its results are discussed
in Section 4.2.

4.1 Estimation of the mass fluxes through the cluster boundary

Let us consider a cluster at redshift z, delimited by a spherical
boundary Rbdry (e.g. Rvir) around it. We quantify the mass flows by
computing an estimated flux from the peculiar velocity and density
fields as described in the following paragraphs.

We assume each gas cell, with density contrast δcell and physical
volume 	Vcell, as a particle located at its geometrical centre, with
mass mcell = ρB(z)(1 + δcell)	Vcell and the peculiar velocity v =
a dx

dt
given by the corresponding cell-averaged velocity. All cells,

regardless of the refinement level they belong to, are considered on
equal footing. For each cell, let r be the radial comoving distance to
the cluster centre and vr its cluster-centric radial peculiar velocity.
With these definitions, we estimate the fluxes accross r = Rbdry

according to the following rules:

(i) Given a cell within the spherical boundary, r < Rbdry, we mark
it as an escaping cell if r + vr

a
	t > Rbdry.

(ii) A cell outside the radial boundary r > Rbdry is marked as an
entering cell if r + vr

a
	t < Rbdry.

The time interval, 	t, used for the estimation of the fluxes has to
be chosen as a compromise between angular resolution (as higher 	t
increases the number of entering and escaping cells) and accuracy
(radial flows are not necessarily maintained for arbitrarily large 	t).
We have set 	t to the time difference between consecutive snapshots
(ranging from ∼ 60 to ∼ 300 Myr in this particular simulation).

Once the entering and escaping cells have been found, the angular
distribution of accreted gas is computed by binning the complete
solid angle around the cluster in the cluster-centric spherical angles,
φ and cos θ (so that angular sectors at all latitudes subtend the
same solid angle). We define the spherical coordinate system with
respect to the major axis of the cluster total mass distribution. This
is motivated by N-Body simulations having shown that most of the
mergers and accretion of DM occur through the filaments connecting
a cluster to its nearest massive neighbour (Lee & Evrard 2007) and,
consequently, major axes tend to be aligned with such filaments (Lee
et al. 2008). In order to do so, the characterization of the shape of
matter distributions is discussed in Section 4.1.2. In our analyses for
cluster CL01, we split the solid angle in nφ × nθ = 80 × 80 bins.
Increasing the number of bins beyond this quantity does not result
in any significant enhancement in the description of the mass fluxes,
as the resolution gets constrained by the cell sizes at the r = Rbdry

boundary.
For each entering (escaping) cell, we assign all its mass to the

bin corresponding to its angular position, yielding the distribution
of accreting (deaccreting) matter. Their subtraction is the net mass
flowing across the r = Rbdry boundary. Finally, we compute the mass
radial flux by normalizing this quantity as follows:

jM = 	M

R2
bdry	�	t

, (6)

where 	M = 	Menters−	Mescapes and 	� = 4π
nφnθ

. Note that we
take, as sign convention, that jM > 0 when matter is infalling (being
accreted).

4.1.1 Validity of the method. Spatial and temporal coherence of the
radial flows.

The procedure proposed above relies on the implicit assumption that
gas velocities measured at one code output are persistent during
the time interval, 	t, used to estimate which gas cells cross the
cluster boundary. In the following lines, we briefly argue that this
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approximation is, indeed, applicable to our system, thus justifying
the validity of the method.

The basic scheme of the performed test consists on the comparison
of the radial velocity dispersion, σ r, with the radial velocity, vr. For
each entering cell, we compute its total and radial velocity dispersions
as the standard deviation of such quantities in the neighbouring
5 × 5 × 5 cells. Such analysis yields the following conclusions:

(i) The gas flows are eminently radial. The mean radial projection
of the velocity of the entering cells has magnitudes 0.8 � |vr|/v �
0.9 for all code outputs.

(ii) Radial velocity dispersions are consistent, only slightly above
the isotropic value, σ iso

r = σv√
3
. For most of the snapshots, σr

σ iso
r

∼
1–1.1. Thus, the relative velocity dispersion in the radial direction
σ r/|vr| is much smaller than in the directions tangential to the flow.

(iii) Indeed, |vr|/σ r takes mean values between 10 and 40, indicat-
ing that, in the neighbourhood of a cell, radial gas flows are spatially
coherent.

As a result of the radial flows being spatially coherent, one should
expect the shear forces between neighbouring cells to be small along
the radial direction. Therefore, turbulence is not expected to have a
severe impact on the overall distribution of radial flows. However,
this analysis does not guarantee the persistence of the flows during an
arbitrarily large 	t. Once the spatial coherence of the flows has been
confirmed, these can be assumed to be persistent between consecutive
snapshots, provided that the angular distributions for consecutive
snapshots are temporally coherent, i.e. they show similar structures
and temporal changes are gradual.

Note, however, that this analysis has considered the mean values
of σ r and vr across the whole boundary. It is still possible that
turbulence is relevant on the radial flows in small angular regions,
thus introducing spurious noise into our flux maps.

4.1.2 Characterization of clusters’ shapes

The procedure for studying the mass flows presented above requires
finding the major axis of the cluster, as we use it to define the spherical
coordinate system tied to the cluster.

A widely extended method in the literature to estimate the shape
of DM haloes (e.g. Cole & Lacey 1996; Planelles & Quilis 2010;
Knebe et al. 2010, among others) relies on finding the eigenvalues
and eigenvectors of the shape tensor:

S = 1

Mtot

∫

V
ρ(r)r ⊗ rdV , (7)

where the integration extends to the spherical overdensity boundary
definition and Mtot = ∫

V ρ(r)dV is the enclosed mass. Even though
this approach produces sensible estimates, it might be contradictory
that a spherical integration volume is used to characterize the shape of
a triaxial object. A more robust method uses an iterative procedure
aimed to adapt the integration volume to the – initially unknown
– shape of the mass distribution (Zemp et al. 2011). We have
implemented a method partially based on the one described in the
aforementioned reference, which better suites our purposes. The
main steps can be summarized as follows:

(i) The first iteration uses an sphere of radius Rbdry as the
integration volume. Let us call {v̂1, v̂2, v̂3} the orthonormal set of
eigenvectors of S, where their corresponding eigenvalues are such
that λ1 < λ2 < λ3. That is to say, the third vector points in the
direction of the tentative major axis.

(ii) These values are used to define the new integration volume,
which is given by the ellipsoid

(v̂1 · r)2

a2
1

+ (v̂2 · r)2

a2
2

+ (v̂3 · r)2

a2
3

≤ 1, (8)

where ai is the semi-axis length corresponding to v̂i . The semi-axes
are rescaled so that their squares are proportional to the corresponding
shape tensor eigenvalues. However, this premise does not fix the
magnitude of the semi-axes (only their quotients) and, therefore, a
choice regarding the normalization has to be made.
In Zemp et al. (2011), the new semi-axes lengths are defined so that
the major semi-axis is preserved. This election is motivated by their
aim of measuring the shape at different distances, which they label
by the major semi-axis length. However, this method shrinks the
volume along the direction of the minor and intermediate axis and
therefore dramatically increases the enclosed overdensity.
With the aim of describing the overall shape of the cluster without
changing significantly the enclosed overdensity, in this work we have

chosen to preserve the enclosed volume. Let ri ≡
√

λi

λ3
, for i = 1, 2.

Then, it is easy to check that volume is preserved by rescaling the
axes so that

a1 = 3

√
r2

1

r2
Rbdry, a2 = 3

√
r2

2

r1
Rbdry, a3 = 1

3
√

r1r2
Rbdry. (9)

(iii) S is estimated in the new volume, yielding a new set of
eigenvectors and eigenvalues. Then, step (ii) can be repeated with
these new values. This iterating scheme is repeated until convergence.

As in Zemp et al. (2011), convergence is assessed by the change in
the semi-axes ratios, r1 and r2, in two consecutive iterations. We stop
the iterative scheme when the relative change in these magnitudes is
smaller than 10−3.

This process is first done for the latest code output, thus charac-
terizing the shape of mass distributions at z = 0. In order to trace
the principal axes to higher redshifts, the same procedure is repeated
on each code output. However, after the principal axes have been
determined, it could happen that the eigenvalues have changed their
order. In order to prevent sudden rotations of the axes, the principal
axes on a given snapshot, v̂i , are matched to the ones in the previous
snapshot, v̂′

j (i), by pairing up the vectors so that
∑

i |v̂i · v̂′
j (i)| is

maximized, i.e. by performing the smallest possible rotation.

4.2 Angular distribution of the mass flows in the principal axes
system

As a result of applying the method described in Section 4.1 to cluster
CL01, Fig. 6 presents the angular distribution of the mass flows at two
characteristic moments in the evolution of this object. The left-hand
panel shows the angular distribution of accreting and deaccreting gas
at z � 0.81, right after a major merger (see Fig. 2), while the baryon
accretion rate is still high. The right-hand panel presents the same
information for a quiescent stage in the evolution of the cluster, while
�baryons

vir ≈ 0. Besides the flux maps, the adjacent plots show the polar
and azimuthal marginal distributions of accreting (the blue line) and
deaccreting (the orange line) gas. In order to produce these plots, one
needs to represent positive (entering matter) and negative (escaping
matter) values that span a broad range of orders of magnitude. To
do so, we have implemented a symmetric logarithmic scale (see
Appendix A).

The marginal cos θ distribution of both panels reveals that gas
accretion fluxes are maximum in the polar regions (defined with
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Figure 6. Angular distribution of mass flows through the r = Rvir surface of cluster CL01 at z � 0.81 (during a major merger; left-hand panel) and at z � 0.35
(in the smooth accretion regime; right-hand panel). The colour scale encodes the mass flux density in symmetric logarithmic scale (the orange tones indicate
escaping gas, while the blue tones indicate gas being accreted). The upper histogram shows the marginal azimuthal distribution of the entering (blue) and
escaping (orange) fluxes,

∫ 1
−1 jM (θ, φ)d(cos θ ). Likewise, the histogram on the right shows the marginal polar distribution of the fluxes,

∫ π

−π
jM (θ, φ)dφ.

respect to the major axis), corresponding to the gas infalling along
the cosmic filaments (Lee & Evrard 2007; Lee et al. 2008). Indeed,
the regions limited by |cos θ | > 0.875 (which correspond to 1/8 of
the total solid angle) account for 60 per cent and 54 per cent of the
total gas mass inflow, for the snapshots shown in the left-hand and
right-hand panels of Fig. 6, respectively.

Outside the polar region, gas accretes in a much smoother manner.
However, far from being isotropic, the flows present intricate struc-
tures. At z � 0.81, during the high-accretion regime, mass inflows
dominate almost everywhere, but some structures stretched along
the θ direction stand out. At z � 0.35, the baryonic component
has a net MAR of �baryons

vir � −0.5, which could be tempting to
interpret as the absence of strong mass flows. However, the right-
hand panel in Fig. 6 shows that this interpretation is not a good
descriptor of the physical scenario. The low absolute value of �

emerges as a result of a rather complex counterbalance between
strong inflows and outflows. Once again, stretched structures of
accretion and deaccretion at nearly constant φ are present. Accretion
continues dominating in the polar region, while loss of gas is
prevalent elsewhere.

4.2.1 Multipolar expansion of the mass fluxes

The plots in Fig. 6 depict a complex pattern of gas inflows and
outflows. In order to extract quantitative information from these
accretion patterns, we develop the mass flux through the r = Rbdry

boundary in the basis of real spherical harmonics:

jM (θ, φ) =
∞∑

l=0

l∑

m=−l

clmYlm(θ, φ), (10)

where clm =
—

d�Ylm(θ, φ)jM (θ, φ) ∈ R (see Appendix B). How-

ever, the discrete sampling of the mass flux in nφ × nθ bins constrains
the maximum degree, l, that can be faithfully reconstructed. As the
spherical harmonics of degree l represent variations on angular scales
π/l rad, the sum over l shall be limited to lmax ≡ min (nφ /2, nθ ), i.e.

the Nyquist frequency of the grid.5 In our case, having nφ × nθ =
80 × 80, the multipolar expansion ought to be cut at lmax = 40.

Fig. 7 shows how higher degree components capture the details of
the accretion pattern on increasingly smaller angular scales, using the
accretion fluxes in the left-hand panel of Fig. 6 as an example. From
left to right, columns present the reconstructed fluxes in their upper
panel, computed by cutting the series at lmax = 4, 8, 16, and 32.
The lower panel corresponds to the residuals with respect to the real
flux. Even though low-order degree spherical harmonics represent
the dominant contributions, as it will be seen below, higher degrees
need to be reached in order for the reconstructed flux to resemble
the real one. We quantify the goodness of the fit by computing the
rms relative difference between the real and the reconstructed flux.
This quantity steadily decreases with increasing lmax up to lmax ∼ 25,
where it stalls as the high-order multipoles involved vary in angular
scales comparable to our sampling of the flux.

4.2.2 Power spectrum of the angular distribution of accretion fluxes

In order to extract the contribution of the different angular scales
to the accretion flux, we define the power spectrum of the angular
distribution of mass flows as the average of the square of the clm

coefficients for a given l:

P (l) = 1

2l + 1

l∑

m=−l

c2
lm (11)

This quantity encodes the magnitude of the contribution of
components varying on angular scales ∼180o/l to the flux. The
left-hand panel in Fig. 8 exemplifies this by showing this quantity
computed for the same mass flux map in the left-hand panel of Fig. 6.

The overall behaviour of the power spectrum, decreasing with l,
reveals that the components corresponding to fluctuations on large
angular scales (i.e. low l; especially l = 0, 2 and 4) are dominant,

5This condition simply corresponds to requiring that the function is sampled
twice per period.
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Figure 7. Reconstruction of the mass flux (corresponding to the left-hand panel of Fig. 6) with increasingly higher degree spherical harmonic components:
from left to right, lmax = 4, 8, 16, 32. The upper panels present the flux reconstructed by adding all the terms in the multipolar expansion up to l = lmax. The
lower panels show the residuals of this expansion, i.e. the subtraction of the reconstructed flux from the real flux. The colour scale of all panels has been kept
the same as in the left-hand panel of Fig. 6.

Figure 8. The left-hand panel presents the power spectrum of the mass flows, P(l), normalized to the value corresponding to the monopolar order, P(l = 0).
The right-hand panel contains the absolute value of the individual clm coefficients, as a function of the multipolar degree l. The spherical harmonic order, m, is
encoded in the colour scale as |m|/l, with the sign given by the shape in the legend. Both representations have been computed for the accretion fluxes of CL01
at z � 0.81 through Rvir, corresponding to the accretion map on the left-hand panel of Fig. 6.

while the small-scale components only provide small corrections.
Consequently, the overall accretion and deaccretion patterns can
be described, to a great extent, by looking at these simpler, main
contributions. Interestingly, the power spectrum shows a clear odd–
even effect: even l components are systematically larger than odd
l components, implying that parity-even modes are responsible for
the bulk of the gas flows through the Rvir boundary at this particular
code output. Note, however, that although this effect is sustained in
time and can be easily understood for the lower degree components
(l = 0 and 2, which are further discussed below), the same is not
true for higher degree components, where this effect is not so clear
through all iterations.

On the right-hand panel of Fig. 8, the magnitudes of the clm coeffi-
cients (for the same system and code output) are represented, offering
complementary information to the power spectrum (which only gives
the average over the orientations of the different multipoles, m, for
a given l). In the figure, the horizontal axis encodes the degree, l,
while the colour scale is used to indicate the order, m, of the real

spherical harmonic. In this particular case, three m = 0 components
completely dominate the mass flux: namely, l = 0, 2, and 4. Their
relative weights undergo significant evolution during the redshift
interval of this study, 1.5 ≤ z ≤ 0. Let us further describe the lowest
order components:

The monopolar, isotropic, or smooth component (l = 0). This
spherically symmetric contribution represents the average isotropic
mass flux across the r = Rbdry boundary, and hence, can be interpreted
as a MAR estimate. In Section 4.2.6, we explore the possibility of
using it as a MAR proxy and compare it to �200m.

The dipolar components (l = 1), or headwind. These multipoles,
which account for an excess of accretion flows on a hemisphere
and a defect in the antipodal one, can be visualized as the resulting
mass flow pattern of an object moving through a dense medium.
Although we do not explore it in this manuscript, its usage ap-
pears to be promising in the exploration of phenomena like ram
pressure stripping (Quilis, Moore & Bower 2000; Quilis et al.
2017).
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Figure 9. Relation between the instantaneous MAR proxies �200m and c00,
combining all the snapshots in 1.5 ≥ z ≥ 0. The latter has been normalized
to cancel the expected dependencies on redshift and mass. The upper panel
contains the scatter plot of both variables and a nonparametric fit using
smoothing splines (the blue line). The residuals of this fit, 	, are used in the
lower panels to assess whether there is still a redshift or mass dependence in
this relation.

The aligned quadrupole or filamentary component (l = 2, m = 0).
This component represents a strong mass inflow through the poles
(i.e. through the directions of the major axis) and an outflow near
the equatorial regions. Thus, it is the natural candidate to account for
the contribution of the mass flux through the cosmic filaments that
connect a cluster with a near, massive neighbour.

4.2.3 The monopolar component as an MAR estimate

As already introduced, the monopolar coefficient, c00, is a measure-
ment of the angularly averaged mass flux, and can thus be used in
order to quantify the MAR of a cluster. In order to check to which
extent does c00 agree with other MAR estimates, Fig. 9 presents the
analyses of the correlation and the residual dependencies between c00

and �200m, in the same way we have done for α200m in Section 3.4.
Note, however, that c00 is a measure of the isotropic mass flux,

while �vir quantifies the logarithmic increase in the enclosed mass.
In order to provide a comparison where no residual dependencies
with the mass or redshift are expected, the vertical axes in Fig. 9

show R2
vir

Mg,virH (z) × c00, instead of just c00. This normalization can be
understood from the following reasoning:

The MAR, Ṁ ≡ dM
dt

, can be got from the mass flux by integrating
it over the surface of a sphere of radius Rbdry. Since all the non-
monopolar spherical harmonics average to zero, introducing the mul-
tipolar expansion of jM(θ , φ), equation (10), into the surface integral
allows to write the MAR as Ṁ = √

4πR2c00. The same quantity can
be obtained from �	, as Ṁ ≡ dM

dt
= dM

d log M

d log M

d log a

d log a

dt
= M�H (z).

Therefore, R2c00 scales as M�H(z), justifying our choice to compare

�gas
vir with R2

vir
Mg,virH (z) × c00. Note that, additionally, this normalization

cancels out the dimensions of c00.
The upper panel in Fig. 9 shows that, even though there is

considerable scatter, these two MAR proxies are tightly correlated
(ρsp = 0.884). With this sample, the relation appears to stall at high
values of �gas

vir . However, the reduced number of observations in this
high-accretion regime prevents us to draw any robust conclusion to
this respect. The lower panels present the distribution of residuals
with respect to the independent variable, �gas

vir , mass and redshift.
The residuals appear to be uncorrelated to redshift, suggesting that
the normalization applied to c00 cancels the redshift evolution of the
�−c00 relation. Likewise, the residual dependence with the mass, if
any, is weak (ρsp = 0.248).

4.2.4 Relative weight of the smooth and the filamentary
contributions

Aiming to assess the relative weight of the filamentary (aligned
quadrupolar) and isotropic (monopolar) contributions, we define the
following parameter:

β ≡ c20

|c00| + |c20| (12)

Note that β is valued in the interval [−1, 1]. Positive values imply
that the aligned quadrupole contributes to increase the gas mass flux
in the regions close to the major semi-axis, corresponding to the gas
infalling through the cosmic filaments, while the unlikely scenario
in which β < 0 would correspond to a decreased gas mass flux
through these regions. If these two components have comparable
weights, |c20| ∼ |c00|, then |β| ∼ 1/2. Likewise, |β| ∼ 1 (β ∼ 0)
indicates that the filamentary (smooth) component is the dominant
contribution.

As an example, Fig. 10 presents the evolution of this quan-
tity for the cluster CL01. The value of β fluctuates around the
value of β = 1/2, which separates the filamentary-dominated or
smooth-dominated accretion regimes. These values of β do not
seem to correlate with the merging regimes studied in Section 3.2.
Note, however, that this result has been obtained for a particular
cluster, and the method should be applied to a whole sample
of massive clusters in order to draw any statistically significant
conclusions.

4.3 Thermodynamical properties of the accreted gas

The method described in Section 4.1 can also be applied to measure
any property of the accreted and deccreted gas, such as its temperature
and entropy. For each of the nφ × nθ solid angle bins, its temperature
and entropy are computed as the mass-weighted average of such
quantities over all the entering cells assigned to the bin. Note,
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Figure 10. Evolution of the parameter β = c20
|c00|+|c20| , measuring the relative

importance of the filamentary component of the gas mass inflows, for the
cluster CL01. The grey-dashed line marks the value β = 1/2. The grey- and
red-shaded regions indicate the accretion regimes, as in Fig. 2.

however, that the angular regions where no gas is inflowing cannot
be assigned a temperature nor entropy, resulting in ‘gaps’ in the
corresponding maps.

With the purpose of exploring the thermodynamic differences
between the gas accreted from the smooth component and from
the filamentary component, we have assigned a temperature and an
entropy to each multipolar component as

Xlm ≡
∫

�̃
d�X(θ, φ)Ylm(θ, φ)∫

�̃
d�Ylm(θ, φ)

, (13)

where X represents either the temperature or the entropy, and the
integration domain �̃ is the region where Ylm(θ, φ) > 0 (and thus the
correspondent component represents infall of matter) and X(θ , φ) is
defined (i.e. at least one gas cell has been marked as entering through
the bin and therefore its temperature and entropy can be defined).

The left-hand and central panels in Fig. 11 present, respectively,
the evolution of gas temperature and the gas entropy for cluster
CL01. In all three panels in the figure, continuous lines represent
the evolution of the magnitudes for the smooth component, while
the dashed lines correspond to the component infalling through the
filaments.

While temperatures of the monopolar and the quadrupolar com-
ponents do not exhibit a clear distinctive behaviour, their entropies
do. Gas being accreted through cosmic filaments tends to have
systematically lower entropy than smoothly accreted gas, mainly
as a consequence of its higher density. These effects appear to be
larger at higher redshifts, while accretion rates are still high for this
object (see Fig. 2). The evolution of temperature or entropy of both
accreting components does not seem to display a clear relation to
merger regimes. However, in order to draw robust conclusions from
the analyses of the evolution of thermal properties of the gas accreted
smoothly and through filaments, larger samples of massive clusters
need to be analysed.

As well as gas mass flows, the method described in Section 4.1
can also be applied to measure the angular distribution of the DM
mass flux. The procedure is completely analogous to the one covered
for the gas. From the gas and DM mass fluxes, the gas fraction of
the accreting material of a given multipolar component, (l, m), is

computed as

(
fg

)
lm

≡
∫

�̃
d�jM (θ, φ)Ylm(θ, φ)∫

�̃
d�

[
jM (θ, φ) + jDM

M (θ, φ)
]
Ylm(θ, φ)

. (14)

The right-hand panel of Fig. 11 shows the gas fractions of the
matter infalling isotropically and through filaments. These fractions
have been normalized to the cosmic baryon fraction (i.e. the grey-
dashed line in the plot). The gas fraction of both components
fluctuates around the cosmic fraction, being slightly lower during
the merger events (due to the collisional nature of gas). The two
components show very similar qualitative behaviour, with the gas
fractions of matter falling through the cosmic filaments slightly
increased with respect to the matter being smoothly accreted.
However, these differences are kept small and more statistics are
needed in order to draw general conclusions.

5 DISCUSSI ON AND CONCLUSI ONS

In this paper, we have analysed the results of an AMR hydrodynam-
ical coupled to N-Body cosmological simulation of a small-volume
domain, containing a central, massive galaxy cluster, and several
smaller systems. The main focus of this work has been placed on
the quantification of the accretion phenomena, with a special focus
on the dynamics of the gaseous component. The dynamical scenario
depicted by the simulation is essentially dominated by the infall of
matter on to the central cluster, which is also the best numerically
resolved object. Consequently, most of the focus has been placed
on this object, especially in Section 4. Nevertheless, less-massive
systems have turned out to be useful in assessing the differences in
the MAHs of massive and less-massive clusters.

5.1 Accretion rates

Through these pages, several proxies for the MAR have been
compared (see Figs 5 and 9). The most widely adopted MAR
proxy in numerical works, �

[a1,a0]
	 (Diemer & Kravtsov 2014), is

difficult to relate to an actual observable, since it corresponds to
the average accretion rate over several Gyr for typical choices
of a1. The instantaneous MAR proxies α	 (Lau et al. 2015) and
�(a) (equation 3), however, could in principle be inferred from
observations, and can moreover be determined for clusters at any
redshift.

• As long as galaxies and gas bulk motions trace DM’s, α	

could be estimated, in the optical band, from the radial velocities of
infalling galaxies in clusters’ outskirts, or from the radial velocities
of gas (from X-ray data, e.g. Sanders et al. 2020; or from kSZ
observations, e.g. Adam et al. 2017; see also Simionescu et al. 2019
for a recent review on the topic). In Section 3.4, we have seen
that gas systematically infalls with smaller radial velocities than
DM, in consistency with Lau et al. (2015), who have computed the
averaged radial velocity profiles for a sample of clusters. However,
when looking at a specific cluster extracted from our simulation
(as we have shown in Fig. 4), we see that the pattern for a single
cluster can be fairly more complex than this average behaviour,
with gas accreting at larger velocities than DM in some regions.
Thus, even though the aforementioned behaviour generally holds,
the details of the dynamics in the outskirts of each individual cluster
introduces important uncertainties, which make unclear to which
extent DM velocities can be inferred from gas or galactic velocities
in particular objects, and consequently α	 can be faithfully measured
in observations.
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Figure 11. The panels show different thermodynamical properties of the smooth or monopolar component (the solid line) and the filamentary or aligned
quadrupolar component (the dashed line) of the mass flows. From left to right, panels show the temperature, the entropy, and the gas fraction of the material
being accreted to the cluster. Entropy displays the strongest differential behaviour, with the filamentary component having lower entropy. The shaded regions
indicate the merging regimes as in Fig. 2.

• �(a) cannot be directly measured in observations, since it is
defined as a rate of change of the mass. However, in Section 3.2.3,
we have obtained a tantalizing correlation between this quantity and
the densities in the 1 ≤ R/R200m ≤ 1.5 in some massive clusters,
suggesting that it might be possible to estimate �(a) by probing the
densities in these regions. However, more statistics are needed to
confirm this correlation and to explore the possibility to relate these
variables. When computing �(a) in simulations, it is worth noting
that, given that sampling the MAH of clusters introduces statistical
noise, the particular differentiation scheme can bias the results: for
instance, a Gaussian smoothing of the numerical derivatives leads
to overly flattened peaks. This effect can be prevented by using
Savitzky–Golay filters.

When comparing α200m to �total
200m(a), we have found that these

two quantities display a relatively tight anticorrelation (see Sec-
tion 3.4.1). If gas velocities are used instead of DM velocities, as
suggested above, the Spearman’s rank correlation coefficient drops
from ρsp = −0.832 to ρsp = −0.649, i.e. gas velocities are not always
good indicators of DM velocities.

Last, the coefficient c00 presented in Section 4.2.6 is a more direct
measurement of the actual mass flux. We have found that once the
redshift and mass dependencies are corrected, it correlates strongly
to �

gas
200m(a), although the scatter continues being large. Even though

this parameter is not easily derivable from observational data, it
can serve in simulations as a reasonable estimate of the actual gas
accretion rate, which can be compared to other proxies.

5.2 Angular distribution of the mass flows

In Section 4, we have presented a novel and general approach to study
the accretion phenomena in simulations, through the determination
of the angular distribution of the mass flows through the clusters’
spherical boundary. The method presented in Section 4.1 allows a
simple determination of this quantity by treating cells as pseudo-
Lagrangian fluid elements.

The multipolar expansion of the mass flux in the principal axes
system of the cluster has been used to extract the elementary
contributions to the mass flux. In particular, we have payed special
attention to the monopolar and the aligned quadrupolar components,
which represent the average isotropic mass flux and the enhancement
in the polar regions due to the preferential infall of mass through the
cosmic filaments. We have defined a parameter, β, which quantifies

the importance of the filamentary component of accretion, with
respect to the isotropic component. Applying this analysis to the
central, massive cluster in our simulated domain suggests that this
geometry of accretion can vary importantly during the accretion
history of the cluster, but we have not found any strong relation with
merger events in this particular object.

This method can be extended to evaluate properties of the accreted
gas, such as its temperature and its entropy. In particular, we have
suggested a way to define these properties for each multipolar com-
ponent. The most direct application of this procedure is assessing the
difference between the gas accreted isotropically and the gas accreted
through filaments. Our results point out that the gas being accreted
through the cosmic filaments has systematically lower entropy than
the isotropic component. Recent observational works, Gouin et al.
(2020) have studied the multipolar expansion of the projected density
in the clusters’ outskirts, obtaining a power spectrum which presents
similar features to our (3D) spectrum of accretion flows.

The analyses in this paper would importantly benefit from larger
samples of clusters in order to enhance the statistical significance of
our results and, especially, to pursue further analysis, like relating
the accretion phenomena studied in this work to the position of the
cluster with respect to the SZ and X-ray mass-observable relations
(see e.g. Yu et al. 2015; Chen et al. 2019 for recent studies in this
line). Nevertheless, despite this lack of statistics, we have proposed
some novel analyses that may offer a new insight into the study
of accretion of gas in numerical simulations of cluster formation.
With the new generation of X-ray and SZ instruments being able
to systematically observe the outskirts of a larger number of galaxy
clusters in the next decade, more light will be shed on to the physics
happening in these regions.
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APPENDI X A: THE SYMMETRI C
L O G A R I T H M I C SC A L E

When representing the mass fluxes in Section 4.2, or in many other
situations where data can be both positive and negative and, at the
same time, span a broad range of orders of magnitude, it may be
useful to employ a symmetric logarithmic scale. Even though some
software packages for data visualization (e.g. PYTHON’s MATPLOTLIB,
Hunter 2007) include implementations of this scale, its usage is not
quite widespread and we have considered covering it here for the
interested reader.

The basic underlying idea of our particular implementation of the
symmetric logarithmic scale relies on mapping any interval [−xmax,
xmax] to the interval [−1, 1] by performing the following continuous
transformation:

x �→ f (x) =
{

sign(x)
[
1 + 1−a

α
log10

(
x

xmax

)]
, |x|

xmax
≥ 10−α

a
10−αxmax

x, |x|
xmax

≤ 10−α

.(A1)

The parameters have been chosen in this way to provide the
clearest interpretation. xmax controls the maximum of the scale, i.e.
the value that will be mapped to 1. α represents the dynamical
range of the representation (the number of orders of magnitude
represented in logarithmic scale). Absolute values above 10−α are
treated logarithmically; below this threshold, linearly. Last, a =
y(10−αxmax) represents the visual extent of the linear scale. In order
for the transformation to be differentiable, a shall be set to a = (1 +
αln 10)−1. However, in many cases differentiability is not necessary,
and a can be chosen to better suite the representation purposes. In the
plots shown in this work, we have used α = 3.5, a = (1 + αln 10)−1.

A P P E N D I X B : T H E R E A L S P H E R I C A L
H A R M O N I C S BA S I S

In Section 4.2, we have used the real spherical harmonics basis
to study the angular dependence of the mass accretion fluxes. As
there is not a general consensus regarding phase and normalization
conventions, let us formally define these functions as they have been
used in this work.

MNRAS 499, 2303–2318 (2020)
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Let Ylm(θ , φ) be the complex spherical harmonic of degree l and
order m, with unit square-integral and using the Condon–Shortley
phase convention (see e.g. Arfken, Weber & Harris 2013). These
functions can be used to expand any square-integrable complex
function defined on the unit sphere. However, for real functions,
only a half of the coefficients of such expansion are free. Thus,
it can be simplified by defining the real spherical harmonics,
Ylm(θ, φ), as

Ylm(θ, φ) =
⎧
⎨
⎩

(−1)m
√

2 Im
[
Yl,−m(θ, φ)

]
, m < 0

Yl0(θ, φ), m = 0
(−1)m

√
2 Re

[
Yl,m(θ, φ)

]
, m > 0

. (B1)

From the orthonormality properties of the Ylm functions, it is easy
to show that any real, square-integrable function defined on the unit
sphere, f(θ , φ), can be expanded in a series of real spherical harmonics
with real coefficients, as

f (θ, φ) =
∞∑

l=0

l∑

m=−l

clmYlm (B2)

with clm =
—

d�Ylm(θ, φ)f (θ, φ).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 499, 2303–2318 (2020)
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a b s t r a c t

In the context of intra-cluster medium turbulence, it is essential to be able to split the turbulent
velocity field in a compressive and a solenoidal component. We describe and implement a new
method for this aim, i.e., performing a Helmholtz–Hodge decomposition, in multi-grid, multi-resolution
descriptions, focusing on (but not being restricted to) the outputs of AMR cosmological simulations.
The method is based on solving elliptic equations for a scalar and a vector potential, from which
the compressive and the solenoidal velocity fields, respectively, are derived through differentiation.
These equations are addressed using a combination of Fourier (for the base grid) and iterative (for
the refinement grids) methods. We present several idealised tests for our implementation, reporting
typical median errors in the order of 1h-1%, and with 95-percentile errors below a few percents.
Additionally, we also apply the code to the outcomes of a cosmological simulation, achieving similar
accuracy at all resolutions, even in the case of highly non-linear velocity fields. We finally take a closer
look to the decomposition of the velocity field around a massive galaxy cluster.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cosmological structures and, in particular, galaxy clusters,
which constitute the most massive structures which have had
time to collapse under their own gravity, are dynamically in-
teresting objects from several perspectives. The non-linearity of
the evolution of their baryonic component (i.e., ordinary matter,
most of which is in the form of a hot, tenuous plasma known
as the intra-cluster medium, ICM) couples the different scales in
the evolution of cosmic inhomogeneities, producing a plethora
of complex hydrodynamical phenomena, such as shock waves
and turbulence. Turbulence is an intrinsically multi-scale phe-
nomenon, since bulk motions trigger (magneto-)hydrodynamical
instabilities (e.g., [1]) which cascade down to smaller scales until
they get dissipated by viscous effects.

Turbulent motions can be [2] and have been recently [3,4]
measured on a number of nearby galaxy clusters from X-ray sur-
face brightness fluctuations, which have in turn been connected
to signatures of particle acceleration and diffuse radio emission
in the ICM [5,6]. Future X-ray facilities, like Athena,1 will offer

✩ The review of this paper was arranged by Prof. David W. Walker.
∗ Corresponding author.

E-mail addresses: david.valles-perez@uv.es (D. Vallés-Pérez),
susana.planelles@uv.es (S. Planelles), vicent.quilis@uv.es (V. Quilis).
1 www.the-athena-x-ray-observatory.eu.

unprecedented insight into the dynamics of turbulent motions
in the ICM [7]. However, the precise theoretical and numerical
description of turbulence in these vast structures is still matter
of ongoing research (e.g., [8–11], just to highlight a few recent
numerical studies).

Splitting the (turbulent) velocity field in its compressive and
solenoidal components, i.e., performing a Helmholtz–Hodge de-
composition (HHD), is a crucial step towards exploring the role of
turbulence in the ICM, since these components play fundamental
and distinct roles in the evolution of cosmic structures. Thus,
while the solenoidal component is likely the major responsible for
the amplification of cosmic magnetic fields [12,13], compressive
turbulence has an important role in generating weak shocks
which have consequential effects on the magnetic and thermal
evolution of the cluster (e.g., [13,14]). These two components also
differ in their spatial distribution, the former tending to be more
volume-filling [10,15,16], and even in their spectrum, steeper for
the compressive component [8,17–19]. The distinction between
the solenoidal and compressive component of the velocity field
is also of utmost importance to model the acceleration of cosmic
ray particles in the ICM, which will become a vibrant field of
observational research with the advent of the new generation of
radio telescopes (e.g., SKA [20]). In this line, a lot of effort has
been recently put in modelling the acceleration by compressive
and solenoidal modes in magnetohydrodynamics (MHD; [21–25])

Cosmological hydrodynamical simulations, as many other ap-
plications in computer fluid dynamics, need a huge dynamical

https://doi.org/10.1016/j.cpc.2021.107892
0010-4655/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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range to be resolved in order to, for example, form realistic galax-
ies in a cosmological environment [26,27] or adequately describe
turbulence in the ICM (see, e.g., [28] for some graphical examples
of the effects of resolution on the ability to capture instabilities;
see also [29,30], who present detailed studies of stratified, ICM-
like turbulence in numerical grids of varying resolution). While
Lagrangian codes are inherently adaptive, Eulerian codes based on
high-resolution shock-capturing (HRSC) techniques are especially
capable of handling shocks and other types of discontinuities,
which are pervasive in the formation of cosmological structures
([31], for a review). That is why, among several other options
(see, for example, [32] for a broad review), Adaptive Mesh Refine-
ment (AMR) codes are especially suited for cosmological structure
formation.

Previous studies of ICM turbulence have already implemented
HHD algorithms. For example, several works using uniform grids
(or fixed refinement strategies which, ultimately, allow to re-
solve the object of interest within a constant resolution) perform
the decomposition in Fourier space, where it simply reduces to
linear algebra projections (e.g., [10,33]). Additionally, [10] also
confront this method with solving a Poisson equation (in Fourier
space) to find a scalar potential for the compressive velocity
component, reporting more accurate results for the first method.
However, any of these two procedures, because of their usage
of fast Fourier transform (FFT) algorithms, can only be applied
to regular, uniform grids, which are not the common use in
cosmological simulations.

In this paper, we propose, implement and test a new algo-
rithm for performing the Helmholtz–Hodge decomposition in a
multi-scale AMR grid, which can therefore be applied to the
outcomes of a full-cosmological simulation without the need of
performing resimulations of specific objects or constrained sim-
ulations. Our method decomposes the velocity fields by solving
elliptic partial derivative equations (PDEs), which can be ad-
dressed iteratively using a wide variety of well-known algorithms
(e.g., [34]). Nevertheless, although our primary focus is the ap-
plication to cosmological structure formation, we emphasise that
the approach presented in this work can be directly applied to
any application of block-structured AMR, and readily extended
to particle-based simulations through a suitable interpolation
scheme.

The rest of the manuscript is organised as follows. In Section 2,
we describe our method for performing the decomposition and
discuss its numerical implementation. In Section 3 we present
and describe a set of tests to validate the accuracy of the algo-
rithm, while in Section 4 we apply it to the complex velocity field
of a cosmological simulation. Last, in Section 5 we summarise and
present our conclusions.

2. Description of the method

The algorithm is based on the Helmholtz–Hodge decompo-
sition (see, e.g., [35–37]), which allows to univocally split any
velocity field in three terms,

v = vcomp + vrot + vharm (1)

where vcomp is the compressive (or irrotational, ∇ × vcomp = 0)
velocity field, vrot is the purely rotational (or solenoidal, ∇ ·vrot =

0) velocity field and vharm is the harmonic velocity field (both
irrotational and solenoidal, thus satisfying ∇

2vharm = 0 and
vharm = ∇χ , with ∇

2χ = 0).
The harmonic component can be shown to be identically null

in any domain with periodic boundary conditions, and therefore
we will no longer consider it. Because of their defining properties,
the compressive component can be written as the gradient of a
scalar potential, vcomp = −∇φ, while the rotational component

can be derived from a vector potential, vrot = ∇ × A. From this,
it is easy to derive that the scalar and vector potentials can be
computed, respectively, as the solutions of the following elliptic
PDEs,

∇
2φ = −∇ · v (2)

∇
2A = −∇ × v (3)

which are formally equivalent to a set of four decoupled Poisson
equations (one for φ and one for each cartesian component of A)
whose sources are the divergence and the components of the curl
of the overall velocity field.

Once the potentials have been obtained, the compressive
and rotational components of the velocity field can be obtained
through differentiation. Note that, in principle, it would only be
necessary to find one of the potentials (either φ or A), since the
other velocity component could be then derived by subtracting to
the total velocity (Eq. (1) with vharm = 0). Nevertheless, we have
chosen to compute all the potentials in order to keep track of the
associated numerical errors.

2.1. Numerical implementation

We have designed a code to perform such decomposition in
a multi-resolution, block-structured AMR velocity field. As men-
tioned before, our code can be easily applied to the outcomes of
any AMR simulation (cosmological or not), or even to a particle-
based code, from which the continuous velocity field can be
defined on an ad-hoc AMR grid structure through a smoothing
method (e.g., a particle-mesh, [38]).

In our particular implementation, for the base (coarsest) level,
ℓ = 0, taking advantage of the periodic boundary conditions,
Poisson equations are solved in Fourier space,2 where they just
reduce to a multiplication by the Green’s function. The basic
procedure followed to solve Poisson equations in the base grid
can be described in the following steps:

1. The FFT of the source (right-hand side terms in Eqs. (2)
or (3)) in the base grid is computed, yielding a set of
coefficients Flmn.

2. Poisson’s equation is then solved in Fourier space by mul-
tiplying by the Green’s function, Glmn: φ̃lmn = GlmnFlmn. The
Green’s function is given by:

Glmn =
(∆x/2)2

sin2
(
π l
Nx

)
+ sin2

(
πm
Ny

)
+ sin2

(
πn
Nz

) (4)

where ∆x is the cell side length and the domain is discre-
tised in Nx × Ny × Nz cells [38].

3. The inverse FFT of φ̃lmn yields the sought potential at the
base level.

2 Note, however, that this is not a requirement of the method. We solve
Poisson’s equations in Fourier space as cosmological simulations of sufficiently
large volumes typically implement periodic boundary conditions and, in these
situations, solving Poisson’s equation in Fourier space is much more compu-
tationally efficient than using iterative methods. In any case, for non-periodic
domains, the base level can be addressed through iterative schemes, just as
described below for the refinement levels, if suitable boundary conditions are
provided. In the case of non-periodic domains, however, the harmonic term
cannot be dropped in Eq. (1). While we cannot compute vharm by solving elliptic
equations, this term can be obtained just by using Eq. (1) to solve for it, once
vcomp and vrot have been found. This is a good approach, as long as our algorithm
precisely reconstructs the compressive and rotational velocity fields from an
input field, which is tested in Sections 3 and 4.

2
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In subsequent refinement levels, ℓ > 0, Poisson equations
have to be solved taking into account the boundary conditions
imposed by the coarser grids the refined patches are embedded
into. In order to do so, we use a successive over-relaxation pro-
cedure (SOR; see, for example, [34]) on the discretised Poisson
equation.

Each AMR patch is first initialised (both in the boundary and
in the interior cells) by linear interpolation from the values of the
potential at the best-resolved lower level patch available. Then,
the interior cells are iteratively updated in a chessboard pattern
as

φnew
i,j,k = ωφ∗

i,j,k + (1 − ω)φold
i,j,k, (5)

where
φ∗

i,j,k =
1
6

[
φold
i+1,j,k + φold

i−1,j,k + φold
i,j+1,k + φold

i,j−1,k

+φold
i,j,k+1 + φold

i,j,k−1 − (∆xℓ)2fi,j,k
]
,

(6)

being ∆xℓ the cell size at the given refinement level, fi,j,k the
source term and 1 < ω < 2 the over-relaxation parameter. In
order to boost convergence, we set ω according to the Chebyshev
acceleration procedure [34]. Aiming to avoid undesirable bound-
ary effects due to the interpolation of the potential boundary
conditions, we extend the patches with 3 fictitious cells in all
directions, so that these boundary conditions are enforced slightly
far away from the region of interest.

Once φ and A are known, the velocity components are found
by finite differencing the potentials as defined before. We com-
pute the derivatives (both of the velocity and of the potentials)
using an eighth-order scheme with a centred stencil of up to3 9
points, which provides robust values of the differential operators
of the velocity fields and mitigates the impact of spurious noise.

The code is parallelised according to the OpenMP standard
directives. Our implementation is freely available through its
GitHub repository.4

3. Tests

Aiming to assess the robustness of our HHD method and its
implementation, we have designed a battery of tests focused on
quantifying to which extent the code is able to accurately identify
and disentangle the compressive and rotational velocities. We
describe such tests in Section 3.1, and examine their results in
Section 3.2.

3.1. Description of the tests

For the four tests described below, we have first established
a simple AMR grid structure, i.e., a set of patches at different
refinement levels that could reasonably mock the ones generated
in an actual simulation.

We have considered a cubic domain of unit length, with origin
at the centre of the box, and we have discretised it with 1283

cells. For each octant, we establish a first refinement patch with
twice the spatial resolution covering the central 1/8 of the octant
volume. For example, in the first octant (0 < x, y, z < 1/2), we
set up a patch at 1/8 < x, y, z < 3/8 with 643 cells (and likewise
for the remaining 7 octants). Then we add a ℓ = 2 patch in the
central 1/8 volume of each ℓ = 1 patch, and continue recursively.

In the first three tests we consider up to ℓmax = 10 refinement
levels, providing a peak resolution of 7.63× 10−6 (relative to the
box size, which is normalised to 1). Fig. 1 presents graphically
the grid structure employed in these tests. Below, we describe
the velocity fields that we have seeded on these grids.

3 The stencil length is shortened as cells get closer to the boundary.
4 https://www.github.com/dvallesp/vortex/.

Fig. 1. AMR grid structure for the tests in Section 3. The figure represents a
slice at z = 0.25, with the colours encoding the highest refinement level at
each point in the x–y plane. The white, dashed lines indicate the cartesian x
and y axes.

3.1.1. Test 1: constant divergence field
For the first test, we consider a purely compressive velocity

field with constant divergence, given in cartesian and spherical
coordinates by the analytical expression

v = ω0
(
x ûx + y ûy + z ûz

)
≡ ω0r ûr. (7)

This field has ∇ ·v = 3ω0 and ∇ ×v = 0, and hence v = vcomp
and vrot = 0. It is easy to find an analytic expression for the scalar
potential, φ = −

ω0
2

(
x2 + y2 + z2

)
+ C, with C any arbitrary real

constant. Likewise, the vector potential ought to be A = ∇χ , with
χ an arbitrary scalar function or, in particular, A = 0. We have
set ω0 = 0.01.

3.1.2. Test 2: constant curl field
Analogous to the previous one, we have also considered the

case of a purely uniformly rotating velocity field, which can be
analytically given in cartesian and cylindrical coordinates as:

v = ω0
(
−y ûx + x ûy

)
≡ ω0ρ ûφ (8)

It is straightforward to show that ∇·v = 0 and ∇×v = 2ω0 ûz.
This velocity field is generated by the potentials φ = C, being
C ∈ R a free constant, and A = −2ω0ρ ûz + ∇χ , with χ any
arbitrary scalar function. As in Test 1, we set ω0 = 0.01.

These two previous tests (Test 1 and Test 2) are aimed to vali-
date the reconstruction of pure velocity fields (either compressive
or rotational, respectively), i.e., to estimate the magnitude of
the errors involved in the procedure described in Section 2.1 in
idealised situations where there is no cross-talk between rota-
tional and compressive components. Last, note that even though
these two velocity fields are not periodic in the mock simulation
domain, this will only affect a negligible amount of cells in the
domain’s boundary.

3.1.3. Test 3: compressive and rotational, periodic field
We have designed a third test, aimed to assess the effects

of the cross-talk between the compressive and the rotational
components. We have considered the velocity field:

v = [sin (2πx)+ sin (4πy)+ sin (6πz)] ûx

+ [sin (6πx)+ sin (2πy)+ sin (4πz)] ûy

+ [sin (4πx)+ sin (6πy)+ sin (2πz)] ûz.

(9)

3
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The compressive part corresponds to the terms of angular
frequency 2π , while the higher frequency ones constitute the
rotational component. Also in this case, it is easy to find analytical
solutions to φ and A:

φ =
1
2π

[cos (2πx)+ cos (2πy)+ cos (2πz)] + C (10)

A =

[
−

1
4π

cos (4πz)+
1
6π

cos (6πy)
]

ûx

+

[
−

1
4π

cos (4πx)+
1
6π

cos (6πz)
]

ûy

+

[
−

1
4π

cos (4πy)+
1
6π

cos (6πx)
]

ûz + ∇χ.

(11)

3.1.4. Test 4: ICM-like mock velocity field
While the previous tests have checked the ability of the code

to reconstruct idealised solenoidal, compressive and mixed ve-
locity fields, we have implemented a last test aimed to assess
the ability of the code to capture and reconstruct variations on a
broad range of spatial frequencies. The test is, in part, inspired by
the one presented by [10, App. A.1.2], but with some differences
aimed to mix both velocity fields (instead of generating a purely
solenoidal or compressive field), while still having an analytic
solution of the HHD to compare with the numerical results.

We have generated our mock, ICM-like velocity field according
to the procedure described below:

1. We consider a uniform grid of (Nx × 2ℓmax )3 cells. In that
grid, we compute the velocity field v = vcomp + vrot, with:

vcomp =

∑
i=x,y,z

Nmax∑
n=Nmin

Acomp
n sin

(
2πn
L

xi + ψ comp,i
n

)
ûi (12)

vrot =

∑
i=x,y,z

∑
j̸=i

Nmax∑
n=Nmin

Arot
n sin

(
2πn
L

xj + ψ rot,ij
n

)
ûi (13)

being L the box side length (L = 1 in our case), Acomp
n

(Arot
n ) the amplitude of the mode of frequency n of the

compressive (solenoidal) component, and ψ comp,i
n (ψ rot,ij

n )
the initial phases. For the initial phases, we have generated
9 sets of Nmax − Nmin + 1 random numbers, uniformly
sampled from the interval 0 < ψ < 2π . The amplitudes are
generated so that the compressive (solenoidal) component
follows a Burgers [39] (Kolmogorov [40]) spectrum, E(k) ∝

k−2 (E(k) ∝ k−5/3). We set Nmin = 2 and Nmax = 1024, so
that our mock velocity field presents solenoidal and com-
pressive fluctuations over scales differing almost 3 orders
of magnitudes. In order for both components to be relevant,
we fix the amplitudes so that Arot

n = Acomp
n for n = 64. We

note that, while the velocity field generated according to
this procedure is not the most general one (e.g., one could
add oblique plane waves), it is challenging enough in order
to show the capability of our code to handle a broad range
of spatial frequencies in close-to-realistic conditions.

2. Then, we compute this total velocity field onto the AMR
grid structure defined at the beginning of Section 3.1. In
this case, we maintain Nx = 128 as the resolution of the
base grid, and limit the number of refinement patches to5
ℓmax = 4, which is still enough to show the multi-scale

5 The limitation is due to the fact that we need to compute the velocity field
in a uniform grid, in the first place. Thus, with Nx = 128 and ℓmax = 4, this
uniform grid consists of 20483 cells.

capabilities of our code. When computing the value of the
velocities on the base level or on AMR levels ℓ < ℓmax, we
average over the uniform grid cells enclosed in the coarser
volume element.

This process consistently generates a mixed, solenoidal and
compressive, velocity field presenting similar scaling features as
the ICM over almost 3 decades in spatial frequency. Therefore, it
can robustly show the capability of the code to handle multi-scale
(and multi-frequency) velocity signals.

3.2. Results

For each test, we have validated the performance of the code
by computing a series of error statistics, which we present below.
Let v be the input velocity field, for which our algorithm returns
its compressive and rotational components, ṽcomp and ṽrot. Thus,
the algorithm recovers a total velocity field ṽ = ṽcomp + ṽrot
which might differ from the original, v, due to the numerical error
in the processes involved, namely finite-differencing the velocity
field, integrating the elliptical equations and finite-differencing
the potentials.

In Tests 1 and 2, where only one velocity component (com-
pressive and rotational, respectively) was present, we have quan-
tified the error in reconstructing these velocity fields by comput-
ing the cell-wise relative error as6:

εr (vcell) =

√ 3∑
i=1

[(
vicell

|vcell|

)2 ⏐⏐⏐⏐ ṽicell − vicell

vicell + ϵ

⏐⏐⏐⏐
]2

(14)

where the subindex i runs over the three cartesian components.
Note that we add a small constant, ϵ, in the denominator of
the relative error in vcelli to prevent the overestimation of the
error due to the cells with velocities close to 0. We set ϵ ≡

10−2 max (|vi|). For each refinement level, ℓ, we have computed
the median error over all the cells, which we use as an estimate
of the velocity reconstruction error. We also consider the error
percentiles 5, 25, 75 and 95 in order to give a confidence interval
(CI) for this error.

The velocity field in Test 1 (Test 2) has null rotational (com-
pressive) component. We have checked this by computing the
median value and the 5, 25, 75 and 95 percentiles of |vrot|/|v|
(|vcomp|/|v|).

The results for Test 1 and Test 2 are summarised in Figs. 2
and 3, respectively. The upper panels show εr (v) as defined above.
Both in the constant divergence and the constant rotational test,
the median errors are small (typically lower than 1h), and even
the 95-percentile errors do not exceed 1% at any refinement level.
The base level, for which FFT is used, has much more precise
results, with median relative errors below 10−6. For the AMR
levels, we only find a very slight trend to increase the error in
more refined levels.

The lower panels in Figs. 2 and 3 show |vrot|/|v|, for Test 1, and
|vcomp|/|v|, for Test 2. For these highly-idealised scenarios, there
is virtually no cross-talk between the different components: the
rotational velocity in Test 1 accounts for less than 10−8 in more
than 95% of the cells at any level. Likewise, more than 95% of the
cells in Test 2 have compressive velocities less than 10−7 relative
to the total velocity magnitude.

In Test 3, as both the compressive and the rotational velocity
components are present, we have quantified the relative error
in disentangling and reconstructing each of these by applying
Eq. (14) separately to each component. We present its results in
Fig. 4.

6 The equation below corresponds to the propagation of the variance in {vcelli }

to the function vcell =

√∑3
i=1

(
vcelli

)2 , assuming the velocity components are
uncorrelated.

4
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Fig. 2. Results from Test 1. Upper panel: median relative error (solid line;
defined as in Eq. (14)) and confidence intervals (CIs) in the reconstruction of
the velocity field. Lower panel: fraction of rotational velocity misreconstructed
by the algorithm.

Fig. 3. Results from Test 2. Upper panel: median relative error (solid line; defined
as in Eq. (14)) and confidence intervals (CIs) in the reconstruction of the velocity
field. Lower panel: fraction of compressive velocity misreconstructed by the
algorithm.

For the compressive velocity, the typical relative errors are
below 3 × 10−3, while the rotational velocity presents median
relative errors in the range 10−4–10−3. For the AMR levels, ℓ ≥ 1,
the magnitude and behaviour of the errors resembles what has
been seen before for Tests 1 and 2. Remarkably, in this example
where both components are present, the base level does no longer
exhibit a much more precise result, but it shows errors in the
same order as the ones in the AMR levels.

Last, for the exceedingly complex Test 4, since the actual
decomposition is still known, we follow the same procedure as

Fig. 4. Results from Test 3. Upper (lower) panel presents the relative error in
the reconstruction of the compressive (rotational) velocity fields.

in Test 3. The detailed results, presented in the same way as for
the previous test, can be found in Fig. 5. Compared to Tests 1−3,
in this case we find errors up to an order of magnitude higher,
which is not surprising since in this case we have included a
truly multi-scale velocity field, with signal spanning over almost
3 decades in spatial frequency. In any case, our code performs
the HHD decomposition with median errors around 1%, and not
exceeding 7% even at 95-percentile level, despite the fact that we
have introduced oscillations close to the grid nominal frequency.

The results for this last test, together with the ones we present
below in Section 4.2, show the ability of our algorithm to perform
the HHD in challenging, very non-linear velocity fields.

4. Application to a cosmological simulation

Last, this section focuses on the results of our HHD code when
applied to the outcomes of a cosmological simulation, which is
described in the paragraphs below. As opposed to the previous
highly idealised tests 1−3, the velocity field in a full-cosmological
simulation exhibits a plethora of complex features due to the
non-linear nature of the equations governing its evolution (see,
e.g., [26,32,41] for classical and recent reviews).

4.1. Simulation details

The simulation analysed in this paper has been carried out
with the cosmological code MASCLET [42], and has been already
employed in a series of previous works [43–45]. Here we shall
introduce the main details of the simulation, while some topics
which are not intimately connected to the analyses in this paper
can be found in more detail in the aforementioned references.
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Fig. 5. Results from Test 4. Upper (lower) panel presents the relative error in
the reconstruction of the compressive (rotational) velocity fields.

MASCLET is an Eulerian cosmological code, implementing high-
resolution shock-capturing techniques for the description of the
gaseous component and an N-Body particle-mesh for dark matter
(DM). Both components are built into an AMR scheme to gain
spatial and temporal resolution in the regions of interest.

We have simulated a cubic domain of comoving side length
40 Mpc, assuming a flatΛCDM cosmology with the following val-
ues of the cosmological parameters: h ≡ H0/(100 km s−1 Mpc−1)
= 0.678, Ωm = 0.31, Ωb = 0.048, ΩΛ = 0.69, ns = 0.96 and
σ8 = 0.82, which are consistent with the latest values reported
by the Planck mission [46]. The domain is discretised in a base
grid of 1283 cells, granting a harsh resolution of ∼ 310 kpc at the
coarsest level. Regions with large gaseous and/or DM densities
can get recursively refined following the AMR scheme. We allow
nℓ = 9 refinement levels, each one halving the cell side length
with respect to the previous level, providing a peak resolution
of ∼ 610 pc. The peak DM mass resolution is ∼ 2 × 106M⊙,
equivalent to filling the domain with 10243 of such particles.

The simulation started at redshift z = 100, with the initial
conditions set up by a CDM transfer function [47] and generated
by a constrained realisation of the gaussian random field aimed
to produce a massive cluster in the centre of the computational
domain by z ∼ 0 [48]. By redshift z ∼ 0, several massive clusters
and groups have been formed. Besides gravity, the simulation
accounts for a broad variety of feedback mechanisms, which are
explained in greater detail in the cited previous works.

4.2. Performance of the code

We have run our HHD algorithm over 80 snapshots of the
simulation described above, ranging from z = 100 to z = 0, and

Fig. 6. Results from the tests of the HHD algorithm over MASCLET outputs. The
blue solid line and the contours present the median over all the snapshots of
the median relative error and the CIs defined as in the figures in Section 3. The
dotted lines represent the individual error statistics for each snapshot, with the
colourscale encoding the redshift.

computed the cell-wise error7 as in Eq. (14) and its corresponding
percentiles (5, 25, 75 and 95), as done in the tests in Section 3.
Fig. 6 presents the overall error statistics, defined as the median of
the error statistics over all the code outputs. In order to keep track
of the dispersion of the error statistics in different snapshots, we
have also plotted the 80 individual error profiles in dotted lines,
with the line colours encoding the redshift.

The median relative errors in describing the velocity field
as the sum of a compressive and a rotational component are
typically in the order of or slightly less than 1% for all refinement
levels, with only a small trend to increase the error with the
refinement level. Even at the 95% error percentile, the relative
errors fall below 5%. At high redshift, the errors at low refinement
levels (ℓ ≤ 3) tend to be smaller, most likely due to the fact that
the velocity field does not present as complex features as it does
at more recent redshifts due to its highly non-linear evolution.
The behaviour at the most refined levels presents significant
scatter and there is not a clear redshift evolution of the error,
but its median magnitude keeps below a few percents in all
snapshots. Thus, our algorithm is capable of providing a robust
multi-scale decomposition of the velocity field in its compressive
and rotational velocities, even on highly-complex, non idealised
conditions.

4.3. An example: velocity maps and profiles around a massive galaxy
cluster

In order to exemplify the ability of the code to split the
components of a highly complex velocity field, we focus on a
massive galaxy cluster8, with mass Mvir ≃ 4.83 × 1014M⊙ and
radius Rvir ≃ 1.99 Mpc, at z ≃ 0. We present in Fig. 7 slices of
gas density (top left panel), total velocity (top right), compressive

7 In this case, as we do not know beforehand the ‘true’ decomposed velocity
fields to compare with the reconstructed ones, we quantify the error by
comparing the reconstructed total velocity field, ṽ = ṽcomp + ṽrot to the input
one, as defined in Eq. (14). Since, by definition, ṽcomp (ṽrot) is the gradient of
a scalar field (the rotational of a vector field), it is irrotational (solenoidal). We
have, indeed, checked that our high-order derivatives verify this, typically much
better than 1h. Therefore, as the decomposition is unique, checking that ṽ = v
proves the validity of the method.
8 This same object has been analysed in great detail in [44] (focusing on its

observational properties) and [45] (exploring its accretion history).
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Fig. 7. Maps around a massive cluster. Each map is a mass-weighted projection of the same region around the cluster, 10 Mpc on each side and ∼ 150 kpc thick,
limiting the image resolution to ∼ 10 kpc. Top left: Gas density (in units of the background density of the Universe). Top right: Total velocity magnitude. Bottom left:
Compressive velocity magnitude. Bottom right: Solenoidal velocity magnitude. The arrows in the velocity maps represent the projection of the corresponding velocity
fields in the slice plane.

velocity (bottom left) and solenoidal velocity (bottom right). The
velocity maps show both magnitude (encoded in colour) and
direction in the slice plane (arrows).

The density map shows that, by z ∼ 0, the cluster is, indeed,
relatively relaxed, sitting in the gravitational potential dominated
by the dark matter component, in an approximately spherical
shape. Several density discontinuities can be easily discerned,
mainly corresponding to (internal) merger shocks and (external)
accretion shocks. A filament penetrating to quite inner radii,
of around r ∼ 1 Mpc, is also noticeable in the density plot.
The total velocity field displays great complexity, especially in
the inner regions of the cluster, where the variations occur on
smaller scales (both because the dynamics are more complex
and because, correspondingly, the resolution is higher). The fil-
amentary structures appear to present high velocity magnitudes,
mainly pointing radially, and velocity discontinuities, hinting the
presence of shocks, are ubiquitous.

Compressive velocities show a nearly spherically symmetric
pattern, as the cluster smoothly accretes gas from its surround-
ings. In the outskirts, baryonic matter is accelerated (and com-
pressed) by the gravitational pull of the cluster, until it gets
shocked causing the strong accretion shocks. In comparison, the
post-shock medium presents very small compressive velocities,
as the shock has effectively halted the accretion flows. Part of
the energy corresponding to these compressive component gets
thermalised, increasing the internal energy (and temperature)
of the ICM. However, another important role of shocks is the
generation of vorticity (see, e.g., [13]). Indeed, inside the external
accretion shocks, the solenoidal component of the velocity fields

gets relevant. Eddies develop on a wide range of scales, especially
in the cluster central regions. It is also interesting to note how the
infalling filament mentioned before presents high values of the
rotational velocity, suggesting that matter is infalling following
helicoidal trajectories. Being the main aim of this work presenting
the algorithm, we may defer a more in-depth analysis of these
issues to future work.

Complementarily, in Fig. 8 we present the radial profile of ra-
dial total (red line), radial compressive (blue) and radial solenoidal
(green) velocities, for 20 kpc ≲ r ≲ 4 Mpc ≃ 2Rvir. In the
inner regions (r ≲ 0.1 Mpc) both strong radial compressive
and solenoidal flows are present, bounded by an internal shock
(clearly visible in the compressive velocity map of Fig. 7). For
r ≳ 0.1 Mpc, the radial compressive velocity clearly dominates.
While solenoidal motions are still present, the fact that their
radial component is close to zero suggests that these motions
tend to occur along the tangential direction.

5. Conclusions

In this paper, we have proposed a novel method to perform
a Helmholtz–Hodge decomposition in AMR velocity fields, or vir-
tually in any description which can be smoothed over an ad-hoc
hierarchy of grids. Although our primary focus has been cosmo-
logical simulations of structure formation, the method is general
and could be easily extended to any type of hydrodynamical
simulation.

Previous works in the field of numerical cosmology typically
use uniform grids and work straightforwardly in Fourier space.
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Fig. 8. Radial profiles of radial velocity for the total (red), compressive (blue) and
solenoidal (green) velocity components. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

However, this procedure requires to perform constrained sim-
ulations (or resimulations) of specific objects of interest (e.g., a
galaxy cluster) in order to be able to describe it with a uniform
computational grid at a reasonable computational cost. Our al-
gorithm, instead, can be applied to full-cosmological simulations,
without the need of performing resimulations and keeping the
full description at the maximum resolution at each position.

The performance of the code has been validated in a series of
idealised tests, for which the analytical decomposition is known.
Our algorithm has shown to succeed in disentangling the com-
pressive and solenoidal velocity components and reconstructing
the input velocity field, with typical errors in the order of 1h or
below (1% in the more complex, ICM-like test). Our errors seem
comparable to or even better than the ones displayed by the tests
in [10, Appendix A1.2].

For exceedingly complex velocity fields, like the ones gener-
ated by actual cosmological simulations at low redshifts, where
turbulence is fully developed (e.g., [19]) and velocity fluctuates on
many different scales, our tests show that the decomposition can
be brought about with median errors below 1%, even resolving
scales smaller than the kpc in a domain of several tens of Mpc
along each direction.

This procedure, whose implementation has been made pub-
licly available (see Section 2.1), will allow us to further explore
the dynamics of the turbulent velocity field in the ICM of large
samples of clusters in future works.
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ABSTRACT
Both simulations and observations have shown that turbulence is a pervasive phenomenon in cosmic scenarios, yet it is particularly
difficult to model numerically due to its intrinsically multiscale character which demands high resolutions. Additionally,
turbulence is tightly connected to the dynamical state and the formation history of galaxies and galaxy clusters, producing a
diverse phenomenology which requires large samples of such structures to attain robust conclusions. In this work, we use an
adaptive mesh refinement (AMR) cosmological simulation to explore the generation and dissipation of turbulence in galaxy
clusters, in connection to its assembly history. We find that major mergers, and more generally accretion of gas, is the main process
driving turbulence in the intracluster medium. We have especially focused on solenoidal turbulence, which can be quantified
through enstrophy. Our results seem to confirm a scenario for its generation which involves baroclinicity and compression at the
external (accretion) and internal (merger) shocks, followed by vortex stretching downstream of them. We have also looked at
the infall of mass to the cluster beyond its virial boundary, finding that gas follows trajectories with some degree of helicity, as
it has already developed some vorticity in the external shocks.

Key words: hydrodynamics – turbulence – methods: numerical – galaxies: clusters: general – galaxies: clusters: intracluster
medium.

1 I N T RO D U C T I O N

Within the hierarchical paradigm of cosmological structure forma-
tion (Press & Schechter 1974; Gott & Rees 1975; see also Kravtsov
& Borgani 2012 and Planelles, Schleicher & Bykov 2015 for recent
reviews), the assembly history of galaxy clusters is dominated by
(major) merger events, which account for most of their mass growth
(e.g. Vallés-Pérez, Planelles & Quilis 2020) and have consequential
effects on their thermal structure (e.g. Planelles & Quilis 2009;
ZuHone 2011). Galaxy cluster mergers and, more generally, gas
accretion are the main energy source fuelling different complex
hydrodynamical processes in the intracluster medium (ICM), such
as turbulence and a rich phenomenology of shock waves (see e.g.
Quilis, Ibáñez & Sáez 1998; Ryu et al. 2003; Zhang et al. 2020).
Thus, a precise understanding of these phenomena is necessary
for a proper description of the bulk of clusters’ baryonic mass,
which, furthermore, is essential for the usage of galaxy clusters as
cosmological probes (for a review, see Allen, Evrard & Mantz 2011)
and to correctly model galaxy formation processes in a cosmological
context (Naab & Ostriker 2017).

Constraining the amplitude and spectrum of turbulence, and elu-
cidating their evolution with cosmic time and possible dependencies
on clusters’ mass, dynamical state, formation history, etc. is a funda-
mental step towards a correct description of many phenomena: non-
thermal pressure (Nelson, Lau & Nagai 2014b; Shi & Komatsu 2014;
Vazza et al. 2018b; Angelinelli et al. 2020) leading to hydrostatic

� E-mail: david.valles-perez@uv.es

mass bias (Nelson et al. 2014a; Biffi et al. 2016; Shi et al. 2016),
amplification of cosmic magnetic fields (Subramanian, Shukurov
& Haugen 2006; Iapichino et al. 2008; Cho 2014; Beresnyak &
Miniati 2016; Vazza et al. 2018a; Brzycki & ZuHone 2019; see
also Donnert et al. 2018 for a recent review), chemical and thermal
mixing (Ruszkowski & Oh 2010; ZuHone 2011; Shi et al. 2020), star
formation (Kretschmer & Teyssier 2020), cosmic ray acceleration
and radio emission (Fujita, Takizawa & Sarazin 2003; Cassano &
Brunetti 2005; Brunetti & Lazarian 2011; Brunetti & Vazza 2020),
and heating due to viscous dissipation, which could help to alleviate
the cooling flow problem (Zhuravleva et al. 2014a; Valdarnini 2019;
Shi et al. 2020).

Turbulence can be sourced, not only from gas accretion and
mergers, but also due to galaxy motions (Faltenbacher et al. 2005;
Kim 2007; Ruszkowski & Oh 2011), feedback from active galactic
nuclei (AGNs; Gaspari, Ruszkowski & Sharma 2012; Gaspari et al.
2018; cf. Sayers et al. 2021), interaction of a compact, cool core
with the surrounding ICM (Valdarnini 2011, 2019), etc. According
to the classical Kolmogorov (1941) model for fully developed,
homogeneous, and isotropic turbulence, bulk motions induced by
these large-scale structure (LSS) formation processes break down
to smaller scales due to different instabilities, transferring energy
from the injection scale (the characteristic scale of bulk motions)
down to the dissipation scale, where this energy is converted to heat,
magnetic field amplification, and cosmic ray acceleration, among
others. While this model could be rather idealized (the ICM is
far from homogeneous; see Shi, Nagai & Lau 2018; Shi & Zhang
2019; Mohapatra, Federrath & Sharma 2020, 2021 for several recent
exploratory studies on stratified, ICM-like turbulence), it constitutes

C© 2021 The Author(s)
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a simple baseline for exploring the turbulent phenomena in galaxy
clusters.

Direct observations of turbulent flows in galaxy clusters have
yet been elusive, in part due to the unfortunate fate of the Hitomi
mission (Kitayama et al. 2014). Indirect detections of turbulence
have been reported by measurements of X-ray surface brightness
fluctuations (e.g. Churazov et al. 2012; Zhuravleva et al. 2014a;
see also Gaspari & Churazov 2013; Zhuravleva et al. 2014b for
theoretical investigations) or Sunyaev–Zel’dovich (SZ) signal fluc-
tuations (Khatri & Gaspari 2016). We refer the interested reader to
Simionescu et al. (2019) for a recent review on the current constraints
and detectability prospects of gas motions in the ICM. In the next one
to two decades, future X-ray missions (XRISM,1 ATHENA2) will offer
an unprecedented level of insight on to the ICM turbulent motions.
Potentially, future mm/sub-mm facilities (e.g. ATLAST, see Klaassen
et al. 2020; or SKA,3 Acosta-Pulido et al. 2015) will also be able
to map the (line-of-sight) velocity of clusters through the kinetic SZ
effect (e.g. Adam et al. 2017; Sayers et al. 2019), complementing
and establishing promising synergies in constraining the magnitude
and distribution of turbulent flows in individual clusters.

In the meanwhile, numerical simulations of cosmological structure
formation are amongst our best tools for exploring the physics of the
ICM in order to interpret and lead future observations, as shown
in the references above. A particularly relevant and fundamental
issue is that of extracting a bulk and a turbulent part from an input
velocity field (i.e. performing a Reynolds decomposition; Adrian,
Christensen & Liu 2000). This is especially challenging in the case
of the ICM because of its strong multiscale character: while the outer
accretion shocks which bound clusters can have curvature radii of
a few Mpc, galactic processes, which have consequential effects for
the whole cluster, occur on kpc scales or below. Vazza, Roediger
& Brüggen (2012) proposed an iterative algorithm for uniform grid
data, further employed by Vazza et al. (2017) and extended to SPH
simulation outputs by Valdarnini (2019), to constrain the outer scale
of turbulence (roughly equivalent to the injection scale), which in
turn allows to obtain a mean, bulk velocity field and a small-scale,
turbulent velocity field. Recently, Shi et al. (2018) presented a new
approach, based on the wavelet decomposition of the velocity field,
which allows not only to disentangle these two components, but also
to construct a local spectrum of the velocity field.

Since the viscous scales are many orders of magnitude smaller
than the resolution achievable by current, state-of-the-art simulations,
small-scale fluctuations at the end of the energy cascade are dissi-
pated by numerical viscosity. Several techniques have been applied
to overcome this artefact and to extend the turbulent cascade, at least,
to consistently model the relevant features of ICM turbulence: either
constrained adaptive mesh refinement (AMR) simulations with an
additional refinement scheme based on local vorticity (ω = ∇ × v)
or velocity jumps (Iapichino & Niemeyer 2008; Vazza et al. 2009b,
2011), or explicit subgrid models for the unresolved part of the
turbulent cascade (e.g. Schmidt et al. 2016; see also Schmidt 2015 for
a review). Other authors have used uniform grids (or static refinement
techniques which, ultimately, lead to a virial volume resolved within
a fine, fixed grid; e.g. Miniati 2014, 2015; Vazza et al. 2017). While
these techniques have been successful in reproducing the expected
properties of ICM turbulence, there are also evident downsides: for
both, the refinement schemes based on vorticity or velocity jumps

1http://xrism.isas.jaxa.jp/en/
2https://www.the-athena-x-ray-observatory.eu/
3https://www.skatelescope.org/

and subgrid models, one has to perform dedicated simulations, whose
primary intent is to explore turbulent phenomena and which involve
a much higher computational demand. As for static refinement
simulations, these techniques are typically applied to single objects,
rather than to a whole, cosmological population of clusters.

Large samples of clusters need to be analysed in order to achieve
statistically significant conclusions. For this aim, given the extremely
high computational demand of performing high-resolution simula-
tions including full physics (taking into account that phenomena
associated with feedback processes, such as galaxy motions or AGN
feedback, are important for correctly modelling ICM turbulence),
it can be challenging to perform dedicated simulations of large
cosmological volumes including subgrid models or ad hoc refinement
criteria, or either performing resimulations of a large number of
objects.

In this paper, we perform an exploratory work over an AMR
simulation without subgrid modelling or ad hoc refinement strategies,
but with a base grid resolution which allows to resolve the bulk of
gas mass within the virial volume of clusters with resolutions of
�x ∼ 20 kpc or better. For this aim, we have developed several
algorithms that take full advantage of the multiresolution description
of AMR simulations. Then, following our study of the accretion
history of galaxy clusters in Vallés-Pérez et al. (2020), in this work
we connect the evolution of several global and local indicators of
turbulence to the assembly history of the objects, mainly focusing
on solenoidal turbulence, and we look into the mechanisms for its
generation and dissipation.

The rest of the manuscript is organized as follows. In Section 2, we
describe our main numerical tools for analysing the velocity field in
high-resolution simulation outputs. We detail the main features of our
simulation, and the objects within it that will constitute the primary
focus of this work, in Section 3. Our main results are then divided into
Section 4 and Section 5, where we present, respectively, a global and
a local description of turbulence in the ICM. Last, we further discuss
several aspects of our results in Section 6 and present our conclusions
in Section 7. Appendix A discusses the convergence of volume-
averaged quantities in pseudo-Lagrangian AMR sampled outputs.

2 M E T H O D S

In order to provide a multiscale characterization of the properties
of the three-dimensional velocity field, we have designed and
implemented several algorithms that take full advantage of the
AMR description. In Section 2.1, we briefly describe our algorithm
for splitting the velocity field in its rotational and compressive
components. In Section 2.2, we present our filtering strategy to
disentangle the bulk motions from the purely turbulent velocity field.

2.1 Helmholtz–Hodge decomposition in an AMR multigrid

In order to split the velocity field in its compressive and
solenoidal components, we perform a Helmholtz–Hodge decom-
position (HHD). Our implementation, presented in Vallés-Pérez,
Planelles & Quilis (2021), does so by solving an elliptic equation
for the scalar potential, φ, which generates the compressive velocity,
vcomp = −∇φ; and one elliptic equation for each Cartesian compo-
nent of the vector potential, A, which is responsible for the solenoidal
(or rotational) velocity component, vrot = ∇ × A.

The elliptic equations are addressed using standard methods
for solving Poisson’s equation in AMR cosmological simulations:
namely, fast Fourier transform (FFT; see e.g. Press et al. 1992)
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techniques for the base level,4 and successive overrelaxation (SOR;
Young 1954) for the refinement patches. All the derivatives are
computed using high-order stencils to damp their contamination due
to high-frequency noise. A more complete description and a set of
tests can be found in Vallés-Pérez et al. (2021).

2.2 Multiscale filtering

Splitting the velocity field into a bulk (or coherent) and an inherently
turbulent (uncorrelated, or small-scale) component, i.e. performing
a Reynolds decomposition, can be fairly subtle due to the absence
of a univoque definition of turbulence (Adrian et al. 2000). An early
approach for this aim, used in cosmological simulations (e.g. Dolag
et al. 2005; Vazza et al. 2009b), consisted of filtering out the turbulent
motions by subtracting the local mean velocity, defined over a fixed
spatial scale. Another widely used strategy (e.g. Lau, Kravtsov &
Nagai 2009) uses the velocity dispersion in radial shells as a proxy to
quantify the level of turbulence around a particular cluster. Although
these algorithms are conceptually simple and allow to effectively
split the velocity fields in a bulk and a turbulent component, their
fixed lengths do not fully capture the essentially multiscale nature of
turbulent phenomena.

More recently, Vazza et al. (2012, 2017) proposed an algorithm to
iteratively constrain the outer scale5 for turbulence, L(x), which then
allows to extract the purely turbulent velocity field, δv(x), without ex-
plicitly fixing a filter length. While in Vazza et al. (2017) the authors
use a fixed refinement technique, so that the virial volume of their
cluster is simulated within a uniform grid of constant, �x ∼ 20 kpc
resolution, here we aim to extend the algorithm to a purely AMR
velocity field, which allows us to straightforwardly apply the filter
to clusters extracted from full-cosmological simulations without the
need of performing resimulations. While the ‘physical’ steps are
parallel to those of Vazza et al. (2012), the multigrid, multiresolution
description of an AMR simulation prevents us from using several
handy tools (e.g. boxcar averages, convolutions, etc.) in the original
formulation and, consequently, also increases substantially the com-
putational cost. The basic steps of our implementation are as follows:

(i) For each volume element in the computational domain, at a
given refinement level �, the outer scale length, L(x), is initialized to
Ln = 0 = 3�x�, where �x� is the cell size at level � and n represents
the algorithm iteration.

(ii) For each cell, at position x, L(x) grows until convergence is
reached according to the following iterative scheme:

(a) The bulk velocity at x, at the iteration n, is computed as

〈v〉n (x) =

•
V ′

n

ρ(x′)v(x′)dV ′

•
V ′

n

ρ(x′)dV ′
=

∑
V ′

n
mivi∑

V ′
n
mi

, (1)

4While we use FFT for the base level, taking advantage of the periodic
boundary of cosmological simulations, this is not an imposition of the method.
If non-periodic boundary conditions are given, the base level could also be
addressed with iterative methods, as we do for the refinement levels.
5In turbulence theory, the outer scale, L(x), is the spatial scale at which
turbulent motions are injected, and it corresponds to the largest scale inside
the inertial range. In this text, we shall refer to the outer scale or injection scale
interchangeably. We refer the reader to Landau & Lifshitz (1987, sections 26–
38) for an introductory text on hydrodynamic turbulence.

where ρ(x′) is the gas density at x′, mi is the mass of the volume
element i, and V ′

n is the spherical volume consisting of all the
cells at positions x′ such that |x′ − x| ≤ Ln (at the maximum
available resolution at each position).

(b) The turbulent velocity field at x, at the iteration n, is
computed as δvn(x) = v(x) − 〈v〉n (x).

(c) Unless a stopping condition is triggered (see below), L(x)
is increased according to

Ln+1 = max (Ln + �x�, [1 + χ ] Ln) , (2)

where we fix χ = 0.05. This condition, which has been tested
experimentally, prevents a slow convergence when a high-
resolution region has L(x) 	 �x�.

(iii) For each cell, the iterative scheme is stopped whenever at
least one of the following conditions is met:

(a) The fractional change in δv between two consecutive
iterations, which we define as

� = max
i=1,2,3

∣∣∣∣
δvi

n

δvi
n−1

− 1

∣∣∣∣ , (3)

falls beyond a fixed tolerance parameter, � ≤ �tol. When this
condition is achieved, Ln represents the maximum correlation
scale of the velocity field at x. We have set �tol = 0.05, although
in our tests the turbulent velocity field does not depend strongly
on this threshold, as it was also reported by Vazza et al. (2012)
and Valdarnini (2019).

(b) A shocked cell, which we define as a cell with Mach
number M ≥ 1.3 (e.g. Quilis et al. 1998; Ryu et al. 2003; Vazza,
Brunetti & Gheller 2009a; Planelles & Quilis 2013; Martin-
Alvarez, Planelles & Quilis 2017), enters the volume V ′

n. We
detect shocks with the shock finder presented in Planelles &
Quilis (2013), which uses the one-dimensional discontinuities
in temperature to solve for M. The shock exclusion is well mo-
tivated by the fact that shocks introduce velocity discontinuities,
which importantly bias the bulk velocity determination.

(c) The volume V ′
n intersects the computational domain’s

boundary. Even though we could explicitly enforce the periodic
boundary conditions to get rid of this limitation, this condition
only biases the results in a negligible amount of volume close to
the boundary, where we do not expect to find objects of interest.

Once this procedure is repeated for all the volume elements, we
have a complete, multiscale description of the coherence scale, L(x),
and the bulk and turbulent6 velocity fields. Naturally, the turbulent
velocity field can also be decomposed into its rotational and com-
pressive components using the algorithm described in Section 2.1,
yielding the solenoidal and compressive turbulent velocity fields,
respectively. The routines for applying this filtering scheme have
been included in the publicly available code VORTEX7 (Vallés-Pérez
et al. 2021).

3 THE SI MULATI ON

The remaining pages of this manuscript are based on the results
of the codes described in Section 2 applied to a high-resolution
cosmological simulation, which is described below. In Section 3.1,

6Through this manuscript, we shall also refer to δv(x) as the filtered or the
small-scale velocity field.
7https://github.com/dvallesp/vortex
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we outline the structures which constitute the primary focus of this
work.

The simulation analysed in this paper has been carried out
with MASCLET, an Eulerian AMR, high-resolution shock-capturing
hydrodynamics, coupled to particle-mesh N-body, cosmological code
(Quilis 2004). This same simulation has been employed in several
previous works (Quilis, Planelles & Ricciardelli 2017; Planelles
et al. 2018; Vallés-Pérez et al. 2020). Here, we describe the main
features of the simulation. For more information about some details
not directly connected to our analyses, we refer the reader to the
aforementioned references.

The simulation corresponds to a cubic, periodic domain of comov-
ing side length 40 Mpc, with a flat 	 cold dark matter (CDM) cosmol-
ogy set up by a Hubble parameter h ≡ H0/(100 km s−1 Mpc−1) =
0.678, composition given by the matter, baryon and dark energy
parameters 
m = 0.31, 
b = 0.048, 
	 = 0.69, and primordial
fluctuation spectrum set according to a spectral index ns = 0.96
and amplitude σ 8 = 0.82. Thus, the cosmology is consistent with
the latest values reported by the Planck Collaboration (2020). The
domain has been discretized in a base grid of 1283 cells, which yields
a harsh resolution of ∼ 310 kpc. Regions with large gaseous and/or
DM densities get recursively refined following a pseudo-Lagrangian
AMR scheme with up to n� = 9 refinement levels, providing a peak
resolution of nearly ∼ 610 pc. With four species of DM particles, the
best DM mass resolution is ∼ 2 × 106 M�, equivalent to filling the
domain with 10243 of such particles.

The initial conditions were set up by a CDM transfer function
(Eisenstein & Hu 1998) at redshift z = 100. A constrained realization
of the Gaussian random field, according to the procedure of Hoffman
& Ribak (1991), was used to produce a massive cluster in the centre of
the box. Besides gravity, the simulation accounts for several cooling
mechanisms (free–free, inverse Compton, and atomic and molecular
cooling for a primordial gas), as well as heating by a UV background
of radiation (Haardt & Madau 1996). Star formation and type-II
supernova feedback are parametrized according to Yepes et al. (1997)
and Springel & Hernquist (2003). Even though this run does not
include AGN feedback, which could constitute an important source
of turbulent motions in the innermost regions of galaxy clusters (see
e.g. Vazza et al. 2012), this drawback is not especially relevant for this
work, where our primary intent is performing an exploratory analysis
showing the capabilities of our algorithms. We may postpone further
analyses, including AGN feedback and magnetic fields, to a future
work.

3.1 Structure finding

We have identified the structures in this computational domain by
means of the spherical overdensity DM halo finder ASOHF (Planelles
& Quilis 2010; Knebe et al. 2011). At z  0, there are two massive
galaxy clusters (with virial masses Mvir,DM > 1014 M�), which we
shall hereon refer to as CL01 and CL02.

In Vallés-Pérez et al. (2020), we have analysed the accretion
histories of these two objects. CL01 is a massive cluster which suffers
several major and minor merging periods through its recent history,
the most recent major merger having occurred at around z ∼ 0.9 (see
fig. 2 in Vallés-Pérez et al. 2020), and only experiencing quiescent
accretion therein, with low accretion rates from z ∼ 0.4 on. Likewise,
CL02 is a smaller, ∼ 1014 M� cluster which has experienced a major
merger at z ∼ 1.4 and a minor merger at around z ∼ 0.2, the latter
not having any significant impact on the cluster’s structure and,
thus, probably having had reduced dynamical relevance, as far as

Table 1. Main properties of clusters CL01 and CL02 at z = 0. Virial
radii, Rvir, are defined with respect to the DM distribution, according to
the standard spherical overdensity definition (Lacey & Cole 1994) with the
virial overdensity given by Bryan & Norman (1998). MDM and Mgas are
measured inside Rvir. Temperatures and entropies are computed inside Rvir,
assuming hydrostatic equilibrium (equations 59 and 64, Voit 2005) and with
a mean molecular weight μ = 0.6.

Cluster Rvir MDM Mgas kBTvir Ke, vir

(Mpc) (1013 M�) (1013 M�) (keV) (keV cm2)

CL01 1.99 42.9 4.56 3.27 1230
CL02 1.26 10.9 1.33 1.34 520

Figure 1. Description of the resolution coverage of each cluster (within
2Rvir, solid lines; and within Rvir, dotted lines) at z  0. For each refinement
level, �, or resolution, �x�, the vertical axis indicates the fraction of mass
inside the considered volume in cells with resolution �x� or better.

turbulence is concerned. A summary of the properties of these two
objects, at z  0, is shown in Table 1.

As the description of the turbulent flows is strongly dependent
on the resolution of the numerical grid, we present the (cumulative)
fraction of gas mass (within 2Rvir, solid lines; and Rvir, dashed lines)
resolved, by z ∼ 0, at each refinement level in Fig. 1. For both
clusters, � 60 per cent of the mass inside 2Rvir is resolved in patches
with resolution at least �x4 ∼ 20 kpc. This resolution can be directly
compared to previous works which employ ad hoc resimulations and
fixed refinement techniques (e.g. Vazza et al. 2017, who resolve
the virial volume of their clusters within a uniform grid with an
equivalent resolution; see also Miniati 2014, 2015, who achieve a
∼ 10 kpc resolution throughout the virial volume of their cluster).

If we restrict to the virial volume, virtually all the mass is resolved
at resolutions equal or better than ∼ 40 kpc, and � 80 per cent
at resolutions at least ∼ 20 kpc. Additionally, almost 10 per cent
(CL01) and 40 per cent (CL02) of the virial mass is resolved with
resolutions below the kpc.

4 GLOBAL STATISTI CS OF TURBULENCE

In this section, we analyse several global indicators of turbulence. In
particular, we explore the second-order velocity structure functions
(Section 4.1), their evolution (at fixed scales) in relation to accretion
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Figure 2. Second-order structure functions for clusters CL01 (left) and CL02 (right) at z  0. The red, green, and blue lines correspond to the total, solenoidal,
and compressive velocity fields, respectively. The grey, dashed, vertical lines mark the scale of the virial radii. The black, dashed lines indicate the slope expected
by the Kolmogorov scaling (Kolmogorov 1941). The square root of the second-order structure functions is represented to show the results in units of velocity.

rates and merger events (Section 4.2) and the scaling relations and
mechanisms for the generation of solenoidal turbulence (Section 4.3).

4.1 Turbulence spectra: structure functions

Structure functions quantify the magnitude of the velocity fluctu-
ations on different scales over the cluster volume (or mass), and
therefore offer a straightforward way to define a global statistic
of turbulence for a given object. The most direct definition of the
structure function of order p, Sp(L), is given by the expression

Sp(L) = 〈|v(x + Ln̂) − v(x)|p〉x,n̂ , (4)

where v will hereon denote the (unfiltered, i.e. total) peculiar
velocity field, n̂ is a unit vector and the average is carried both
in positions, x, inside the volume of interest and in directions, n̂.
Using the HHD algorithm presented in Vallés-Pérez et al. (2021)
(see Section 2.1), we will also compute these structure functions
separately for the compressive and solenoidal velocity components.
While some authors (e.g. Valdarnini 2011; Miniati 2014) further
decompose the structure functions in a longitudinal and a transverse
component, we shall not pursue such decomposition here, as we are
only interested in the magnitudes of the velocity fluctuations at each
scale.

In order to correctly ponder the dynamically relevant regions,
we adopt a mass weight when performing the average over x. In
particular, our procedure for computing Sp(L) can be summarized in
the following steps:

(i) We choose Ns mass-weighted random points (hereon, the
sampling points) inside the considered volume (in our case, inside
a sphere twice the virial radius around each cluster). The weighted
sampling is performed by applying Smirnov’s inverse transformation
method (see e.g. Devroye 1986), i.e. we compute the cell-wise
cumulative normalized mass distribution inside 2Rvir, draw uniformly
sampled random numbers, s ∈ [0, 1], and apply the inverse cumulative
function to these numbers.

It is worth noting that gas clumps and substructures can im-
portantly bias the random selection of points, especially in this

simulation as the lack of AGN feedback could produce overcooling
(see e.g. Kravtsov, Nagai & Vikhlinin 2005; Eckert et al. 2012;
Zhuravleva et al. 2013; Planelles et al. 2014). In order to avoid
our sampling points to concentrate in highly overdense gas clumps,
whose dynamics may differ from those of the bulk ICM, we first apply
the inhomogeneity identification technique described by Zhuravleva
et al. (2013). In particular, we radially split the cluster in Nbins = 20
logarithmic bins,8 and tag as clumps all the cells whose logarithmic
density is further than fcut = 3.5 standard deviations from the volume-
weighted median log-density.

(ii) Around each of the sampling points, we pick Nf volume-
weighted random points (hereon, the field points). In order to
effectively sample all the scales, we extract the field points around
each sampling point, xs , using the same method as above but
weighting the probability of each cell by Vcell/|xs − xcell|3. It is
easy to show that this weight ensures equal number of points per
logarithmic radial bin.

(iii) Finally, we bin logarithmically the distances among points,
L, and average over all the possible pairs at each bin according to
expression (4).

In our tests, taking Ns = 5000 mass-weighted points is enough
to adequately sample the mass distribution within a precision of
5 per cent or better. We take as well up to Nf = 5000 volume-weighted
field points around each sampling point, yielding a maximum of Ns

× Nf = 2.5 × 107 pairs of points to compute the structure function.
We then bin L in 50 logarithmic intervals, so that the final value of
Sp(L) at each L has been computed as the average over �5 × 105

pairs. In order to check whether these statistics are robust enough, we
have performed 20 bootstrap iterations of these procedures, verifying
a small variance in our results (typically in the order of ∼ 1 per cent,
and � 10 per cent for any bin).

We present in Fig. 2 the second-order (p = 2) structure functions
for the total velocity, as well as for the compressive and the rotational

8We note that the substructure-excised density profiles are not sensitive to the
particular choice of Nbins in the range Nbins ∈ [15, 100].
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velocity components, for clusters CL01 (left-hand panel) and CL02
(right-hand panel) at z  0. For comparison, in both panels we
show the slope predicted by the Kolmogorov (1941) model for fully
developed isotropic, incompressible turbulence, S2(L) ∝ L2/3. Both
components (as well as the total velocity) present a well-defined
inertial range, whose slope roughly agrees with the Kolmogorov
prediction. The structure functions for the solenoidal component
are consistently higher than their compressive counterparts, mainly
as a consequence that solenoidal flows are much more ubiquitous
and volume filling. However, at variance with previous results with
static refinements, we do not find a clear difference in the slopes
of these components. Miniati (2014, 2015) finds the compressive
component to have a steeper spectrum, the opposite trend being
reported by Vazza et al. (2017). The lower panels in Fig. 2 show
the quotient of the solenoidal and compressive structure functions to
the total one. While CL01 presents a higher slope in the solenoidal
component, the opposite happens for CL02. This highlights that
these slopes could be particularly sensitive to the dynamical state of
the cluster, as well as to the numerical scheme and the sampling
of Sp(L).

The structure functions flatten at L � 1 Mpc, placing the char-
acteristic scale for turbulence injection at around (0.5–1)Rvir, in
consistence with Miniati (2014) and Vazza et al. (2017).9 The
energy that bulk motions inject into the turbulent velocity field then
cascades down to smaller scales through different instabilities (e.g.
Kelvin–Helmholtz; see for example ZuHone 2011), until they get
(numerically) dissipated when the eddy sizes are in the order of
several times the cell side length. The pseudo-Lagrangian refinement
approach of our AMR implementation implies that different mass
elements in the cluster get different dissipation scales, originating
oscillations in the small-scale end of the structure functions. These
oscillations are also present in the ‘Lagrangian AMR’ runs of Miniati
(2014), and limit the extent to which structure functions are a useful
statistic to study turbulence in full-cosmological simulations using
pseudo-Lagrangian approaches.

4.1.1 Characteristic time-scales of turbulent eddies

The time-scale in which eddies of size L cascade down to the
dissipation scale can be estimated by the so-called eddy turn-over
time, τeddy ∼ L/V , where V is a characteristic velocity at the scale
L. In the framework of the Kolmogorov (1941) model, this quantity
is expected to scale as τ eddy ∝ L2/3. It is customary through the
bibliography (e.g. Miniati 2014) to just choose a length (L ∼ Rvir)
and a characteristic velocity representing the overall cluster dynamics
(vvir ≡ √

GMvir/Rvir) to have a time-scale estimate. Even though
these can only be taken as order-of-magnitude estimates, we argue
that a more self-consistent estimation can be got by using the S2(L)
spectrum, as τeddy(L) ∼ L/

√
S2(L), since it is a property intrinsic

to the gas velocity field (and not of the gravitational potential well,
as the one derived from the circular velocity inside a clustercentric
radius L, vcirc(L)).

Fig. 3 presents the eddy turn-over time-scales for clusters CL01
and CL02 (red and green dots, respectively) at redshift z  0. The
time-scales for both clusters are remarkably similar through all the
scale range, despite the difference in masses. Across the inertial

9Other works (e.g. Vazza et al. 2012) report slightly smaller injection scales, in
the range (0.1–0.3)Rvir. In any case, turbulence is not expected to be injected
by bulk motions from any specific length, but from a wide range of scales
instead.

Figure 3. The dots joined by the solid lines show the eddy turn-over times
for different scales, τ eddy(L), estimated using the structure functions shown
in Fig. 2 for cluster CL01 (red lines) and CL02 (blue lines). For comparison,
the dashed lines show the time-scales estimated from the circular velocities
inside spheres r < L around the cluster centre.

range, τ eddy(L) scales in good agreement with the Kolmogorov
prediction. For comparison, we also show, in dashed lines, the time-
scale derived from the circular velocity inside a radius L. Assuming
this magnitude to be dominated by the DM mass distribution, and
taking an NFW (Navarro, Frenk & White 1997) profile for DM
density, it is easy to show that the time-scale computed that way
should scale as L3/2/log (L) ∼ L3/2 for sufficiently large L (L 	 rs,
being rs the scale radius of the NFW profile). Indeed, this is the
behaviour observed in our clusters. Interestingly, these two time-
scales seem to approach for L � Rvir, making Rvir/vvir an incidentally
good guess for the characteristic time-scale of the turbulent energy
cascade for injection scales comparable to the virial radius. However,
we emphasize that the time-scale τeddy = L/

√
S2(L) better captures

the multiscale nature of turbulent motions.
By fitting the inertial ranges of the time-scale curves to a power

law, for each of the clusters, we get the following fitting formula for
the cascade time-scales of eddies of size L:

τeddy(L) � (1755 ± 78) Myr

(
L

1 Mpc

)0.647±0.026

(5)

Naturally, these fitting formulae have to be taken with caution,
since a proper statistical analysis, which we may defer for a future
work, must be performed in order to evaluate its universality.
Nevertheless, within the context of this work and focusing at recent
redshifts, we shall use this expression to interpret the results in the
next sections.

4.1.2 Behaviour of the different phases

Although the average statistics of the ICM velocity field show general
properties which roughly agree with the Kolmogorov scaling, the
behaviour can vary significantly for different phases. While some
authors perform a phase-space splitting and study the properties of
the velocity fields of the different phases (e.g. Schmidt et al. 2016),
here we find more clear and reproducible to take a geometric criterion
to study the dependence of the velocity structure functions. Thus, we
consider the following regions: core (0 < r/Rvir < 0.1), off-core
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Figure 4. Second-order structure functions for different regions of clusters CL01 (left) and CL02 (right) at z  0. The solid, dot–dashed, dashed, and dotted
lines correspond to the core, off-core, virial, and outskirts regions, as defined in Section 4.1.2. The rest of notations are the same as in Fig. 2.

(0.1 < r/Rvir < 0.5), virial (0.5 < r/Rvir < 1), and outskirts (1 <

r/Rvir < 2). Similar choices are made in previous works (e.g. Miniati
2014). For each phase, we only count the sampling points inside
the considered region, while, naturally, field points can be in any
position within the 2Rvir volume. The results for CL01 and CL02
are presented in Fig. 4. In this case, we have smoothed the functions
using a Savitzky & Golay (1964) filter to alleviate the oscillations,
whose origin has already been commented, and focus on the general
scaling.

For both clusters, at large clustercentric distances, the small-
scale velocity fluctuations are strongly suppressed, as these re-
gions are typically resolved within refinement levels � = 2 or
� = 3 (thus, with an effective resolution of ∼ 40 kpc or worse, and
placing the numerical dissipation scale at several hundreds of kpc),
and, consequently, the structure functions are much steeper than
Kolmogorov’s. Although these trends do vary significantly from
cluster to cluster (and with cosmic time), this lack of small-scale
power, especially for the solenoidal component, is also reported by
Miniati (2014) in their ‘Lagrangian AMR’ run.

On the other hand, cluster cores are extremely sensitive to the
feedback mechanisms which are accounted for in the simulation
(see, for example, Rasia et al. 2015 and Planelles et al. 2017). In
this case, the lack of AGN feedback prevents the injection of random
motions in the innermost regions of clusters. Despite this effect,
fluctuations on these inner regions are considerably higher than in
the rest of regions, both because of numerical (these regions are
likely to be mostly resolved with cell sizes of �kpc, placing the
dissipation scale below ∼10kpc) and physical (SNe feedback and
inner, merger shocks can be important sources of turbulent motions)
reasons. Valdarnini (2011, 2019) suggests a scenario where small-
scale turbulence is generated in the cluster central regions due to
the interaction of a dense, compact core with the surrounding ICM
in runs with cooling but not central sources of energy. This could,
indeed, be the case of our clusters. Both CL01 and CL02 have flat
density profiles in the central ∼ 100 kpc and lower temperatures in
their cores than the surrounding ICM, thus corresponding to cool,
compact cores (Burns et al. 2008). Therefore, this scenario is capable
of providing a plausible explanation for the flattening of the structure
functions in inner radii.

4.2 Evolution of the velocity fluctuations on different scales

As seen through Section 4.1, the global statistics of the velocity
field in pseudo-Lagrangian AMR simulated galaxy clusters present
systematic deviations from those obtained in other works using
fixed grids. However, we shall argue that these differences emerge
noticeably wherever the resolution is low (i.e. in low-density regions
such as cluster outskirts). Even though our clusters simulated in a full-
cosmological environment can lack small-scale velocity power in a
fraction of their volume, the ansatz behind the AMR strategy based
on local density implies that this has indeed a small contribution
to the total energetics and dynamical evolution of the cluster, since
the mass fraction corresponding to this large volume is generally
reduced.

As mentioned in Section 4.1.2, the actual behaviour of the structure
functions is highly dependent on the dynamical state, and thus it is
interesting to investigate its time evolution. In order to avoid the
systematic effects seen in the velocity structure functions due to the
AMR grid structure, we will focus on the values of the structure
function for certain pre-defined scales, large enough to neglect the
effect of the aforementioned oscillations. Hereon we will refer to
these quantities as the velocity fluctuations at the scale L. Thus, even
though the slope of our structure functions could be biased with
respect to uniform grid runs, a large part of these systematics is
cancelled out by focusing on constant scales, and the evolution of
the velocity fluctuations can be properly assessed.

In particular, we compute S2(L) through each of the 41 code outputs
from z  1.5 to z  0 at the scales L/Rvir = 0.1, 0.5, 1, and 1.5.
The procedure is identical to the one described in Section 4.1, but
in this case we only generate uniformly distributed field points at
radial distances corresponding to the four considered scales around
each sampling point (with a given tolerance, which we have fixed to
10 per cent).

4.2.1 Relation to accretion and mergers

Accretion and mergers are important sources of energetic feedback
to the ICM, and are directly connected to the dynamical state of the
cluster (see e.g. Quilis et al. 1998; Planelles & Quilis 2009; Lau
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Figure 5. Top panels show the evolution, from z  1.5 to z  0, of the velocity fluctuations on scales L = 0.1Rvir (yellow), 0.3Rvir (green), Rvir (blue), and
1.5Rvir (purple), for clusters CL01 (left) and CL02 (right). The lower panels show the baryonic (solid lines) and total (dashed lines) instantaneous MARs. The
velocity fluctuation curves have been smoothed using a Savitzky–Golay filter of the same order and window length as the MARs, for both curves to have a
similar level of (temporal) locality. The legends apply to both panels.

et al. 2015; Chen et al. 2019; Vallés-Pérez et al. 2020). In order to
investigate their role in generating turbulence, we will correlate the
velocity fluctuations on the scales defined above with the merger
periods and the instantaneous accretion rates.

Following Diemer & Kravtsov (2014), we define the mass-
accretion rate (MAR) as the logarithmic rate of change of the
enclosed mass with respect to the scale factor. Operationally, and as
opposed to other works which use an averaged MAR over a wide time
interval, in Vallés-Pérez et al. (2020) we defined an instantaneous
MAR,

�(a) = d log M�

d log a
(6)

computed from the sparse snapshot sampling using Savitzky & Golay
(1964) filters for performing the differentiation, in order to mitigate
the contamination of sampling noise on the numerical derivatives. For
the analyses in this work, we will be interested in the baryonic (thus,
M� being the combined mass of gas and stars) and total (baryonic
and dark matter) MARs.

We split the recent (1.5 � z ≥ 0) history of the clusters in three
merging regimes, namely ‘ongoing major merger’, ‘ongoing minor
merger’, and ‘smoothly accreting’. For classifying the mergers, we
use the mass ratio of the two most massive progenitor clusters
(Planelles & Quilis 2009). Mergers above a 1:3 mass ratio are
regarded as major mergers. Those between 1:3 and 1:10 are tagged as
minor mergers. Mergers below the 1:10 threshold are not considered,
and a cluster not experiencing any merger above this threshold at a
given redshift is classified as smoothly accreting.

Fig. 5 presents the joint analysis of velocity fluctuations on
different scales, accretion rates, and merging regimes. For the case
of CL01 (left-hand panel), an important correlation between the

evolution of velocity fluctuations on different scales and MARs is
noticed. At high redshifts, while the cluster is fastly accreting gas
from the mergers, velocity fluctuations are mantained at high values.
In fact, the major merger at around z ∼ 0.9 and the corresponding
peak of the baryonic MAR at z ∼ 0.8 injects a large amount of
kinetic power on large scales, resulting in the enhancement of the
corresponding S2(L) in the following ∼Gyr (S2(1.5Rvir) peaks at z ∼
0.67, 1.1 Gyr later than the MAR peak). The delay in the peaks at
smaller scales directly reflects how the energy is cascading to smaller
scales through fluid instabilities. For example, at 0.1Rvir scales, the
total velocity fluctuation peaks at z ∼ 0.55 (800 Myr after the peak
at the largest scales). On the other hand, after the minor merger at
z ∼ 0.15, which does not have a severe impact on the MARs, the
compressive velocity fluctuations are slightly enhanced at all scales
(but not so the solenoidal ones).

As for cluster CL02, the most remarkable feature is perhaps the
increase of the velocity fluctuations at all scales during 0.7 � z � 0.4.
Incidentally, during this period the cluster presents negative baryonic
MARs, while the DM halo mass remains fairly constant (and so the
total MAR is close to zero). This effect could be due to e.g. gas
sloshing in the DM potential well, or due to a merger-accelerated
shock scenario (Zhang et al. 2020). Although we do not pursue a
detailed explanation of the dynamical origin of this phenomenon,
visual inspection of density and Mach number slices around the
object, coupled with the fact that the increase in velocity fluctuations
is driven by the compressive component of the velocity field, tend to
suggest the latter as the most plausible.

The examples above depict a complex and varied phenomenology
where, nevertheless, galaxy cluster mergers and accretion phenom-
ena seem to dominate the evolution of the velocity fluctuations
through cosmic time, acting thus as primary sources of turbulence
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in the ICM. In any case, these mechanisms could be punctuated,
specially at the smallest scales and in the innermost regions of galaxy
clusters, by sources of feedback such as SNe and/or AGN energy
injection (the latter not been accounted for in this simulation).

4.3 Enstrophy and helicity

We now consider the evolution of two quantities intimately related to
solenoidal turbulence, which as we have seen is the dominant ICM
turbulence component. These two quantities are computed from the
pseudo-vector vorticity, i.e. the curl of the velocity field, ω = ∇ × v.
From this quantity, we consider the scalar enstrophy,

ε = 1

2
ω2, (7)

which has been employed in many previous studies (Porter, Jones
& Ryu 2015; Iapichino, Federrath & Klessen 2017; Vazza et al.
2017; Wittor et al. 2017; Valdarnini 2019) as a proxy of solenoidal
turbulence; and the pseudo-scalar10 helicity (e.g. Moffatt 2014),

H = v · ω, (8)

which is an interesting quantity from several points of view, as it
will be discussed below, which however has not yet been applied, to
our knowledge, to previous studies of cosmic flows. When focusing
on a particular cluster, we shall compute H in its rest frame. The
evolution of these quantities can be obtained, in the cosmological
case, from the curl of the equation for the evolution of peculiar
velocity in comoving coordinates. After some manipulation, this
yields the following equation for the evolution of the (peculiar)
vorticity pseudo-vector:

∂ω

∂t
+ 1

a
(v · ∇) ω = −Hω − 1

a
ω(∇ · v) + 1

a
(ω · ∇)v

+ 1

ρ2a
∇ρ × ∇P , (9)

P being the thermal pressure of the gas. That is to say, local vorticity
changes due to advection, cosmic expansion, local fluid expansion,
vortex stretching, and baroclinicity (reading, from left to right, the
terms in equation 9). From this equation, one can straightforwardly
get the equation for the evolution of enstrophy in the comoving frame,
since ∂ε

∂t
= ω ∂ω

∂t
and therefore

∂ε

∂t
+ 1

a
∇ · (εv) = −2Hε − 1

a
ε(∇ · v) + 1

a
ω(ω · ∇)v

+ ω

ρ2a
(∇ρ × ∇P ) . (10)

Note this equation is equivalent to equation 3 in Porter et al.
(2015), but in this case in terms of the peculiar magnitudes of
the fluid (removing the cosmological background), and without the
magnetic and dissipative terms (since we do not include magnetic
field nor we can explicitly evaluate the viscosity in our numerical
scheme). The terms in equation (10) can be interpreted in a one-to-
one correspondence to the ones in equation (9). Writing ∂ε

∂t
= ∑

i Fi,
we have:

• The advection term, Fadv = − 1
a
∇ · (εv), whose volume integral

equates to the net enstrophy inflow.

10In this paper, we refer to pseudo-scalar quantities are those which change
sign under parity, i.e. under the change of coordinates x �→ −x.

• The cosmic expansion term, Fcosm = −2Hε, which dilutes
the local enstrophy proportionally to the cosmic expansion rate,
H (t) ≡ ȧ/a.

• The peculiar expansion/compression term, Fpec = − 1
a
ε(∇ · v).

Although we shall generally refer to this term as the ‘expansion’
term, note it is positive (negative) wherever the fluid contracts,
∇ · v < 0 (expands, ∇ · v > 0).

• The vortex stretching term, Fvs = 1
a
ω(ω · ∇)v, which appears

when a gas element is accelerated in the direction of its vorticity
(and therefore the vortex tube is stretched).

• The baroclinic term, Fbaroc = ω

ρ2a
(∇ρ × ∇P ). Looking at the

corresponding term in equation (9), this is the only term which can
generate vorticity even if ω = 0.

Similarly, an equation for the evolution of helicity can be derived
from equation (9), given that ∂H

∂t
= ∂v

∂t
ω + v ∂ω

∂t
:

∂H
∂t

+ 1

a
∇ · (Hv) = −2HH + 1

2a
(ω · ∇)v2 + v

ρ2a
· (∇ρ × ∇P )

− 1

a
∇ · (�ω) − 1

ρa
∇ · (Pω). (11)

Thus, the local helicity changes due to advection, cosmic ex-
pansion, vortex stretching, and baroclinicity, as for the previous
magnitudes (reading the terms from left to right; note, however,
that there is no peculiar expansion/compression term). The last two
terms represent the contribution of the acceleration of pre-existing
vortices due to gravity and thermal pressure gradients. In the case of
a barotropic fluid, i.e. P = P(ρ), and in the limit where the term due to
cosmology can be neglected (i.e. HH is much smaller than the rest of
terms in equation 11), the volume-integrated helicity is a conserved
quantity (see e.g. Webb 2018). Thus, the changes in helicity inside a
cluster volume can be directly traced to either accretion (or, generally,
mass flows) or baroclinicity.

4.3.1 Evolution of the volume-averaged enstrophy and helicity

In order to study the driving mechanisms for the evolution of the
volume-averaged helicity and enstrophy through our considered
redshift interval, 1.5 � z > 0, we have computed the volume
average of each of the source terms present in equations (10) and
(11), respectively. In Appendix A, we discuss the convergence of
the volume-averaged quantities. For each snapshot, we perform the
integrals out to the virial radius (at the given snapshot; thus, time-
dependent), since a pre-defined, constant comoving radius would
imply accounting for a changing composition (in terms of phases),
e.g. very non-virialized regions at earlier redshifts, when Rvir is
smaller. In order to keep track of the magnitude of the pseudo-
evolution due to the time-dependent integration volume, we add an
ad hoc pseudo-evolution source term, which is computed at each
snapshot as the difference between the magnitudes average over the
new and the previous integration domains. For conciseness, we only
present the results for the most massive object, CL01. The results
for CL02, although clearly different from the ones for the object we
study here due to their different assembly histories, display similar
trends. As for the integrated source terms, we have checked that our
results do not depend strongly on resolution.

Fig. 6 presents the evolution of enstrophy (top panel), its source
terms as defined in equation 10 (second panel), the evolution of
helicity (third panel), its source terms as in equation 11 (fourth panel),
and, for comparison, the MARs (bottom panel). The solid line in the
upper panel represents the total (i.e. unfiltered) enstrophy averaged
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Figure 6. The first and third panels present the evolution of the volume-
averaged enstrophy and helicity with cosmic time (or redshift, see legend
in the upper panel), respectively. The solid and dashed lines present the
unfiltered (total) and filtered (turbulent) quantities averaged over Rvir, while
the dotted lines correspond to the unfiltered quantity inside the larger, 2Rvir,
volume. The second and fourth panels quantify the importance of each of the
source terms in equations 10 (enstrophy) and 11 (helicity), respectively. The
lower panel presents the baryonic (solid) and total (dashed) MARs, while
background colours correspond to the merging regimes.

over the virial volume. This quantity undergoes strong evolution
across the history of the cluster, intimately tied to the evolution of
the accretion rates. Generally, the cluster-averaged enstrophy peaks
after major mergers roughly 1 Gyr after the MARs do, thus displaying
a delay effect similar to what we have seen in the evolution of
the velocity fluctuations (Section 4.1). At recent times, as the net
accretion rate halts, the enstrophy falls to values around 10 Gyr−2,
which are consistent with the values Vazza et al. (2017) obtain for
a similar, slightly less massive cluster. Thus, stirring of the ICM

due to mergers, and more generally accretion of gas, appears to
be the primary source of solenoidal turbulence in CL01 (Shi &
Komatsu 2014; Nelson et al. 2014b; Miniati 2015). Focusing on
a larger comoving volume (2Rvir around the cluster, dotted lines in
the same panel), the evolution of enstrophy is much milder, and
enstrophy values themselves are lower. This is again due to, both,
numerical and physical reasons. On the one hand, the larger cell sizes
in clusters’ outskirts suppress the energy cascade at larger scales,
as vortices smaller than several times the local resolution length
cannot be resolved. Although a handful of methods to overcome
this inconvenience exist (either through subgrid modelling, e.g.
Schmidt et al. 2016; Kretschmer & Teyssier 2020; or through ad
hoc refinement based on local vorticity, e.g. Iapichino & Niemeyer
2008), the dynamical relevance of the possible vortices that we could
miss in such low-density regions is reduced and, indeed, Vazza et al.
(2017) also find a reduced value of the enstrophy in their large
volume, as lower density regions typically experience less intense
dynamics. The dashed lines present the evolution of the turbulent
enstrophy (i.e. the one computed from the small-scale [turbulent]
velocity field, δω ≡ ∇ × δv). While displaying a similar evolution
to the corresponding quantity from the total velocity field, we find
that the turbulent enstrophy contributes around ∼1/3 to the total
cluster-integrated enstrophy budget.

The source terms shown in the second panel correspond to the
integrated, unfiltered enstrophy inside the virial volume (solid line in
the upper panel). There are several prominent reasons for the sum of
the source terms not to add up to the gradient of the enstrophy curve.
First, even though we have not quantified it, numerical dissipation
causes small vortices at the end of the turbulent cascade to fade,
effectively acting as a sink term. Second, the source terms are
computed on the sparsely saved simulation outputs (roughly, each
∼ 300 Myr), which does not allow to properly integrate them for
the smallest scales (say, below ∼100 kpc, c.f. Fig. 3). This same
effect is, indeed, seen in e.g. Porter et al. (2015), Vazza et al. (2017),
and also in Wittor et al. (2017), who investigate the Lagrangian
evolution of enstrophy using passively advected tracer particles in
post-processing.11 Nevertheless, the values at the sparsely saved
snapshots can still be used to interpret the relative importance of
the different mechanisms.

The pseudo-evolution term (purple line) is generally small, com-
pared to the rest of sources, implying that our definition of a
Lagrangian region for quantifying enstrophy is not a bad choice and
the changes in its value are dominated by cosmic flows and inner
dynamics. Cosmic expansion, as well, is barely important when
compared to the rest of mechanisms. Its effect is only marginally
relevant (� 10 per cent) at higher redshifts, when H(t) is larger. The
primary mechanism of enhancement of cluster’s enstrophy appears to
be compression (yellow line; positive and thus 〈∇ · v〉 < 0), which
especially dominates during (major) merger epochs. The integral
of the advection term (red line) corresponds to the net flux of
enstrophy. This quantity is positive during the mergers, as the cluster
is feeding from the already stirred ICM of the infalling clusters. As
the accretion rates decrease, this term becomes irrelevant, slightly
negative (as the gas is advected from lower density regions, where the
enstrophy is lower). These terms, however, imply redistribution, but
not properly speaking sources of vorticity. Vortex stretching and baro-
clinicity are persistent and non-negligible during the whole cluster’s

11When comparing our results to Wittor et al. (2017) note, however, that their
results present much narrower and taller peaks, as they focus on different
families of tracer particles mostly associated with gas clumps, while we
focus on cluster-wide quantities.
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Figure 7. Phase-space density maps, for CL01 at z  0, of enstrophy (top row, ε) and helicity magnitude (bottom row, |H|) versus overdensity (left-hand
column, 1 + δ ≡ ρ/ρB), temperature (central column, T) and Mach number (right-hand column, M). All fluid elements inside 2Rvir are considered for producing
the phase map. The colour encodes the phase-space density (the hotter the colour is, the larger the phase-space density). The black lines in the left column
represent the expected slope if there is no physical correlation between the variables, and the only effect is the resolution one, assuming a Kolmogorov (dashed)
and a Burgers (dash–dotted) spectrum. The white lines correspond to broken power-law fits (left-hand column) and simple power-law fits (middle column). The
Mach number axis scale is cut at M  1.3 and cells below this threshold are regarded as ‘unshocked’.

history. While the former seems to be enhanced after the mergers,
we do not see a clear trend for the later. We will come back to these
sources in Section 5.2, when examining their spatial distribution.

As for helicity, because of not being a positive-definite quantity,
contrary to enstrophy, and being a pseudo-scalar, it should average
to zero as long as the cluster is spherically symmetric (and, thus,
invariant under reflections). Therefore, interpreting this quantity can
be slightly more subtle. As we will see in Section 5.1, the role of
helicity can be better disentangled locally. The global evolution of its
volume-integrated value (third panel in Fig. 6) reveals how mergers,
again, induce strong variations in helicity. The fourth panel in Fig. 6
shows the helicity source terms evolution. Advection dominates the
helicity variations during the mergers period, as the cluster accretes
the ICM of the merged clusters which may already have developed
some degree of helicity. Once discussed this more ‘geometric’ term,
baroclinicity and vortex stretching remain as the primary sources
of helicity generation, while the acceleration of pre-existing vortices
due to gravity and pressure gradients is slightly smaller in magnitude.
Nevertheless, the evolution is fairly more complex than what we have
seen for enstrophy. As covered for the enstrophy evolution, cosmic
expansion and pseudo-evolution have a generally small contribution.
Note how the helicity corresponding to the turbulent velocity field
averages to zero over the cluster’s volume. That behaviour is expected
since, once the bulk flows (e.g. almost laminar infall of gas in the
outskirts) have been removed, the residual velocity field is much
more isotropic.

4.3.2 Phase maps

Finally, we explore the phase-space distribution of enstrophy and
helicity against several thermodynamical quantities of the gas

(namely, density and temperature; from which the scaling with other
quantities, e.g. pressure or entropy, can be directly derived), as well
as Mach number to elucidate their relation to shocks. We shall as well
restrict the presentation of our results to the cluster CL01 at the most
recent snapshot, at redshift z  0. For this aim, we present in Fig. 7
the phase-space density maps for the aforementioned variables. In
all cases, we have considered all the volume elements lying inside
2Rvir, at the best resolution available at each point.

The left-hand panels in Fig. 7 represent the enstrophy-overdensity
(upper panel) and helicity-overdensity (lower panel) phase-space
densities. The general trend of both maps shows a tendency for
denser gas to be more vortical (higher enstrophy) and helical (higher
helicity). A relevant question in this scope, however, is whether this
trend is physical or only due to a resolution effect (i.e. denser regions
get resolved by smaller cell sizes and smaller vortices can develop,
thus enhancing the vorticity magnitude). This effect can be ruled out
by a simple scaling argument. If the velocity field scales according
to a Kolmogorov (1941) spectrum, then one expects the vorticity to
depend on the scale L as ωL ∼ L−2/3. On the other hand, the pseudo-
Lagrangian refinement scheme provides (1 + δ) ∼ L−3. Therefore,
the dependence of vorticity on density due to pure resolution effects
ought to be ω ∼ (1 + δ)2/9. Bringing this result to the enstrophy
and helicity definitions, the expected scaling is ε ∼ (1 + δ)4/9 and
H ∼ (1 + δ)1/9. If we assumed a steeper, Burgers (1939) spectrum,
in which ωL ∼ L−1/2, then we shall expect shallower dependencies, ε
∼ (1 + δ)1/3 and H ∼ (1 + δ)0. As ICM turbulence typically lies in
between these regimes (e.g. Miniati 2014; Vazza et al. 2017), if the
dependency on density could be explained by resolution alone, then
ε and H are expected to scale with logarithmic slopes between these
two predictions.

The bulk of ICM’s mass sits in the overdensity range 1 + δ � 103–
104. In this range, the logarithmic slope of the ε − (1 + δ) phase-space
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Figure 8. Conditional distributions, for CL01 at z  0, of the compressive (left-hand panel), vortex stretching (centre panel), and baroclinic (right-hand panel)
enstrophy source terms strength as a function of the shock Mach number. That is, each column expresses the probability distribution of the values of the source
terms, for all cells within 2Rvir within a given M range. Mach number axis scale is cut at M  1.3 and cells below this threshold are regarded as ‘unshocked’.

density map is much shallower than through the whole overdensity
range, but still above the expectation by the scaling reasoning due
to resolution. We have fitted the mass-weighted mean ε − (1 + δ)
relation to a broken power law, which yields a logarithmic slope
0.658 ± 0.038 for 1 + δ � 104 (see white dashed lines in the figure),
thus pointing at a genuinely physical effect beyond resolution. A
similar pattern is observed for helicity magnitude, whose observed
slope for the bulk ICM (0.329 ± 0.059) is inconsistent with the
resolution effect alone. This result is not surprising, since denser
gas (usually located towards smaller clustercentric radii, c.f. Fig. 4)
varies on smaller spatial and temporal scales.

When relating our two measures of solenoidal turbulence, ε and
|H|, to temperature (central column in Fig. 7), the resolution effect
becomes less relevant. This is mainly due to the fact that the radial
dependence of temperatures on the ICM is much weaker than that of
densities (see e.g. the profiles in Planelles & Quilis 2009). There is
a strong tendency for most of the cluster gas mass to be increasingly
vortical for higher temperatures. In the region where most of the
cluster’s mass is concentrated, enstrophy follows a steep power law,
with slope 1.884 ± 0.065. A similar behaviour is seen in the |H| − T

map, with roughly half the slope (as |H| ∝ ω and ε ∝ ω2). However,
if the whole phase-density map is considered, the low-helicity end
presents a drop at T � 106 K, which is not clearly reflected in
enstrophy. This shows that helical motions are partially suppressed
for hotter gas. This effect can be much more easily interpreted in
terms of the spatial distribution (Section 5.1), since hotter gas tends to
reside, preferentially, in more central cluster regions (i.e. inside Rvir).

The right column of Fig. 7 corresponds to the phase-space density
of enstrophy and helicity magnitude with respect to the Mach number
of shocked cells. Unshocked (and weakly shocked, M � 5) cells
have a mass-weighted enstrophy distribution which peaks around
ε ∼ 1–10 Gyr−2, in agreement with the values displayed in Fig. 6
at recent redshifts. However, while most of the cluster mass resides
in unshocked and weakly shocked regions, as strong shocks are
only dominant in low-density environments (as the accretion shocks
in the outskirts), we find these regions to have high levels of
enstrophy, in spite of being resolved with lower spatial resolution.
This would, indeed, suggest that we are capturing turbulent motions
in the cluster outskirts, despite not being implementing any ad hoc
refinement scheme (cf. Vazza et al. 2009b; Iapichino et al. 2017).
The fundamental difference, which allows us to recover a high level
of vorticity even in the outskirts, is the base grid resolution (which,
in turn, determines the ‘mass resolution’ of the pseudo-Lagrangian
AMR approach). While the base grid cells in Iapichino et al. (2017)

are 2 h−1Mpc on each side, ours are ∼ 310 kpc. Therefore, this
scheme is able to resolve with considerably higher resolution these
outer regions without the need of additional refinement criteria.

In order to elucidate and disentangle the role of the main enstrophy
source terms, we present in Fig. 8 the conditional distributions
of the source terms as a function of the Mach number, which we
have denoted f (εt )|M in the figures. We have focused on peculiar
expansion/compression (left-hand panel), vortex stretching (middle
panel), and baroclinicity (right-hand panel), which, as it has been seen
in Section 4.2.1, are the dominant sources of cluster-wide enstrophy
variation. We show conditional distributions, instead of phase maps
as done above, since it better serves our purpose of analysing the
trends of the enstrophy production/dissipation rates as a function of
the shock’s Mach number.

The compressive component is perhaps the simplest one to
analyse. While unshocked cells have a relatively symmetric distri-
bution of

(
∂ε
∂t

)
comp

, with a subtle preference towards negative values
(expansion), shocked cells are, unsurprisingly, dominated by positive
values of the source term, since these cells have ∇ · v < 0. The
extremely high values of

(
∂ε
∂t

)
comp

for strong shocks (M � 10),
which are mostly located in the outskirts of the cluster, highlight
the thermodynamically irreversible compression happening at the
external, accretion shocks as a primary mechanism for enstrophy
generation.

The distribution of values of the vortex stretching enstrophy
source mechanism presents a clear distinction between unshocked
and weakly shocked gas (M � 5) and strong shocks (M � 5), and
is fairly symmetrical under a change of sign, only with a subtle
tendency towards more negative values in strong shocks. As it will
be seen in Section 5.2, this term is typically negative inside of the
external shocks.

The baroclinic term also presents a more or less symmetric
distribution with respect to its sign, being slightly more positive
(for all M). Its magnitude clearly increases with the shock Mach
number, although in this case the trend is much more continuous than
for the vortex stretching term. Especially in the strongest shocks,
baroclinicity is very efficient in inducing changes in vorticity, with
a net effect of increasing the enstrophy. This is expected since, for
strong enough shocks, the Rankine–Hugoniot jump conditions (see
e.g. Landau & Lifshitz 1987) imply a mild density gradient but a steep
pressure gradient. Therefore, the pressure gradient will be strongly
aligned with the shock normal direction, while the density gradient
can more easily have a non-negligible component tangential to the
shock.
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Figure 9. Maps of gas density (top row), enstrophy (middle row), and helicity (bottom row) of a thin (∼ 150 kpc comoving) slice through cluster CL01 at three
different redshifts: z  1.45 (left-hand panels) and z  0.80 (middle panels), while the cluster is undergoing strong accretion associated with mergers, and z 
0, while the cluster is relaxed with negligible accretion rates. Each panel represents the same comoving region, 10 Mpc (comoving) on each side.

5 L O C A L D E S C R I P T I O N O F T U R BU L E N C E

Even though global statistics are informative of the general state of
the cluster and are certainly useful when extending these analysis to
large samples of clusters in order to attain statistically meaningful
conclusions, some features associated with turbulence are much
better captured by looking at their local distribution. In this section,
we especially focus on solenoidal turbulence, which as we have seen
is the dominant component. In particular, we analyse the distribution
and relations amongst (filtered and unfiltered) enstrophy and helicity
(Section 5.1), and the enstrophy source terms (Section 5.2).

5.1 Distribution of enstrophy and helicity

In Section 4.3, it has been seen that denser and hotter gas tends to
be more vortical and helical. To complement this, we now study the
spatial distribution of these two magnitudes inside and around the
cluster. In Fig. 9, we show thin slices through the centre of the cluster
of gas density (upper panels), enstrophy (middle panels), and helicity

(lower panels); and for three redshifts: at z  1.45, 0.80 (both just
after major mergers), and z  0 (during a smooth accretion phase),
respectively, in the columns left to right. In all plots, we indicate the
virial volume with a dotted circle.

At high redshift, the cluster, which has a noticeably smaller virial
radius (1.36 Mpc) and around a quarter of its total mass at z = 0,
is undergoing multiple mergers, resulting in an aspherical shape.
The strongest external shocks, located at more than 2Rvir in most
directions, are clearly visible as density discontinuities, and so are
the filaments, which are a dominant contribution to the accretion
flows. The main merger has been produced by the infall of a structure
from the right of the represented slice, where the cluster atmosphere
is more extended. Complex gas structures appear in this region due
to the stripping of the merged cluster’s gas. A large part of this gas,
which has ended up lying beyond Rvir, will be reaccreted in the sub-
sequent ∼Gyr, mantaining the MARs high (Vallés-Pérez et al. 2020).

At this stage, enstrophy is clearly bounded by the external shocks,
especially in those regions where there have been no mergers
by (left and top borders of the shown slices). This suggests that
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the baroclinic mechanism in the accretion shocks drives the first
generation of vorticity to the hitherto pristine gas (since it is the
only term in equation 9 whose magnitude is not proportional to
the vorticity magnitude), closely followed by strong compression
which further enhances its magnitude. Filaments also present high
levels of enstrophy, which most likely is the main contribution to the
advection term. However, correctly accounting for and interpreting
the contribution of filamentary accretion of gas may be complex and
we leave it for future work.

Helicity naturally follows a similar pattern. Being defined as
a pseudoscalar quantity, it presents ubiquitous changes of sign
(especially around velocity discontinuities), but it is however an
interesting quantity to explore the infall of matter to the cluster. Note
that the filaments (better discernible in the density map, towards
the left and top borders of the slice) are considerably helical: while
enstrophy spans several orders of magnitude from the core to the
filaments, filaments have only ∼1/10 helicity magnitudes, compared
to these of the core. We will explore this effect in more detail below,
when showing the normalized radial profiles.

After the second relevant major merger sequence has taken place,
at z  0.8 (central column), the cluster has considerably increased its
virial radius after reaccreting the dark matter particles and baryons
which ended up beyond the spherical overdensity boundary, and
the shape has become slightly more spherical. The main merged
substructure has infallen from the bottom-right direction in the
represented slice. In that direction, there is a clear gradient of
enstrophy magnitude: while the gas near to the resulting cluster’s
virial boundary has considerably high levels of enstrophy with a
complex spatial distribution, enstrophy is greatly reduced behind the
shock. This can be interpreted as an evidence of the predominance
of the compressive source term during mergers: enstrophy is being
generated in the head-on collision of the two ICMs, primarily by the
weak shocks arising during the merger. Besides the merger region,
gas is also being intensely accreted through most of the cluster
boundary. Note, for example, in the top-left of the slice, how the
magnitude of helicity is enhanced towards the outskirts, where gas is
infalling more laminarly. The complex patterns in helicity inside the
virial volume are, at least partially, due to the presence of internal
shocks and shear motions, which produce the frequent sign changes.

At z  0, no important mergers have occurred recently and the
ICM has relaxed to a nearly spherical shape, with extended accretion
shock radii as well. A series of inner shocks, propagating outwards,
are reflexed as density discontinuities (see also the compressive and
solenoidal velocity magnitude maps in Vallés-Pérez et al. 2021).
Solenoidal motions, showing eddies on a wide range of scales,
dominate in the volume bounded by the outermost shocks, not only
in the central regions of the cluster, but also near the shocks and
around filaments. Helicity is especially enhanced in these filaments,
while its magnitude is less relevant elsewhere (due to the absence of
bulk flows in the collapsed regions).

Complementarily, in Fig. 10 we present radial profiles of enstrophy
(red lines) and helicity magnitude (blue lines), in solid (dashed)
lines for the unfiltered (filtered) velocity fields. The small-scale (or
turbulent) enstrophy accounts for ∼ 50 per cent of the total enstrophy
at all radii, only with a subtle decrease towards larger radii (from
∼ 60 per cent in the core to ∼ 40 per cent in the outskirts), which
may well be explained by the decreased resolution in the outskirts:
as the flows in these regions are typically resolved with larger
cells, the multiscale filtering algorithm (Section 2.2) may converge
to an outer-scale length, L(x), a few times the cell side length,
reducing the magnitude of the turbulent velocity field. However, the
magnitudes of the small-scale helicity are only 10–30 per cent those

Figure 10. Radial profiles of enstrophy (red) and helicity magnitude (blue)
for the cluster CL01 at z  0. The solid (dashed) lines correspond to the
unfiltered (filtered) velocity field. The quantities are normalized in units of
Rvir and Vcirc,vir ≡ √

GMtot,vir/Rvir.

of the unfiltered magnitude. Therefore, as suggested in Section 4.3,
helicity is primarily contributed by the eddies being developed within
(initially) laminarly infalling flows.

The comparison of the enstrophy and helicity magnitudes, when
normalized to the cluster-wide units (i.e. we take Rvir and Vcirc, vir as
the length and velocity units), clearly reflects that helical motions are
much more pervasive towards the cluster outskirts: the ratio between

H
V 2

circ,vir/Rvir
and ε

(Vcirc,vir/Rvir)2 grows with radius, from below 1 per cent

in the cluster core to ∼ 30 per cent in the off-virial region, where
laminar motions due to the accretion of gas are dominant.

5.2 Distribution of the enstrophy source terms

Complementarily to the study of the cluster-wide trends of the
enstrophy source terms (Section 4.3.1), the examination of their
spatial distribution can help in distinguishing their roles in the
evolution of enstrophy. Focusing on CL01, Fig. 11 presents the
spatial distribution of the compressive (top panels), vortex stretching
(middle panels), and baroclinic (bottom panels) enstrophy source
terms for the same comoving region as in Fig. 9. We have focused
on the snapshots at z  0.8 (left-hand column) and z  0 (right-hand
column). In the maps, we have overplotted Mach number M ≥ 2
contours.

The compressive mechanism is responsible for the most part
of enstrophy generation in the outskirts (beyond Rvir), where the
other source terms are smaller. This is due to the presence of
strong accretion shocks (with large, negative ∇ · v). At more re-
cent redshifts, the relaxed dynamical state of the cluster and its
nearly spherical shape evidence an onion-like structure of enstrophy
sources and sinks around the cluster. A (Lagrangian) gas element
radially infalling to the cluster would experience a succession of
compressions (at the accretion and merger shocks) and rarefactions,
producing enstrophy increases and decreases, respectively. Since
shocks are a dissipative phenomenon, this mechanism causes a net,
thermodynamically irreversible generation of enstrophy (see also the
Lagrangian study of Wittor et al. 2017).

The main source of enstrophy in the unshocked regions, however,
is the vortex stretching mechanism; while its magnitude is most
typically negative inside the shock contours. This, together with
the fact that this term is mostly positive for unshocked cells (see
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Fig. 8 in Section 4.3.2), portrays how the stretching of vortices,
primarily by the accretion flows, channels the enstrophy generated
in shocks to inner regions in the cluster. This fact is also supported
by the correlation between the magnitude of the compressive term in
shocks and that of the vortex stretching term in the immediate post-
shock region. For instance, at z  0 the strongest compression in the
external shock seems to occur in the bottom-left direction of the plot;
correspondingly, the strongest vortex stretching downstream of that
shock also occurs in the same direction.

Last, the baroclinic term presents complex features and variations
on short spatial scales, especially towards the cluster core. Nev-
ertheless, quite generally its value is positive in (and downstream
of) the strongest shocks, in line with the behaviour observed in
Section 4.3.2. Its magnitude inside the virial volume of the cluster
tends to be smaller than the vortex stretching and the compressive
terms, especially at z  0.

6 DISCUSSION

Finally, we further discuss a number of additional issues, connected
to the results shown in Sections 4 and 5 in relation to several models
suggested in the recent literature.

In Section 4.2, we have focused on the velocity fluctuations over
particular comoving lengths and their evolution with cosmic time. We
have found the velocity fluctuations on fixed scales to be primarily
determined by the presence/absence of merger events, especially
major mergers, with the accretion rates determining to a fairly good
extent the behaviour of these velocity fluctuations. Recently, Shi et al.
(2018) proposed a two-phase mechanism for turbulence decay after a
major merger, consisting of a first phase of fast-decay, which lasts for
∼ 1 Gyr, and a subsequent phase of secular decay. A similar effect
is seen in our velocity fluctuation evolution graph (Fig. 5). Their
conclusions, as well as ours, are based on the study of a single galaxy
cluster, so investigating it in large samples of clusters, with different
merger configurations and accretion histories would definitely help
to elucidate its physical origin. Therefore, although we indeed detect
a similar behaviour, we leave this research direction for future work.

By studying the evolution of enstrophy sources through cosmic
time (Section 4.3.1), we have found the primary, cluster-wide
mechanisms for enstrophy increase to be peculiar compression,
vortex stretching, and baroclinicity, while the rest of mechanisms
tend to have more modest contributions, in general terms. However,
the cluster-averaged values of the source terms do not represent the
full physical picture. In order to better discriminate the conditions
under which each of the mechanisms operates, we have followed two
paths.

First, we have explored the phase-space distribution of the main
enstrophy source terms, mentioned above, with the shock Mach
number. These three source terms have clearly distinctive behaviour
with M, which already gives information about where they do take
place. Naturally, the larger the Mach number is, the more efficient the
compressive mechanism is in enhancing the local enstrophy. On the
other hand, vortex stretching most usually removes enstrophy from
strong shocks, and increases it in unshocked regions. Last, we have
seen that baroclinicity most often is a positive source of enstrophy,
and its magnitude increases continuously with M. Complementarily,
we have also looked at the spatial distribution of these enstrophy
source terms (Section 5.2).

Our results seem to add evidence supporting the mechanism for
generation of enstrophy (thus, solenoidal turbulence) proposed by
Vazza et al. (2017), and further backed by the studies of Wittor et al.
(2017) using Lagrangian passive tracer particles. This mechanism,

Figure 11. Maps of the compressive (top row), vortex stretching (middle
row), and baroclinic (bottom row) enstrophy source terms, for z  0.8 (during
a major merger; left-hand panels) and for z  0 (smoothly accreting; right-
hand panels). The slices represent the same region as those in Fig. 9. The
contours indicate the shocked regions (M > 2).

which especially applies to smooth accretion, can be summarized in
two stages:

(i) As low-density gas, with negligible amounts of enstrophy,
infalls for the first time into a cluster, enstrophy is mainly generated at
the outermost, accretion shocks by the compressive and the baroclinic
mechanism. This stage can repeat at inner radii, if merger shocks are
present.

(ii) Enstrophy is then accreted with the infalling gas. The dominant
mechanism in this stage is vortex stretching, which transports the
enstrophy downstream of shocks, where it had been generated.

We note that some level of baroclinicity is always necessary in
the first place, since it is the only term in equation (9) capable
of generating vorticity from gas with ω = 0. Note that at high
redshift, in the linear regime and even in the mildly non-linear regime
(as long as the Zel’Dovich 1970 approximation is applicable), the
velocity field can be written as the gradient of a potential flow,
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thus being identically irrotational. As a consequence, pristine gas
from low-density regions suffers a first generation of enstrophy due
to baroclinicity, most significantly in the outermost shocks, closely
followed by an intense amplification due to compression.

While this two-stage mechanism describes well the generation of
enstrophy by smooth accretion, the picture for mergers can be slightly
different. First, the gas accreted from an infalling cluster has already
some degree of enstrophy. Therefore, the advection mechanism is
also important during these events (indeed, the red line in the second
panel of Fig. 6 gets enhanced during mergers). Also, in major mergers
the collision of the two ICMs generates an important amount of
compression.

7 C O N C L U S I O N S

The intrinsically multiscale nature of turbulent phenomena poses
challenging scientific and technical (numerical) problems. While a
proper description of the turbulent cascade requires high-resolution
simulations, a statistically meaningful analysis demands samples
of (ideally) hundreds of clusters. Performing resimulations of large
samples (e.g. Cui et al. 2018), or dedicated simulations including
specific refinement criteria (e.g. Vazza et al. 2017) or phenomenolog-
ical closures to model physical dissipation (e.g. Schmidt et al. 2016;
Iapichino et al. 2017), is computationally expensive. In this work, we
have instead explored the possibility (and the associated limitations)
of studying turbulence in galaxy clusters directly extracted from
cosmological simulations, neither performing resimulations nor
adding phenomenological subgrid modelling of the turbulent cascade
down to the dissipation scale (which introduces uncertainties due
to the involved physics and the numerical scheme). With this aim,
we have focused on two massive clusters from a moderate-sized
cosmological simulation. Our main conclusions and findings are
summarized below:

(i) Turbulent motions in, and around, galaxy clusters can be ade-
quately captured by pseudo-Lagrangian AMR descriptions, relying
upon the ansatz that less dense regions experience milder dynamics,
provided that the mass resolution is fine enough. This assertion is key
to allow the exploration of large samples of clusters at a reasonable
computational cost.

(ii) The non-constancy of resolution causes several systematic
effects to show up in some turbulence indicators, such as structure
functions, which thereby limit the extent to which computing these
global statistics can be useful in our case. These effects are due
to the fact that (i) the smallest scales are only resolved at certain
regions (thus introducing an ‘environment’ bias) and (ii) different
AMR levels have different dissipation scales. To overcome these
limitations, we have taken a complementary look, focusing on the
velocity fluctuations on some particular, fixed comoving lengths (so
as to avoid the effect of the previously mentioned systematics) and
studying their evolution with cosmic time.

(iii) Velocity fluctuations at different scales,
√

S2(L), are primarily
determined by the accretion rates, showing prominent peaks in their
evolution after mergers (especially, major mergers). The injection
scale, although difficult to constrain (due to its non-uniqueness)
can be placed around �Rvir, in consistence with previous findings.
The peaks in

√
S2(L) at smaller scales occur with a delay roughly

consistent with the cascade time-scale, L/
√

S2(L). The evolution
of the velocity fluctuations after merger events provides suggestive
evidence in favour of the two-phase mechanism for turbulence decay
proposed by Shi et al. (2018), although larger statistics are required
to properly investigate its origin.

(iv) Solenoidal (incompressible) turbulence is the dominant com-
ponent in the ICM. Using enstrophy as a proxy for solenoidal
turbulence, we have studied its generation mechanisms and their
evolution with cosmic time, which is in turn intimately connected
to the assembly history of the ICM. The evolution of the sources
and their spatial distribution provide strong evidence supporting
the two-stage mechanism for enstrophy generation suggested by
Vazza et al. (2017), which combines baroclinicity and compression at
shocks, with vortex stretching downstream of them. Nevertheless, we
highlight that: (i) baroclinicity is responsible for the first generation
of enstrophy, and (ii) while this scenario naturally accounts for
enstrophy generation during smooth accretion, the situation might
be notably different during mergers.

(v) Complementarily, we have introduced helicity, H ≡ v · ω, as
a quantity which highlights eddies being developed within bulk
motions of the gas infalling into the cluster. While this magnitude is
more difficult to interpret, due to not being positive defined (contrary
to enstrophy), we have shown that:

(a) Helical motions are irrelevant in cluster cores, in the sense
that they contribute little to the total enstrophy budget, but much
more pervasive towards the outskirts, associated with the fact
that gas inside ∼Rvir presents milder bulk flows than gas in the
outskirts by recent redshifts.

(b) Helicity maps highlight the presence of cosmic filaments,
suggesting that matter does not fall in straight, radial trajectories
to cluster, but rather with complex geometries.

(c) When computed from the small-scale, turbulent velocity
field, helicity averages to zero through the cluster volume (as
opposed to enstrophy). This reflects how helicity captures the
interaction of bulk and turbulent velocity fields, and is suitable
to investigate accretion flows.

We plan to thoroughly examine the role of helicity in cluster outskirts
and filaments in future works.

As we have mentioned through the text, the particular details
about the generation and evolution of ICM turbulence are extremely
sensitive to the assembly history of the cluster, as well as to its
environment. Thus, one of the main shortcomings of this work
is the lack of statistics. In a forthcoming work, we will extend
these analyses to a large sample of massive clusters, in order to
extract statistically robust conclusions about the scaling relations
of turbulence-related quantities with cluster mass, the differences
between varying dynamical states, etc. A thorough and deep under-
standing of the description of turbulent phenomena in galaxy clusters
is key to explain some observable effects, such as surface brightness
fluctuations, acceleration of cosmic ray particles, amplification of
magnetic fields, or non-thermal pressure leading to mass bias, etc.,
some of which can in turn be crucial for the usage of clusters for
precision cosmology.
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APPEN D IX A : VO L U ME AVER AGE S,
R E S O L U T I O N D E P E N D E N C E , A N D
C O N V E R G E N C E T E S T

Vorticity is not a scale-invariant magnitude, neither in the classical
Kolmogorov theory (ωL ∝ L−2/3) nor in actual simulations of ICM
turbulence (see e.g. Vazza et al. 2017). Thus, in order for any
results obtained in either simulations or observations to be physically
meaningful, it is of utmost importance to make sure that cluster-
integrated vorticity (or any similar magnitude, such as enstrophy or
helicity) is defined in such a way that it does not depend strongly on
numerical resolution.

In particular, in this study we have considered the volume-averaged
enstrophies and helicities. Note, however, that our refinement scheme
consistently samples with increased resolution the overdense regions
(where dynamics vary on shorter spatial scales). Thus, in this case,12

the volume weight of these quantities naturally privileges the denser
regions, since only in these regions smaller eddies will have been
able to develop. Note therefore that performing a mass-weight on
this ‘mass-sampled’ data would effectively correspond to performing
a double-weight, and should not be a converging quantity as the
resolution gets increased.

In order to check this is the case, we present in Fig. A1 the
resolution dependence of several quantities (namely vorticity, en-
strophy, helicity, and helicity magnitude) integrated in volume and
in mass, i.e. 1

V

∫
V XdV and 1

M

∫
V XdM , respectively. The solid lines

12This discussion could in principle be applied to SPH data, as well.

Figure A1. Resolution dependence of several cluster-averaged quantities,
defined as a volume-weighted average (solid lines) or a mass-weighted
average (dotted lines). The vertical axis represents the fractional variation
of the quantity computed using data up to the �-th refinement level with
respect to the quantity computed using the maximum resolution data at each
point.

show the fractional difference in each quantity, when performing the
volume integral up to a given refinement level, with respect to its
value at the maximum available resolution (� = 9). The dotted lines
present the same quantity, for the mass-weighted averages. While the
mass-averages do not converge when increasing the resolution (i.e.
the ‘errors’, |1 − X�/X� = 9| are always of order unity), all volume-
averaged quantities do converge rapidly. Therefore, their values do
not depend strongly on the resolution of the simulation and are the
physically meaningful quantities in this scope.

We find necessary to emphasize that this consideration is valid
as long as we work with mass-sampled simulation data. Naturally,
different refinement strategies (e.g. Vazza et al. 2012, who add a
refinement criterion based on local vorticity) or fixed grids could
rescue small-scale eddies in low-density regions, and thus enhance
the volume-averaged vorticity. The only point of the reasoning above
is thus to guarantee that, while we work with mass-sampled data (such
as standard AMR or SPH), our results do not depend strongly on the
resolution of a specific object and, thus, it is possible to compare
different objects from the same or from different simulations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Abstract

Cosmic voids are underdense regions filling up most of the volume in the universe. They are expected to emerge in
regions comprising negative initial density fluctuations, and subsequently expand as the matter around them
collapses and forms walls, filaments, and clusters. We report results from the analysis of a cosmological simulation
specially designed to accurately describe low-density regions, such as cosmic voids. Contrary to the common
expectation, we find that voids also experience significant mass inflows over cosmic history. On average, 10% of
the mass of voids in the sample at z∼ 0 is accreted from overdense regions, reaching values beyond 35% for a
significant fraction of voids. More than half of the mass entering the voids lingers on periods of time ∼10 Gyr well
inside them, reaching inner radii. This would imply that part of the gas lying inside voids at a given time proceeds
from overdense regions (e.g., clusters or filaments), where it could have been preprocessed, thus challenging the
scenario of galaxy formation in voids, and dissenting from the idea of them being pristine environments.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Voids (1779); Accretion (14);
Galaxy environments (2029); Computational astronomy (293)

Supporting material: animation

1. Introduction

Cosmic voids are underdense regions filling up most of the
volume in the universe (Zeldovich et al. 1982). According to the
accepted paradigm of cosmological structure formation, they
emerge in regions comprising negative initial density fluctua-
tions (Sheth & van de Weygaert 2004), and subsequently expand
as the matter around them collapses and forms walls, filaments,
and clusters (see van de Weygaert & Platen 2011 and van de
Weygaert 2016 for recent, general reviews). This leads to
coherent outflows (van de Weygaert & van Kampen 1993;
Padilla et al. 2005; Ceccarelli et al. 2006; Patiri et al. 2012),
making them a pristine environment with notable applications
for cosmology (Dekel & Rees 1994; Park & Lee 2007; Lavaux
& Wandelt 2010, 2012; Bos et al. 2012; Pisani et al. 2019) and
galaxy formation (Hahn et al. 2007; Kreckel et al. 2011; van de
Weygaert & Platen 2011; Ricciardelli et al. 2014a).

The dynamics of cosmic voids are dominated by their expansion
and consequent depletion of gas and dark matter (DM), as revealed
by the coherent outflows found both in simulations (van de
Weygaert & van Kampen 1993; Padilla et al. 2005; Ceccarelli
et al. 2006) and observations (Bothun et al. 1992; Patiri et al. 2012;
Paz et al. 2013), and also expected from analytical models of
isolated voids (Bertschinger 1985; Sheth & van de Weygaert 2004;
Baushev 2021). However, in a fully cosmological environment, it
should be in principle possible to expect coherent streams of matter
—gas and DM—to unbind from dense structures and end up
penetrating inside low-density regions. As a matter of fact, a
handful of scenarios for unbinding mass do exist, such as galaxy
cluster mergers (Behroozi et al. 2013) or strong shocks that can
extend up to a few virial radii (e.g., Zhang et al. 2020).

In this Letter, we explore this scenario with a Λ cold dark matter
(ΛCDM) cosmological simulation of a large volume domain,
especially designed to describe matter in and around voids. The
rest of the Letter is organized as follows. In Section 2, we describe
the simulation and the void finding algorithm. In Section 3, we
present our results regarding the existence of mass inflows through

voids’ boundaries. Finally, we summarize the implications of these
results in Section 4.

2. Methods

2.1. The Simulation

The results reported in this paper proceed from a
cosmological simulation of a periodic domain, 100 h−1 Mpc
along each direction, produced with MASCLET (Quilis 2004),
an Eulerian, adaptive mesh refinement hydrodynamics coupled
to a particle-mesh N-body code. The Eulerian hydrodynamic
scheme in MASCLET, based on high-resolution shock-captur-
ing techniques, is capable of providing a faithful description of
the gaseous component in low-density regions, such as cosmic
voids.
Structures evolve on top of a flat ΛCDM cosmology consistent

with the latest Planck Collaboration (2020) results. Dark energy,
matter, and baryon densities are specified by ΩΛ= 0.69,
Ωm= 0.31, and Ωb= 0.048, relative to the critical density

r =
pc
H

G

3

8
0
2

. The Hubble parameter, H0= 100 h km s−1Mpc−1, is
set by h= 0.678. The initial conditions were set up at z= 100, by
evolving a power spectrum realization with spectral index
ns= 0.96 and normalization σ8= 0.82 using Zeldovich’s (1970)
approximation.
A low-resolution run on a grid of 1283 cells was performed

in order to identify the regions that would evolve into cosmic
voids by z ; 0. Back to the initial conditions, the seeds of voids
and their surroundings were sampled with higher numerical
resolution according to the procedure introduced in Ricciardelli
et al. (2013, hereafter RQP13). The regions at z= 100
comprising the DM particles that end up in zones with3

ρ/ρB< 10 by z= 0 are thus mapped with a first level of mesh
refinement (ℓ= 1), with half the cell size and DM particles
eight times lighter than those of the base grid; therefore, with
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DM mass resolution 6.4× 109Me and spatial resolution
390 h−1 kpc. In order to capture the structures forming in
cosmic voids, subsequent levels of refinement (ℓ� 2, up to
nℓ= 10) are created following a pseudo-Lagrangian approach
that refines cells where density has increased by a factor of 8
with respect to the previous, lower-resolution level. Besides
gravity and hydrodynamics, the simulation includes standard
cooling and heating mechanisms, and a phenomenological
parameterization of star formation (Quilis et al. 2017).

2.2. The Void Finder

We have identified the sample of cosmic voids in our
simulation with a void finder based on the one presented
by RQP13, which looks for ellipsoidal voids using the total
density field (ρtot) and the gas velocity field (v), as underdense
(ρtot< ρB), peculiarly expanding (∇ · v> 0) regions sur-
rounded by steep density gradients. While the original void
finder in RQP13 did not assume any prior on the void’s shape,
which could therefore develop highly complex, nonconvex,
and non-simply connected shapes, such a precise definition of a
void boundary is counterproductive for assessing mass fluxes
in postprocessing, since it limits the validity of the pseudo-
Lagrangian approach (see Section 2.3).

In order to have voids with smooth surfaces, our void finder
looks for voids as ellipsoidal volumes around density minima,
using the same thresholds on total density, total density
gradient, and gas velocity divergence as RQP13. While voids
are not generally ellipsoidal, by using the same threshold
values as RQP13 we ensure that our algorithm looks for the
largest possible ellipsoid inside actual, complex-shaped voids,
thus providing a robust, stable, and conservative definition of
these structures, which is readily comparable with their
identification in observational data (Foster & Nelson 2009;
Patiri et al. 2012). The voids are found and characterized one at
a time, using the 1283 base grid, in the steps summarized
below.

Protovoid finding. A tentative center is chosen, as the most
underdense, positive velocity divergence cell not yet inside an
already found void. The initial protovoid is a 53 cells cube
around this cell. The protovoid is then grown iteratively in the
directions of its six faces, one extra cell along each direction at
a time, if the following conditions are met by all the “new”
cells:

( ) · ( )d d d<  <   >v0, , 0, 1tot tot
max

where d º -r
r

1tot
B

tot is the total density contrast. The threshold

on the density gradient is set to ( )d = -0.25 Mpcmax 1, in
consistency with RQP13. Once the protovoid has been
determined, the center of the void is adjusted to the center of
mass defect of the protovoid. A first approximation to the shape
of the ellipsoid is determined by computing and diagonalizing
the inertia tensor.

Growth of the ellipsoidal void. The initial ellipsoid is
subsequently grown iteratively to find the maximal ellipsoid
that fits inside the actual void. This is performed by repeatedly
applying the following two substeps:

1. The shape of the ellipsoid is adjusted iteratively, in a
similar manner to what is done in the galaxy cluster’s
literature (Zemp et al. 2011; Vallés-Pérez et al. 2020). In
particular, the new eigenvalues of the inertia tensor yield
the orientation of the void, while the new eigenvectors are

used to compute the new semiaxes. These semiaxes are
rescaled proportionally, so as to preserve the volume of
the ellipsoid. The process is iterated, adjusting the
integration volume, until convergence, which is assessed
by the change in the semiaxes lengths.

2. Once the shape has been found, the ellipsoidal void is
grown at constant shape, by multiplying each of its
semiaxes by a factor of 1+ χ. We have fixed χ= 0.05,
although this parameter does not have a severe impact on
the resulting void population while kept small.

This two-step iteration is repeated until either one of the
stopping conditions in RQP13 (maximum density, density
gradient, or negative velocity divergence) is met by a cell, or
the mean slope of the total density field at the boundary
exceeds the prediction of the universal density profile
(Ricciardelli et al. 2013, 2014b). It can be easily shown that,
assuming that the spherical profiles in RQP13 can be extended
to ellipsoidal shells, this condition can be applied by requiring:

⎜ ⎟⎛⎝ ⎞⎠( )
( ) ( )r

r <
- > -

R

R
z3 1 1.37 0.25 , 2

with ρ(<R) the mean density inside the ellipsoid and ρ(R)
computed from the newly added cells in the growing step. The
numerical coefficients, which are derived from the fit
in RQP13, are valid for 2.5� z� 0.
Void sample and merger tree. In order to produce the final

sample of voids, we start from the latest code output (at z= 0)
and select an initial sample of voids taking care of the overlaps.
To do so, we iterate through the voids found by the algorithm
described above, from the largest and emptiest to the smallest
and densest, and accept those that do not overlap more than
50% with the volume occupied by previously accepted voids.
Then, we trace this initial sample back in time by building

their merger tree. To assess which is the best progenitor
candidate for a void, we find the one that maximizes the volume
retention defined as º ÇVR N

N N
A B

A B
, with N referring to the

number of cells, and A and B being some void and one of its
parent candidates, respectively. This approach is equivalent to
the particle retention defined by Minoguchi et al. (2021), but
here applied to cells (Sutter et al. 2014). We did not find strong
overall variations when using other figures of merit defined on
Minoguchi et al. (2021), although there can be variations in a
small number of individual voids.
With this procedure, we are able to obtain a sample of 207

voids, with equivalent radius at z= 0 larger than 5Mpc (the
largest of them reaching ∼18Mpc), which can be traced back,
at least, to z= 1.5; and 179 of them are traced back down to
z= 2.5. The overall statistics (radii, ellipticities, and mean
overdensities) of the void sample are displayed in Figure A1.

2.3. The Pseudo-Lagrangian Approach and Its Validity

To assess mass fluxes in postprocessing, we take a pseudo-
Lagrangian approach, by interpreting each volume element in
the simulation (up to a certain refinement level) as a tracer
particle, and advecting these tracer particles using the gas
velocity field between each pair of code snapshots. This
technique is analog to the one applied by Vallés-Pérez et al.
(2020) for galaxy clusters.
In practical terms, at each code snapshot we take all

(nonrefined and nonoverlapping) gas cells, each one at a

2
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position xn and compute their updated position with an explicit,
first-order step. For consistency, we have performed the same
analysis with the dark matter particle distribution. Since voids
experience mild dynamics with large dynamical times
(associated to their low densities), this is a sensible approach.
Then, in order to compute the accretion mass flux around a
void between a pair of code outputs, we consider the mass of
all the dark matter particles (or gas pseudo-particles) that were
outside the void in the previous iteration, and inside the same
volume at the latter (and vice versa for the decretion mass flux).

The previously discussed procedure will be valid as long as the
timestep involved (the timespan between two consecutive outputs
of the simulation) fulfillsD  t , with a characteristic scale
of the surface of the void, and  a characteristic velocity for these
cosmic flows. By choosing an ellipsoidal, instead of a complex,
irregular shape,  can be taken of the order of the smallest
semiaxis (several Mpc). On the other hand, by using the same
volume for both consecutive iterations, we ensure that we are
detecting the mass elements that are being dynamically accreted
onto the void, and not accounting for the elements that may
appear inside or outside the ellipsoid due to its change between
iterations.

We have also taken a conservative approach for the sake of
showing the robustness of our results. Since DM particles can
be traced, we can compare the total mass accretion in a certain
redshift interval, when computed using our pseudo-Lagrangian
method, and when computed by tracing the actual evolution of
the particles in the simulation, i.e., checking which particles
were outside the volume at the first iteration of the interval, and
are inside that same volume at the last iteration. The results,
shown in Figure A2, confirm that (i) the pseudo-Lagrangian
approach works well, on a statistical level, on the DM particle
distribution, with reasonable scatter (0.3–0.5 dex) between the
estimated and the actual accretion inflow; and (ii) on these low-
density environments, gas and DM dynamics exhibit remark-
ably similar results, producing a scatter between DM and gas
accretion rates typically below 0.2 dex. This serves as a
confirmation of the applicability of our pseudo-Lagrangian
approach for estimating gas accretion.

3. Results

A summary of the results of this analysis over the whole
cluster sample is shown in Figure 1, where we also present the
decretion rates for comparison. The raw fluxes (gas or DM
mass, entering or leaving the void per unit time) are displayed
in the top panel, where it can be seen that accretion4 flows onto
voids, while smaller in magnitude than the decretion flows
typically by a factor of 1/6−1/3, are present in the void
sample in a statistical sense.

In the middle panel we have normalized these fluxes to the
mass of the given material component (gas or DM) in the void
at each time, to be read as the percentage of gas or DM void’s
mass that leaves or enters the void per gigayear. By performing
this normalization, the robust mean values of the fluxes of DM
and gas match each other, reflecting that both components
undergo remarkably similar dynamics. This is expected, since
gas in these regions has low temperature and pressure and thus

behaves closer to a collisionless fluid (further validating the
applicability of the pseudo-Lagrangian approach; see
Section 2.3). While normalized decretion flows show little

Figure 1. Evolution of the accretion and decretion rates in the void sample.
Top panel: evolution of the mass fluxes (gas and DM mass, entering or leaving
the void per unit time, according to the color legend) as a function of cosmic
time. The shaded regions delineate the 16–84 percentiles (referred to as
“confidence intervals” [CI] in the legend), as an indication of the scatter in
these quantities, while the error bars represent the error of the mean value.
Middle panel: mass fluxes normalized to the void’s gas or DM mass, averaged
over the cluster sample. Same legend as above. Bottom panel: anticummulative
accreted gas mass fraction, i.e., the mass that has been accreted after a given
redshift z as a fraction of the gas mass of the void at z = 0. Errors are given
only for the >=R 9 Mpcz

eq
0 for clarity, being similar in magnitude for the

whole sample.

4 Although these mass inflows would not be triggered by the peculiar
gravitational fields, but by the external, large-scale structure bulk and shear
velocity flows, since they move inwards in the voids and remain within them
for long times, we refer to them as accretion flows in analogy with mass flows
in massive objects.

3
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scatter, and evolve from nearly 30%Gyr−1 at z= 2.5 to
∼6%Gyr−1 at z; 0, accretion fluxes are smaller by a factor of
∼1/6 at high redshift, but do not decrease as sharply and reach
∼1/3 of the mean decretion values at z= 0. It might be argued
that part of these accretion flows could be due to void-in-cloud
processes (Sheth & van de Weygaert 2004; Sutter et al. 2014,
i.e., voids collapsing in a larger-scale overdense environment),
even though our sample building strategy, from z= 0 back-
wards in time, should exclude most of them since they would
not have survived until z= 0. Nevertheless, we have checked
that the same results hold when restricting the sample to large
voids (Req

z = 0> 9Mpc) only with a slight decrease in the
accretion rates, less than a factor of 2, at low redshifts with
respect to the whole sample. At high redshifts, there are no
differences between large voids and the whole sample.
Therefore, the accretion signal detected here cannot be ascribed
to cloud-in-void processes alone. Smaller voids may experience
stronger inflows, since they are more sensitive to external
influences by a larger-scale velocity field.

Last, the bottom panel presents the accumulated accreted
mass, as a function of the present-day void’s gas or DM mass,
from a redshift z up to z= 0. When focusing on the large-void
subsample, on average, up to 17% of the void’s current mass
has been accreted after z= 2.5 (reaching beyond 35% at
percentile 84), and the average void has suffered a mass inflow
10% of its current mass after z= 1. Interestingly, in their
general analysis of the cosmic web, Cautun et al. (2014) found
that ∼20% of the mass in voids at z= 0 belonged to walls and
filaments at z= 2. Despite the similarity of the result, note that
their interpretation is subtly different: while Cautun et al.
(2014) ascribe this result to an artifact due to the difficulty of
identifying tenuous structures within voids as they become
emptier, our result corresponds to an actual inflow (matter
initially outside the void, which crosses its boundary at a
given time).

As the central result of this Letter, in Figure 2 we present the
gas accretion rates (gas mass accreted, normalized by the voids’
mass and per unit time) as a function of the void size
(equivalent radius), computed on four redshift intervals
(from z= 2.5 to z= 1.5, and three subsequent intervals with

Δz= 0.5 thereon) that are encoded by the color scale in the
figure. A significant fraction of voids, at any redshift, presents
relevant accretion rates (above a few percent per gigayear,
which are sufficient to impact their composition and dynamics).
The highest accretion rates are seen in the smallest voids.
As mentioned above, smaller voids are more prone to
externally induced flows due to larger-scale influences: while
Req∼ 5Mpc voids show mean values ∼8%Gyr−1, this rate
lowers to ∼(1–2)%Gyr−1 in the case of the largest voids.
Nevertheless, large voids with exceptionally large accretion
rates also exist, even at low redshifts. Naturally, the abundance
of small voids makes it possible for some of them to show
extreme accretion rate values. The point markers encode the
mean overdensity, 〈δ〉≡ 〈ρ〉/ρB− 1 of the voids, according to
the legend, to check whether there is any trend between this
property and the accretion rates. All voids in the sample, and
even the large and rapidly accreting ones, have very small
overdensities, thus ruling out the fact that our results could be
contaminated by a bad delineation of the void’s wall. Indeed, as
discussed in Section 2.2, our void identification technique has
aimed to be conservative enough to exclude these possible
effects.
To better visualize the effect, we show in Figure 3 the gas

density field around a large void (Req ; 12Mpc) with high
accretion rates. Blue and green contours correspond to
isodensity surfaces of ρ/ρB ; 3 and 0.5, roughly enclosing
mean total densities 15ρB and 4ρB, respectively, in order to
give context of the distribution of matter around the void. The
orange shadow highlights the void, with mean total density
ρ/ρB ; 0.1. On top, we overplot the accretion velocity field,
that is, the velocity vectors in the region around the void where
they point toward it. This representation clearly exemplifies the
presence of coherent, large-scale streams of matter flowing
toward cosmic voids from higher-density regions. Comple-
mentarily, in Figure A3 we show an animation of a gas density
slice through a large (Req ; 14Mpc) void that undergoes
significant accretion, with the velocity field overplotted with
arrows. The animation exemplifies the nature of these inflows:
the velocity field around the void consists of its own induced
outflow (dominant through most of its boundary), plus the bulk
and shear flows originated by the surrounding structures (see
also Aragon-Calvo & Szalay 2013 for a detailed study of the
hierarchical nature of velocity fields in and around voids).
Tracing the newly accreted DM particles in time, we find

that nearly 50% remain inside the original volume of the void
for up to ∼10 Gyr, and a significant fraction of them reach
inner radii. The same behavior is expected for the gas, therefore
granting the accreted gas, which may have been preprocessed
outside the void, a long enough timespan to play a crucial role
in the formation and evolution of void galaxies.

4. Conclusions

The findings reported in this Letter challenge the common
accepted picture on the evolution of cosmic voids and could
consequently have a direct potential impact on the under-
standing of galaxy formation and evolution in low-density
environments. Hence, the uncontaminated and pristine void
domains could be altered by the entrance of chemically and
thermodynamically processed gas. Future effort should be
devoted to confirm these results with other simulation codes
and void identification strategies (e.g., those based on the

Figure 2. Normalized gas accretion rate, i.e., gas inflow per gigayear in units of
the void’s gas mass (vertical axis) as a function of the size of the void
(equivalent radius; horizontal axis). The gas accretion rates are computed on
four redshift intervals, encoded in the figure according to the color scale on the
right. The shapes of the data points refer to the mean overdensity of the void,
according to the binning specified in the legend.
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watershed transform Platen et al. 2007; Neyrinck 2008; see, for
example, the comparison project of Colberg et al. 2008).
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Appendix
Additional Material

This appendix contains three additional figures. Figure A1
presents a summary of the statistical properties of our void
sample. Figure A2 presents the results on the checks of the
robustness of the pseudo-Lagrangian approach (see
Section 2.3). Finally, Figure A3 contains an animation
displaying the evolution of a density slice with the velocity
field overplotted, showing an example of mass inflows through
void boundaries.

Figure 3. Close look at a large (Req ; 12 Mpc) void that undergoes significant accretion by redshift z ; 0. The box corresponds to a cubic domain ∼56 Mpc
(comoving) along each direction. The ticks on the axes are spaced 10 Mpc for visual reference. Blue and pale green contours represent the gas density, with blue and
green regions approximately corresponding to collapsed (cluster and filaments) matter and diffuse gas around it, respectively. The orange, shaded area shows the
location of the ellipsoidal void, which is well delineated by the surrounding matter. The arrows represent the gas velocity field around the surface of the void in those
regions where gas is being accreted toward it.
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Figure A1. Summary of general properties of the void sample. Top row: distribution of the equivalent radius (Req, left panel), mean overdensity (δ, middle panel), and
ellipticity (e, right panel) for the voids sample at redshifts z ; 0 (blue), 1 (orange), and 2.5 (green). Bottom row: joint distribution of each pair of variables, according
to the same color palette. The continuous lines in the histograms, and the color contours in the joint distributions have been obtained by means of a Gaussian kernel
density estimation procedure. Darker colors imply higher density of voids in the corresponding parametric space.
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Figure A2. Left-hand column: correlation between the accreted DM mass computed according to our pseudo-Lagrangian method, and when computed by explicitly
tracing DM particles in the simulation, in the redshift interval specified at the top of each panel. Right-hand column: tight correlation between the gas and the DM
accreted mass, both computed according to our pseudo-Lagrangian algorithm.
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Figure A3. Animation showing the evolution of a density slice (∼9 Mpc thick)
through a large (Req ; 14 Mpc) void and its environment, from z = 2.5 to
z = 0. The colors encode the gas density (in units of the background density)
according to the adjacent color scale. The green ellipse represents the slice
through the void’s ellipsoid. Note that some part of the void’s wall may appear
to be inside the void due to projection effects. Nevertheless, the void
overdensity is low, below 〈δ〉 ∼ − 0.8, thus ensuring that overdense regions are
well excluded. Arrows represent the gas velocity field in the slice. Note that the
size of the arrows is constant for better visualization, while the magnitude of
the projected velocity vector is encoded in the opacity of the arrow (more
opaque arrows imply higher velocity magnitudes). The velocity field around
the void’s boundary is sampled with higher density of arrows and colored blue
for better visualization. Matter entering the void through its rightmost corner
can be clearly visualized in the animation. This figure is available as an
animation in the HTML version of the article. Still frame: first frame of the
animation. Duration: 8 s.

(An animation of this figure is available.)
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ABSTRACT

Context. New-generation cosmological simulations are providing huge amounts of data, whose analysis becomes itself a pressing
computational problem. In particular, the identification of gravitationally bound structures, known as halo finding, is one of the main
analyses. Several codes that were developed for this task have been presented during the past years.
Aims. We present a deep revision of the code ASOHF. The algorithm was thoroughly redesigned in order to improve its capabilities
of finding bound structures and substructures using both dark matter particles and stars, its parallel performance, and its abilities of
handling simulation outputs with vast amounts of particles. This upgraded version of ASOHF is conceived to be a publicly available
tool.
Methods. A battery of idealised and realistic tests are presented in order to assess the performance of the new version of the halo
finder.
Results. In the idealised tests, ASOHF produces excellent results. It is able to find virtually all the structures and substructures that we
placed within the computational domain. When the code is applied to realistic data from simulations, the performance of our finder is
fully consistent with the results from other commonly used halo finders. The performance in substructure detection is remarkable. In
addition, ASOHF is extremely efficient in terms of computational cost.
Conclusions. We present a publicly available deeply revised version of the ASOHF halo finder. The new version of the code produces
remarkable results in terms of halo and subhalo finding capabilities, parallel performance, and low computational cost.

Key words. large-scale structure of Universe – dark matter – galaxies: clusters: general – galaxies: halos – methods: numerical

1. Introduction

Over the past four decades, numerical simulations of cosmic
structure formation have grown significantly in size, dynami-
cal range, and accuracy of the physical model ingredients (see
e.g. Vogelsberger et al. 2020; Angulo & Hahn 2022, for recent
reviews). In addition to a precise description of the evolution of
the dark matter (DM) component of the Universe, current cos-
mological simulations have also improved their modelling of the
complex baryonic physical processes that shape the properties
of the gaseous and the stellar components (see e.g. Planelles
et al. 2015, for a review). On the other hand, the outstanding
development of computing facilities has led to an increasing
computational power and to important advances in algorithms
and techniques. This progress has allowed current cosmologi-
cal simulations to reach a significant level of mass and force
resolution, complexity, and realism.

The excellent predictive power of these simulations makes
them essential tools in cosmology and astrophysics: they are cru-
cial not only for testing the accepted cosmological paradigm,
but for interpreting and analysing how different physical pro-
cesses inherent to the cosmic evolution affect the observational
properties of the Universe we inhabit. To properly exploit the
unprecedented capabilities of current advanced cosmological
simulations, equivalently complex and sophisticated structure
finding algorithms are also required. A proper identification and
characterisation of the population of DM haloes and subhaloes,

including their abundances, shapes and structure, physical prop-
erties, and merging histories, is decisive for understanding the
formation and evolution of cosmic structures.

Even when a DM halo is simply a locally overdense gravita-
tionally bound structure embedded within the global background
density field, the definition of its boundary and, hence, its mass
is unavoidably arbitrary. The situation is even more accentuated
in the case of subhaloes that are located within larger-scale over-
densities, called hosts. In an attempt to overcome these issues, a
significant number of halo-finding methods and techniques have
been developed in the past decades (e.g. FoF1, Davis et al. 1985;
SO2, Cole & Lacey 1996; HOP, Eisenstein & Hut 1998; BDM3,
Klypin et al. 1999; Subfind, Springel et al. 2001; Dolag et al.
2009; AHF4, Gill et al. 2004; Knollmann & Knebe 2009; ASOHF5,
Planelles & Quilis 2010; Velociraptor, Elahi et al. 2011, 2019;
HBT6, Han et al. 2012, 2018; Rockstar, Behroozi et al. 2013; to
cite a few).

In general, however, all these algorithms can be broadly
divided into three main families of codes: those based on the
SO method (Press & Schechter 1974; Cole & Lacey 1996),
those relying on the FoF algorithm in 3D configuration space
1 Friends of friends.
2 Spherical overdensity.
3 Bound density maxima.
4 Amiga halo finder.
5 Adaptive spherical overdensity halo finder.
6 Hierarchical bound tracing.
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(Davis et al. 1985), and those based on the 6D phase-space FoF
(e.g. Diemand et al. 2006). Algorithms in the first class involve
locating peaks in the density field and finding the extent of the
halo, either by growing spheres until either the enclosed den-
sity falls below a given threshold or other properties are met.
On the other hand, codes in the second and third categories link
particles that are close to each other, either in configuration or
in phase-space. Knebe et al. (2011, 2013) reported an exhaus-
tive review and comparison of some of these halo finders. These
studies showed that while all codes are able to identify the loca-
tion of mock isolated haloes and some of their properties (e.g. the
maximum circular velocity, vmax), important differences arose for
small-scale haloes, especially substructures (Onions et al. 2012,
2013; Hoffmann et al. 2014), or when some properties such as
spin and shape were determined.

In addition to DM structures, modern simulations also track
the formation of stellar particles from cold gas. These particles
cluster and form stellar haloes, or galaxies. While the formation
of galaxies is tightly linked to their underlying DM haloes, their
different evolutionary histories, properties, and dynamics imply
that they deserve to be studied as objects in their own right. Con-
sistently, specific algorithms for these tasks have recently been
developed (e.g. Navarro-González et al. 2013; Cañas et al. 2019).

Planelles & Quilis (2010) presented ASOHF, a halo finder
based on the SO approach. Although ASOHF was especially
designed to be applied to the outcomes of grid-based cosmo-
logical simulations, it was adapted to work as a stand-alone halo
finder on particle-based simulations. The performance of ASOHF
in different scenarios was demonstrated in Knebe et al. (2011).
In addition, the code has been employed in a number of works
(Planelles & Quilis 2013; Quilis et al. 2017; Martin-Alvarez et al.
2017; Planelles et al. 2018; Vallés-Pérez et al. 2020, 2021). The
incessant improvements of cosmological simulations, aided by
the ever-growing available computing power, have enormously
increased the number of particles and, consequently, the richness
of small-scale structures. This demanded a revisit of the process
of halo-finding in ASOHF to ensure that small structures are well
captured and their properties can be recovered in an unbiased
way, and also to guarantee that the code is able to tackle these
amounts of data within reasonable computational times.

In this paper we present an upgraded, faster, and more
memory-efficient version of ASOHF that is capable of efficiently
dealing with the new generation of cosmological simulations that
include huge numbers of DM particles, haloes, and substruc-
tures. Amongst the main improvements, we present a smoother
density interpolation that lowers the computational cost by
decreasing the number of spurious density peaks, the addition of
complementary unbinding procedures, a new scheme for search-
ing for substructures, the ability of identifying and characterising
stellar haloes, and a domain decomposition approach that can
lower the computational cost and computing time. On the perfor-
mance side, the code has been profoundly overhauled in terms
of parallelisation and memory requirements. It is now able to
analyse simulations with hundreds of millions of particles on
desktop workstations within a few minutes at most. This version
of ASOHF is publicly available.

The paper is organised as follows. In Sect. 2 we describe
the main procedure on which our halo finder relies to identify
the samples of haloes, subhaloes, and stellar haloes, as well as
additional features such as the domain decomposition scheme
and the merger tree. The performance and scalability of ASOHF
in some idealised but rather complex tests is shown in Sect. 3.
Additionally, in Sect. 4 we test the performance of the code
against actual simulation data and compare its performance to

other well-known halo finders, and we show the capabilities of
ASOHF as a stellar halo finder. Finally, in Sect. 5 we discuss and
summarise our results. Appendix A further describes one of the
unbinding schemes, while in Appendix B we discuss our estima-
tion of the gravitational binding energy and most-bound particle
by sampling.

2. Algorithm

While the original algorithm was introduced by Planelles &
Quilis (2010), a large number of modifications and upgrades have
been undertaken in order to provide a fast, memory-efficient,
and flexible code that is able to tackle a new generation of
cosmological simulations, with an increase of several orders of
magnitude in the number of DM particles, haloes, and rich sub-
structure. Here we describe the main steps of our halo-finding
procedure. The implementation of ASOHF for shared-memory
platforms (OpenMP), written in Fortran, is publicly avail-
able through the GitHub repository of the code7. The following
subsections describe the input data (Sect. 2.1), the process of
identifying density peaks (Sect. 2.2), the characterisation of
haloes using particles (Sect. 2.3), the substructure identifica-
tion scheme (Sect. 2.4), the characterisation of stellar haloes
(Sect. 2.5), and several additional features and tools of the
ASOHF package (Sect. 2.6). Table 1 contains a summary of the
parameters of the code that can be configured.

2.1. Input data

Generally, the input data for ASOHF consist of a list of DM par-
ticles, containing the three-dimensional positions and velocities,
masses, and a unique integer identifier of each of the Npart parti-
cles. While ASOHFwas originally envisioned to be coupled to the
outputs of the cosmological code MASCLET (Quilis 2004; Quilis
et al. 2020), it can work as a fully stand-alone halo finder. The
reading routine is fully modular and can easily be adapted to
suite the input format of the user8.

2.2. Grid halo identification

The identification of haloes relies on the analysis of the under-
lying continuous density field, which is obtained by means of
a grid interpolation from the particle distribution. Originally
inherited from MASCLET, since its original version, ASOHF uses
an Adaptive Mesh Refinement (AMR) hierarchy of grids to com-
pute the density field on different scales. This enables capture of
a large dynamical range in masses and radii. In this section we
describe the mesh creation procedure (Sect. 2.2.1), which has
been optimised to allow the code to handle even hundreds of
thousands of refinement patches in large simulations. Next, we
present the new density interpolation scheme (Sect. 2.2.2) that
mitigates the effect of sampling noise, and the halo-finding pro-
cess over the grid (Sect. 2.2.3). It is worth noting that to avoid
arbitrariness in defining a given structure, the new version of
ASOHF does not deal with peaks within haloes at this stage. This
is considered in a later step in Sect. 2.4.

2.2.1. Mesh creation

A coarse grid of size Nx×Ny×Nz covers the whole domain of the
input simulation. On top of this base grid, an arbitrary number of

7 https://github.com/dvallesp/ASOHF
8 For more information, check the code documentation in https://
asohf.github.io
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Table 1. Summary of the main parameters that can be tuned to run ASOHF.

Parameter (Symbol) Description and remarks

Parameters for halo finding: mesh creation and halo identification

Base grid size Nx Typically set to Nx = 3
√

Npart or 2 3
√

Npart

Number of refinement levels n` Peak resolution will be L/(Nx × 2n` ), typically set to match
the force resolution of the simulation

Number of particles to flag a cell as ‘refinable’ nrefine
part

Fraction of refinable cells to extend the patch f extend
refinable A patch is grown along a direction only if more than this

fraction of the newly added cells is refinable
Minimum size of the patch to be accepted Npatch

min Only patches with minimum dimension above this are accepted
Base grid refinement border Exclude these many cells close to the domain boundary (≥1)
AMR grids refinement border Idem., in each AMR grid (≥0)
Kernel order for interpolating density from particles Either 1 (linear kernel) or 2 (quadratic kernel; recommended)
Particle species Assign kernel size by particle mass, local density, or none
Minimum number of particles per halo nhalo

min Discard haloes below this number of particles (e.g. 25)

Stellar haloes

Component used for mesh halo finding Use only DM or DM+stars for identifying density peaks
Kernel width for stars `stars Interpolate stars in a cloud of radius L/(Nx × 2`stars )
Minimum number of stellar particles per stellar halo
Density increase (from inner minimum) to cut the halo fmin See Sect. 2.5
Maximum radial distance without stars to cut the halo `gap See Sect. 2.5
Minimum density (in units of ρB(z)) to cut the halo fB See Sect. 2.5

Notes. The first block contains the parameters that have effect on the identification of haloes, and the second block refers to the stellar halo-finding
procedure.

mesh refinement levels is generated by placing patches covering
the regions with highest particle number density, each level halv-
ing the cell size with respect to the previous one. In particular,
we flag as refinable any cell hosting more than a minimum num-
ber of particles (nrefine

part ). The mesh creation routine then examines
all the refinable cells, from densest to least dense, and tries to
extend the patch in each direction if the fraction of refinable cells
amongst the added cells exceeds f extend

refinable. Only patches with a
given minimum size (Npatch

min ) are accepted; otherwise, the region
is not refined. These quantities (nrefine

part , f extend
refinable, and Npatch

min ), as
well as the number of refinement levels (n`), are free parameters
that can be tuned to find a balance between memory usage and
resolution. Generally, the latter can be fixed so that the peak reso-
lution matches the force resolution of the simulation. We present
in Sect. 3.4.1 a test showing how these parameters work with
varying particle resolutions.

2.2.2. Density interpolation

In our experiments, we find that interpolating particles into
cells using the standard cloud-in-cell (CIC) or triangular-shaped
cloud (TSC) schemes at the resolution of each AMR patch has
a detrimental effect for the purpose of density peak finding
because it produces a very large number of peaks due to shot
noise. While these false peaks would be removed in subsequent
steps when halo properties are refined with particles (Sect. 2.3),
they produce an overwhelming computational burden and load
imbalance between different threads.

To avoid this, we compute the local density field by spread-
ing each particle, using linear or quadratic kernels, in a cubic
cloud with the same volume as the particle sampled in the ini-
tial conditions. That is to say, if different particles species (in
terms of mass) are present, each one is spread into the AMR

grids according to their corresponding kernel sizes, that is, the
kernel radius ∆xkern,i is set by

∆xkern,i = L/2
blog8

Mbox
mp,i
c
, (1)

with L the box size, Mbox the total mass in the box, and mp,i the
mass of the particle i. Alternatively, for simulations with equal-
mass particles, the kernel size can be chosen to be determined by
the local density in the base grid cell occupied by each particle.
This procedure naturally produces a smooth density field that is
free of spurious noise while still capturing local features such as
the density peaks associated with a hierarchy of substructures.

2.2.3. Halo finding

Haloes are pre-identified as peaks, that is, local maxima, in the
density field, from the coarsest to the finest AMR levels. To do
this, ASOHF lists all the (non-overlapping) cells at each AMR
level that simultaneously fulfil the following two criteria. First,
the cell density is higher than the virial density contrast at a
given redshift, ∆m,vir(z), computed according to the prescription
of Bryan & Norman (1998). Incidentally, we also consider cells
whose overdensity exceeds ∆m,vir(z)/6 because the density inter-
polation could smooth the peaks in some situations. We verify
with the tests in Sect. 3.1 that further lowering this value does
not allow to recover any more haloes. Additionally, the cell must
correspond to a local maximum of the density field, that is, its
density is higher than that of the 33 neighbouring cells.

The algorithm then iterates over them with decreasing over-
density. For each cell, the procedure can be summarised as
follows. First, check whether the cell is inside a previously
identified halo. If it is, skip it; if not, continue (note that we
do not search for substructure at this stage). Then, refine the
location of the density peak using the information in higher
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(i.e. finer) AMR levels, if available, and check that the refined
position does not overlap with previously identified haloes.
Finally, grow spheres of increasing radii until the enclosed
overdensity, measured using the density field, falls below ∆m,vir.

This produces a first list of isolated haloes (i.e. that are not
substructure), with an estimation of their positions, radii, and
masses, which will be refined further by using the whole particle
list information in the following step. At this step, haloes can
overlap, although no halo centre can be placed inside another
halo. These peaks are processed within the substructure-finding
step (Sect. 2.4).

2.3. Halo refinement using particles

After they are identified, the halo properties are refined using
the particle distribution in several steps as described below. We
refer to Sect. 3.1 for a test that shows the capabilities of ASOHF
to identify and recover the properties of haloes in an unbiased
way. While the basic process (collecting particles, unbinding,
and determining the virial radius), common to most SO halo
finders, was present in the original version, the new version
of ASOHF includes many refinements to improve the quality of
the recovered catalogues (e.g. recentring of the density peak or
additional unbinding procedures), as well as other features to sig-
nificantly decrease the computational cost and compute certain
halo properties.

Recentring of the density peak. Within the scheme
described in Sect. 2.2, the density peak location, as identified
within the grid, has an uncertainty of the order of the cell size of
the finest grid covering the peak. In order to improve this deter-
mination, the first step consists of refining the position of the
density peak using particles.

To do this, we consider a cube centred on the estimated den-
sity peak, with a side length of 2∆x`, with ∆x` the cell size of the
finest patch used to locate the density peak within the grid. We
compute the density field in this volume using an ad hoc 43 cells
grid, and select as the corrected centre the position of the largest
local maximum of the density field. The process is iterated while
more than 32 particles are found in the cube. Each time, the cube
side lenth is halved, and it is centred on the peak of the previous
step. The position found by this procedure is not further changed
in the process of halo finding.

Selection of particles. In order to alleviate part of the com-
putational burden associated with traversing the whole particle
list, only the particles in a sphere with mean density 〈ρ〉 =
min(∆vir,m(z), 200) ρB(z), with ρB(z) the background matter den-
sity at redshift z, are kept for each halo. Subsequently, this list is
sorted by increasing distance to the halo centre.

Additionally, to boost performance by decreasing the num-
ber of array accesses and distance calculations, which are an
important performance penalty as the number of particles in
the simulation increases, particles are sorted according to their
x-component before the whole process of halo finding starts.
Then, only a small fraction of the particle list is traversed in
order to select the halo particle candidates, in a way similar to
a tree search algorithm in one dimension. This effect becomes
increasingly stronger as the volume being analysed increases.

Unbinding. A common feature of configuration-space halo
finders is the necessity of pruning the particles that are
dynamically unrelated to the haloes because particles are ini-
tially collected using only spatial information. We perform

two complementary, consecutive unbinding procedures that we
describe below.

Local escape velocity unbinding. First, the Poisson equa-
tion is solved in spherical symmetry for the particle distribution
(see Appendix A), yielding the gravitational potential φ(r). The
escape velocity is then estimated as vesc(r) =

√−2φ(r). Finally,
any particle with velocity (relative to the halo centre of mass
reference frame) exceeding its local escape velocity should be
flagged as unbound and pruned from the halo.

However, because the bulk velocity of the halo can be
severely contaminated by the unbound component, we unbind
particles in an iterative way by pruning particles with a speed
relative to the centre of mass higher than βvesc(r). In successive
steps, we take β = 8, 4, and finally β = βfinal ≡ 2. Each time,
the gravitational potential generated by bound particles alone is
recomputed. The process is iterated with the last value of β until
no new particles are removed in an iteration.

We set βfinal = 2 instead of removing all particles whose
speed exceeds the local escape value because these marginally
unbound particles may become bound at a later step and will not
drift away from the cluster immediately (see e.g. the discussion
in Knebe et al. 2013).

Velocity space unbinding. The standard deviation of the
particle velocities within the halo, σv, with respect to the
centre-of-mass velocity, is computed. Particles whose three-
dimensional velocity differs by more than βσv from the centre-
of-mass velocity are pruned. Like in the previous scheme, β
is lowered progressively, from β = 6 to β = βfinal = 3. In
each step, the centre-of-mass velocity is recomputed for bound
particles.

We refer to Sect. 3.3 for two specific tests that show the
complementarity of these two unbinding schemes.

Determining spherical overdensity boundaries. The spher-
ical overdensity boundaries ∆m ≡ 〈ρ〉

ρB(z) = 200, 500, 2500, ∆c ≡
〈ρ〉

ρcrit(z) = 200, 500, 2500 (where ρcrit(z) is the critical density for
a flat universe) and ∆vir (Bryan & Norman 1998) are precisely
determined. The centre-of-mass velocity inside the refined Rvir
boundary, as well as the maximum circular velocity, its radial
position, and the corresponding enclosed mass are also com-
puted. Haloes with fewer than a user-specified minimum number
of particles (nhalo

min ) are regarded as poor haloes and are removed
from the list.

Determining halo properties. Finally, several properties of
the halo are computed inside Rvir. They include centre of mass
position and velocity, velocity dispersion, kinetic energy, grav-
itational energy (either by direct sum or using a sampling
estimate, see Appendix B), and most-bound particle (which
serves as a proxy for the location of the potential minimum),
specific angular momentum, inertia tensor and principal axes of
the best-fitting ellipsoid, mass-weighted radial speed, enclosed
mass profile, and list of bound particles, from which any other
possible information can be directly computed.

2.4. Substructure finding

Once all the non-substructure haloes are identified, we proceed
to search for substructures, which we define as systems cen-
tred on density peaks within previously identified haloes (either
isolated haloes or substructures detected at a coarser level of
refinement). The process of substructure finding is nearly parallel
to that of finding non-substructure haloes. We therefore outline
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the differences here with the procedure described above. The
most remarkable distinction lies in the choice of halo boundary.
While non-substructure (i.e. isolated) haloes can be well charac-
terised by an enclosed density threshold, such a threshold may
not exist if the halo is embedded in a larger-scale overdensity.
While some finders use a change in the slope of the density pro-
file to set the boundary of substructure (e.g. AHF, Knollmann
& Knebe 2009), we find that this rise in the slope is not always
found and leads to arbitrarily large substructure radii. Instead, we
use the Jacobi radius, RJ, defined in Binney & Tremaine (1987)
as the saddle point of the effective potential generated by the
host-satellite system, as an estimate of the substructure extent
(the region of space in which the attraction towards the satellite
is stronger than that of the host). We note that this new scheme
for substructure characterisation is integrally new to the revised
version of the finder.

Search on the grid. Cells above the virial density contrast
are considered as candidate substructure centres if they are a
strictly defined local maximum (their density is higher than in
any other of the 33−1 neighbouring cells), they do not belong to
a previously identified substructure at the same grid level, and
they are not within 2∆x` of their host halo centre, where ∆x`
is the grid cell size at the given refinement level. This last step
is enforced to avoid arbitrarily detecting the same peak as a sub-
halo of itself, while allowing to recover increasingly more central
substructures as long as refinement levels that cover the central
region of the host are available.

After recentring, we choose as host for each centre candi-
date the halo (at the highest hierarchy level9) that minimises
the distance between host and substructure centres, D. We then
compute M, the mass of the host within a sphere of radius D,
by means of a cubic interpolation from the previously saved
enclosed mass profiles, and obtain a rough estimate of the
substructure extent by numerically solving Eq. (2),
(RJ

D

)3

− m
3M + m

= 0, (2)

where m is the mass of the substructure candidate within a sphere
of radius RJ. This equation is a simplification of the exact defini-
tion of the Jacobi radius (see below, Eq. (3); see also Binney &
Tremaine 1987) under the assumption m � M (and rJ � D). We
note that an approximate version of this definition was already
implemented by MHF (Gill et al. 2004).

Refinement with particles. The procedure is analogous to
the one described above. The sole difference is that the bound-
ary of the halo (for measuring all halo properties) is taken as
the Jacobi radius. In this respect, we use particles to refine this
boundary with the non-approximate expression yielding RJ, as
given by Binney & Tremaine (1987),

f (x) ≡ 1
(1 − x)2 −

g(x)
x2 +

[
1 + g(x)

]
x − 1 = 0, (3)

with x ≡ RJ/D and g(x) ≡ m/M. After RJ has been identified,
all halo properties can be computed from the bound particles
as discussed in Sect. 2.3. We refer to Sect. 3.2 for a test of the
substructure identification capabilities of ASOHF.

9 That is, if a peak, candidate for corresponding to a substructure,
is inside a halo and inside a subhalo, the corresponding structure is
regarded as a subsubhalo if it is finally accepted.

2.5. Stellar haloes

In addition to identifying DM haloes, the new version of ASOHF
is also able to characterise and produce catalogues of stel-
lar haloes (i.e. galaxies) if such particles are provided. The
identification of stellar haloes in the first place relies on the
identification of the underlying DM haloes and subhaloes, which
are typically more massive and less concentrated than their stel-
lar counterpart (e.g. Pillepich et al. 2014). However, it is worth
emphasising that stellar haloes are then characterised by ASOHF
as independent objects. The procedure iterates over all previ-
ously found haloes and subhaloes, and performs the following
steps.

Selection of particles. All stellar particles inside the virial
volume of the DM halo are collected using the same tree-like
search from the list of particles sorted along the x-coordinate
as described in Sect. 2.3. All the bound DM particles identi-
fied in the halo-finding step are recovered, and the whole list
of DM+stellar particles is sorted by increasing distance to the
centre of the DM halo.

Determining a preliminary boundary of the stellar halo. In
order to compute half-mass radii, we first need to place an outer
boundary on the stellar halo. This is especially important in the
case of central galaxies, where we wish to avoid that the masses,
radii, and other properties of the resulting galaxy are affected
by the presence of satellites or intracluster light. For each stel-
lar halo candidate, we compute its spherically averaged stellar
density profile, and place a radial cut at the smallest radius that
fulfils at least one of the following conditions.

First, the stellar halo is cut if stellar density increases by more
than a factor fmin from the previous (inner) density minimum.
This indicates the presence of a massive satellite. As a second
condition, the radial cut may also be triggered by the stellar den-
sity falling below a given threshold, which we parametrise in
terms of the background matter density as fBρB(z). The last con-
dition is the presence of a gap in radial space, that is, a comoving
distance larger than `gap without any stellar particle.

These three conditions are complementary, present a small
dependence on the free parameters, and are conservative enough
to avoid splitting a real stellar halo into several pieces. In our test,
we find that the resulting galaxy catalogue is fairly independent
of the density increase parameter, which can be varied in the
range fmin ∈ [2, 20]. The results do not depend strongly on fB ∼ 1
because stellar density profiles usually present a sharp boundary.
However, we note that too low values ( fB � 1) should be avoided
because they may add strong contamination by intracluster light
stellar particles. Finally, `gap can be set to a conservative value,
∼(5−10) kpc.

Unbinding. The unbinding steps are conceptually similar to
those discussed in Sect. 2.3 for DM haloes. We stress a few
subtleties here, however.

Local escape velocity unbinding. The procedure is similar
to what we discussed for DM haloes. In this case, we consider
all particles inside the previously found fiducial radius to solve
Poisson’s equation. However, we only unbind stellar particles
because all DM particles were already bound to the underlying
DM halo by construction.

Velocity space unbinding. From this point on, we remove DM
particles and only consider the stellar ones. While this proce-
dure is analogous to that performed for the DM halo, the fact
that we only consider stellar particles at this stage implies that
we account for the fact that DM and stellar components might
correspond to distinct kinematic populations.
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Determining half-mass radius and recentring. From the
list of bound particles, the half-mass stellar radius is determined
as the distance to the first particle whose enclosed bound mass
exceeds half the total mass of bound particles inside the fiducial
radius. Up to this point, the DM halo centre had been used as
provisional centre. Henceforward, we perform an iterative recen-
tring (analogous to the one described in Sect. 2.3) to the peak
of stellar density by iteratively considering the largest stellar
density peak inside the half-mass radius sphere. Finally, the half-
mass radius is recomputed from this centre, which by definition
yields a tighter radius than the first estimate.

Characterising halo properties. Finally, ASOHF computes a
series of properties of the galaxy. All these properties, which
include the stellar-mass inertia tensor, stellar angular momen-
tum, and the velocity dispersion of stellar particles, are given
with reference to the half-mass radius. The code can also output
the whole list of stellar particles in the halo for further analy-
ses. We refer to Sect. 4.2 for results of the stellar halo finding
capabilities of ASOHF.

2.6. Additional features and tools

In addition to the main code, the ASOHF package includes a series
of complementary tools (mainly implemented in python3 with
the usage of standard libraries) to set up a domain decomposi-
tion for running ASOHF (Sect. 2.6.1) and to compute merger trees
from ASOHF catalogues (Sect. 2.6.2) as well as a library to load
all ASOHF outputs into Python.

2.6.1. Domain decomposition

As we show in Sect. 3.4.1, the wall-time of our halo-finding
code scales proportionally to the number of DM particles and
haloes. Especially when large spatial volumes are analysed, the
performance can therefore be greatly boosted by decomposing
the domain. Each domain can be run by an independent ASOHF
process, and the resulting catalogues (together with any other
output files) can be merged to create a single catalogue repre-
senting the whole input domain. The absence of communication
between the different domains allows the user to run the different
domains either sequentially in the same machine or concurrently
in different machines, thus effectively allowing the user to run
ASOHF in distributed memory platforms.

To enable this procedure, ASOHF allows the user to spec-
ify a rectangular subdomain as an input parameter. All par-
ticles outside this domain are discarded by the reader rou-
tine, so as to reduce memory usage. The python script
setup_domdecomp.py, included within the ASOHF package,
automates this task by creating the necessary folders, executa-
bles, and parameter files for each domain. The number of
divisions in each direction determines a fiducial domain for each
task. Each of these fiducial domains, which cover the whole
domain without overlapping with each other, is enlarged in all
directions by an overlap length, which is also a free parameter.
To avoid losing objects close to these boundaries of the domains,
the overlap length can be safely set to the largest expected size
of a halo in the simulation (∼3 Mpc for standard cosmologies).
Once the domain decomposition is set up, we provide example
shell scripts for running all the domains, either sequentially or
concurrently (we provide an example slurm script).

When the halo-finding procedure has concluded for a given
snapshot, the output files of each domain can be merged using
the merge_domdecomp_catalogues.py script, which keeps all

haloes whose centre lies on the fiducial domain. When substruc-
ture is present, the position of the progenitor halo (or the first
non-substructure halo up the hierarchy) is considered to decide
whether the substructure is kept in the merged catalogue. While
the overlap between adjacent domains, if sufficiently large as
discussed above, ensures that no structure is lost by the decom-
position, the strategy of only keeping haloes whose density
peak lies within the fiducial domain, or whose host fulfils these
conditions, guarantees that no halo is identified twice.

2.6.2. Merger trees

Also included in the ASOHF code package, the mtree.py
python3 script allows building merger trees from the catalogues
and particle list files. For each pair of consecutive snapshots (the
prev and the post iterations) of the simulations, for which the
halo catalogues have already been produced, the script first iden-
tifies for each post halo all the prev haloes in a sphere with radius
equivalent to the maximum comoving distance travelled by the
fastest particle in either the prev or the post iteration. These are
referred to as the progenitor candidates.

For each of the progenitor candidates, the intersection of
its member particles with the post halo is computed using
the unique IDs of the particles. This process is performed in
O(Nprev + Npost) for each intersection, instead ofO(NprevNpost), by
sorting the particle lists by ID at the moment of reading the cat-
alogues, thus boosting the performance of the mtree.py code.
For instance, for a simulation with ∼108 particles and ∼20 000
haloes, it takes 1−2 min on 16 threads to connect the haloes
between each pair of snapshots.

We count as progenitors all haloes that contributed more than
a fraction fgiven to the descendent mass, which we arbitrarily set
to a sufficiently low value, such as fgiven = 10−3, for the merger
tree to be complete. For each progenitor above this threshold, we
report the following quantities.

Contribution to the descendent halo, Mint/Mpost, where Mint
is the mass of the particles in the post and the prev halo.
This quantity needs to be interpreted carefully for substructures
because we count the particles of a substructure as also belong-
ing to the host. Therefore, a substructure most typically receives
contributions of close to 100% from its host halo in the previous
snapshot.

Retained mass, Mint/Mprev, that is, the fraction of prev mass
given to the descendent halo. Again, in the presence of sub-
structures, a host halo will be quoted as retaining 100% of a
substructure in the previous iteration in most situations.

A third figure of merit is the normalised shared mass,
Mint/

√
MprevMpost, which is the geometric mean of the two above

quantities. This quantity has the virtue of suppressing the links
of very massive haloes with very small haloes and vice versa
because they are either suppressed by Mprev or Mpost.

Additionally, to track the main branch of the merger tree,
we use the (approximate) determination of the most-bound par-
ticle introduced in Sect. 2.3 and described in Appendix B. Thus,
we verify whether the most strongly bound particle of the post
halo is in the prev candidate, and vice versa. The two-fold check
is necessary in the presence of substructure because the most
strongly bound particle of a substructure most usually lies within
the host halo.

It may happen at some frequency, especially in the case
of small haloes and substructures in very dense environments,
that a halo is lost in one iteration and recovered afterwards. In
order to avoid losing the main branch of a DM halo due to
this spurious effect, the mtree.py script allows linking these
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lost haloes to their progenitors, skipping an arbitrary number of
iterations.

2.6.3. Python readers

All the information contained in ASOHF outputs can easily be
loaded into python for analysis purposes, making use of the
included readers.py library for DM and stellar haloes files,
which allows the user to read and structure the data in several
useful formats. Particle lists can also be loaded from python.
These readers take care of the different indexing conventions
between Fortran and python.

3. Mock tests and scalability

Before testing ASOHF on actual simulation data and comparing
its results to other halo finders, we have quantified the perfor-
mance of the key procedures of the code in some idealised
but rather complex tests. In particular, we focused on identify-
ing isolated haloes (Sect. 3.1) and substructures (Sect. 3.2), the
unbinding procedures (Sect. 3.3), and the performance of the
code (Sect. 3.4).

3.1. Test 1. Isolated haloes

The first idealised test aims to prove the ability of the code to
identify haloes in a broad range of masses, without overlaps nor
substructure. The setup of the test is as follows.

We considered a flat ΛCDM cosmology, with Ωm = 0.31,
ΩΛ = 0.69, h ≡ H/(100 km s−1 Mpc−1) = 0.678 and σ8 = 0.82,
at redshift z = 0, and a cubic domain of side length L =
40 Mpc. This domain was populated with Npart particles of equal
mass, mp = ρB(z = 0)L3/Npart. Halo masses were drawn from a
Tinker et al. (2008) mass function by inverse transform sam-
pling, setting a lower mass limit of Mmin = 50 mp. The sampling
was constrained so as to produce one halo with mass higher
than 8 × 1014M�. The number of haloes was set by integrat-
ing the mass function from Mmin. Their corresponding virial
radii were computed and haloes were placed at random posi-
tions, avoiding overlaps and crossing the box boundaries. Each
halo was then realised with particles by sampling a Navarro-
Frenk-White profile (NFW; Navarro et al. 1997) for the radial
coordinate, using the concentration-mass (cvir − Mvir) relation
modelled by Ishiyama et al. (2021), and assuming spherical
symmetry for the angular coordinates. The NFW profiles are
extended up to 1.5 Rvir to avoid a sharp cut in the density pro-
file, and the remaining particles up to Npart, after sampling all
haloes, were placed at random positions outside them. For this
test, we used Npart = 1283, so that 1528 haloes with a mass higher
than Mmin ≈ 6× 1010 M� were generated and realised with parti-
cles of mass mp = 1.2 × 109 M�. These parameters are varied in
Sect. 3.4 when we consider the scalability of the code.

While it is complex due to the high number of haloes, this
test is idealised in the sense that it lacks any large-scale struc-
ture (LSS), such as filaments connecting haloes. This limitation
of the test design implies that it is more challenging to detect
small isolated haloes because they may only occupy one base
grid cell and may not be refined enough to be detected as a
density peak10. Therefore, the key parameter in this test is the
base grid resolution, Nx. The remaining parameters were fixed to

10 The situation is different for a realistic simulation output, where a
web of filaments surrounding a low-mass halo may more easily trigger
the creation of a refinement patch covering it.
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Fig. 1. Results from Test 1. Input cumulative mass function (green line)
compared to ASOHF results with Nx = 64 (light red), Nx = 128 (red), and
Nx = 256 (dark red). The vertical lines mark the completeness limit, at
90%, of the catalogue produced by ASOHF. This value is not reported
with Nx = 256 because the code is able to detect all haloes.

Table 2. Completeness limits of ASOHF halo finding for Test 1 (in mass
and number of particles, Mlim and N lim

part), at 90%.

Nx Mlim (M�) N lim
part

64 7.71 × 1011 638
128 1.63 × 1011 134
256 All All

Notes. With Nx = 256, all haloes are detected, and so we do not report
these limits.

n` = 4, nrefine
part = 3, and Npatch

min = 14 and have very limited impact
on the outcomes of the test.

Figure 1 presents the mass functions (unnormalised; number
of haloes with a mass higher than M, N(> M)) of the catalogues
generated by ASOHF for Nx = 64, 128, and 256 (in light red, red,
and dark red lines, respectively), compared to the input (thick
green line). Due to the overabundance of small haloes, it is dif-
ficult to interpret the number of detected haloes as a measure of
the performance of the algorithm. Instead, we quote the com-
pleteness limit of the sample detected by ASOHF, defined as the
highest mass Mlim so that the recovered mass functions differs
by more than some fraction 1 − α from the input mass function.
These results are listed at a completeness α = 0.9 in Table 2,
and they are represented as vertical dotted lines in Fig. 1. With
increasing resolution, the algorithm is capable of systematically
detecting lower-mass haloes. It is able to detect all 1528 haloes
when Nx = 256 is used.

The precision of this identification is shown in Fig. 2, where
we have matched the input and output catalogues (for the Nx =
256 case) and test the ability of ASOHF to obtain a precise
estimate of radii (left panel), masses (middle panel), and halo
centres (right panel). The left and central panels show that we
obtain an unbiased estimate of radii and masses on average,
although the scatter becomes larger when there are fewer than
∼1000 particles. An amplitude of ∼1.5% for the radius and
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Fig. 2. Precision of ASOHF in recovering basic halo properties in Test 1, with Nx = 256. In each panel, dots represent individual haloes, the blue line
presents the smoothed trend by using a moving median, and the shaded region encloses the 2σ confidence interval around it. Left panel: relative
error in the determination of the virial radius. Middle panel: relative error in the determination of the virial mass. Right panel: centre offset, in
units of the virial radius.

∼4.5% for the mass, at the 95% confidence level, is reached
for haloes of 50–100 particles. This is mostly associated with
the uncertainty in determining the halo centre, as shown in the
right panel of Fig. 2. For haloes with fewer than ∼1000 particles,
the median offset between the input and the recovered density
peak differs by 2% of the virial radius, which increases up to
.10% at the 97.5 percentile error for haloes with ∼50 particles.
This effect is expected because the density in a sphere with a
given comoving radius decreases with decreasing mass for NFW
haloes. Related to this, there is an unavoidable source of uncer-
tainty in the test set-up, especially for low-mass haloes, since we
are sampling the particles from a probability distribution when
creating the test (thus, the nominal centre may differ from the
centre of the realisation with particles).

3.2. Test 2. Substructure

To assess the ability of the code to detect substructure, we
designed a second test consisting of a large, massive halo rich
in substructure, with a similar procedure as in the previous
test. In particular, we considered the same domain and cosmol-
ogy, and placed a halo with a mass of 1015M� in its centre.
In order to being able to span a wide range in substructure
masses, we used Npart = 5123 DM particles, each with a mass of
mp = 1.9× 107M�. The particles in this host halo were generated
in the same way as in Test 1, up to 1.5 Rvir.

Subsequently, we placed Nsubs = 2000 substructures, with
masses drawn from the same Tinker et al. (2008) mass function,
from Mmin = 50 mp = 9.4 × 108 M� and constraining the sample
to have at least one large subhalo, with mass above 1013 M�. Sub-
haloes were placed uniformly inside the host volume, avoiding
overlaps, and were populated with particles following the same
procedure as for isolated haloes. These particles were superim-
posed on the particle distribution of the host. The remaining
particles up to Npart were placed outside the host halo by sam-
pling a uniform random distribution to constitute a homogeneous
background. It is worth stressing that even though the particles
of each halo were sampled from a spherically symmetric NFW
profile, the resulting realisation of the halo can depart strongly
from spherical symmetry due to sample variance (especially rel-
evant in smaller haloes, which are the most abundant). Therefore,
the test contains many non-spherical haloes, including elongated
systems that might resemble tidally stripped haloes.
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Fig. 3. Results from Test 2. Upper panel: input substructure cumulative
mass function (green line) compared to ASOHF results with n` = 1 (red)
and n` = 2 (dark red). The vertical lines mark the completeness limit,
this time at 99%, of the catalogue produced by ASOHF. Bottom panel:
fraction of substructures with input mass higher than M detected by
ASOHF, with the same colour codes as above.

We ran ASOHF on this particle distribution using a base grid
of Nx = 512 cells in each direction and n` = 1 and 2 refinement
levels, with a threshold of nhalo

min = 25 particles per cell to flag it as
refinable and accepting all patches with at least Npatch

min = 14 cells
in each direction. The results for the detection capabilities of
ASOHF are shown in Fig. 3. The input and recovered mass func-
tions visually overlap, therefore the results are better assessed in
the bottom panel, which shows their quotient. In general terms,
just one refinement level allows detecting 95% of the substruc-
tures, while using two levels for the mesh increases this fraction
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Fig. 4. Projection, 460 kpc thick, of the DM density field interpolated
by ASOHF in Test 2, from which the pre-identification of haloes over
the AMR grids is performed. The plot shows the maximum value in
the projection direction. The black circle marks the virial radius of the
host halo, and each purple circle corresponds to a substructure identified
by ASOHF. The radius of each circle matches the Jacobi radius of the
subhalo.

to over 98%. At a more restrictive value of α = 0.99, the com-
pleteness limits correspond to ∼270 and 55 particles for n` =
1 and 2, respectively. Even at a more restrictive threshold, these
values are better than those in Test 1 (Table 2) because of the
dense environment into which the substructures are embedded.
This triggers the refinement of these regions more easily.

Figure 4 presents a thin (∼460 kpc) slice of the density field
as computed by ASOHF in order to pre-identify haloes. The
adaptiveness allows simultaneously capturing small substruc-
tures within the dense host halo while removing sampling noise
in underdense regions, which would increase and unbalance the
computational cost. Purple circles represent the extent of the sub-
structure, that is, a sphere of radius RJ. We note that in contrast
to the virial radius of isolated haloes, the Jacobi radius natu-
rally depends on the location of the substructure within its host:
the more central its position, the smaller RJ in relation to the
input virial radius of the NFW halo. This is quantitatively shown
in Fig. 5, whose upper panel presents the relation between the
input virial radius and the Jacobi radius determined by ASOHF.
The trend implies that a satellite moving through a host would
present a pseudo-evolution of RJ (and its enclosed mass) even if
it moved rigidly through the medium (the smaller the distance to
the host, the smaller RJ ). While approximate due to the spherical
symmetry and Keplerian rotation assumptions, this definition for
the boundary of a substructure is reasonable because during the
dynamical evolution of the infall of a satellite, it is expected that
the particles in the outer layers become unbound through dynam-
ical friction with the host particles. For more detailed studies,
the whole list of particles of the satellite before its infall can be
tracked (similarly to e.g. Tormen et al. 2004). In the lower panel,
we show the tight linear correlation between the ratio of radii,
RJ/Rvir, and the distance to the host centre, D/Rhost

vir . This can be
parametrised roughly as

RJ

Rvir
= (0.073 ± 0.002) + (0.592 ± 0.003)

D
Rhost

vir

, (4)
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Fig. 5. Relation between virial and Jacobi radii in Test 2. Top panel:
comparison between the virial radius of the input NFW halo (Rinput

vir ) and
the Jacobi radius recovered by ASOHF (RASOHF

J ) for all detected substruc-
tures. Colours encode the radial position of the substructure centre in the
host halo (D) in units of the host virial radius (Rhost

vir ). The dotted red line
corresponds to the identity relation, RASOHF

J = Rinput
vir . Bottom panel: tight

linear relation between the quotient RASOHF
J /Rinput

vir and the radial position
of the substructure.

although the parameters naturally depend on the particular den-
sity profile of the host, and the scatter would be increased by the
asphericity of real haloes.

3.3. Test 3. Unbinding

The unbinding procedure is a critical step in all halo finders
based on configuration space because the initial assignment of
particles has neglected any dynamical information. Here we
present two tests to prove the capabilities of the two complemen-
tary unbinding procedures implemented in ASOHF: in Sect. 3.3.1
we study the case of a small halo moving in a dense medium,
and in Sect. 3.3.2 we consider a fast stream traversing a halo.

3.3.1. Test 3a. Halo moving in a dense medium at rest

We considered a set-up similar to Test 1 (Sect. 3.1) in terms of
box size and number of particles. We placed a halo of virial
mass Mh = 5 × 1013 M� in the centre of the box, and realised
it with particles up to a radial distance of 3 Rvir ≈ 2.9 Mpc. This
involved 73 976 particles, which are referred to as halo particles;
41 428 of them lie inside the virial radius.

The remaining ∼2 × 106 particles, corresponding to most of
the mass in the box, were then placed in uniformly random posi-
tions in a sphere of radius 6 Rvir and are referred to as background
particles. This amounts to a background of constant density
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Fig. 6. Results from Test 3a (unbinding). Left panel: density profile of halo particles (blue) and background particles (pink). The dashed vertical
line marks the input virial radius of the halo. Middle panel: vz − vx phase space, using the same colour coding as in the previous panel. The particle
distributions are disjoint in velocity space. Right panel: vrel − r phase plot in which the unbinding is performed. The same colour coding as in
the previous panels is used, the vertical line marks the input virial radius, and the dashed and solid purple lines are vesc(r) and 2vesc(r) at the last
iteration of the local velocity speed unbinding, the latter being the threshold velocity for unbinding.

∼75ρB, so that the halo and background densities are approxi-
mately equal at the virial radius of the cluster. Therefore, roughly
one-fifth of the particles inside the virial volume are background
particles. This may bias many of the halo properties (centre of
mass position, bulk velocity, angular momentum, etc.).

We gave the halo particles a bulk velocity of 3000 km s−1

along the x-axis, so that background particles should be clearly
unbound to the halo, and all particles (halo and background)
were given a normal velocity dispersion with standard deviation
of 300 km s−1 to add some noise. We note that it is not the aim
of this test to use physically realistic values, but just to show
the robustness and performance of the unbinding procedure in a
fairly reasonable situation.

Figure 6 summarises the set-up and the results of the test. Its
left panel shows the density profiles of the halo particles (blue)
and of background particles (pink), which roughly agree with
each other at the virial radius of the halo. The central panel in
Fig. 6 presents the vz − vx phase space with the same colour
code and shows that these two components are entirely disen-
tangled in velocity space, but are mixed up in configuration
space. Finally, the right panel shows the vrel − r phase plot, where
vrel ≡ |u − uhalo|, which corresponds to the space in which the
escape velocity unbinding is performed. In this plot, the dashed
purple line represents the local escape velocity at the last itera-
tive unbinding step (when no more new particles are unbound),
and the solid purple line is twice this value (which is the last
threshold speed used for the escape velocity unbinding, accord-
ing to the procedure described in Sect. 2.3). The particle-wise
results in particular are described below.

The offset between the input centre and the centre detected
by ASOHF is |∆r| = 2.3 kpc, which is 2.3h of the virial radius
(or 1.5% of the scale radius of the NFW profile). This small mis-
centrering causes a decrease of 1.3h in the virial radius of the
host. Two halo particles that were nominally outside the halo are
listed as inside, while 29 inside particles appear to be outside.

All background particles were pruned by one of the unbind-
ing methods. Almost all background particles inside the virial
volume (all but six) were pruned by the local escape velocity
method, as shown by the fact that they lie above the thresh-
old value 2vesc(r) (solid purple line) in the right panel of
Fig. 6. It is worth noting that the iterative procedure of lower-
ing the threshold, as described in Sect. 2, is crucial to prevent a
biased centre-of-mass velocity in the first unbinding steps. The
remaining six particles were pruned by the non-local unbind-
ing in velocity space because they lie at more than 3σv of the

centre-of-mass velocity. This method is especially useful for
unbound components at small halo-centric distances because
escape velocities are high near the halo core. Only one halo par-
ticle was incorrectly pruned, for being slightly over 3σv of the
mean velocity.

This shows the ability of ASOHF of pruning the unbound
component of haloes, even when it represents a significant
amount of the mass within the halo volume. It also illustrates
the situation of a satellite moving through its host. We note that
a crucial step to enable unbinding host particles using the iter-
ative procedure described in Sect. 2.3 is that the mass density
of halo particles within the radial extent of the halo or satellite
is greater than that of background or host particles. Otherwise,
the centre-of-mass velocity would converge to that of the back-
ground. However, in the case of substructures, this condition is
automatically guaranteed by the definition of the Jacobi radius
(note that Eq. (2) implies that the substructure is at least three
times denser than the mean density of the host within a sphere
of radius D).

3.3.2. Test 3b. Fast stream traversing a halo

To illustrate the importance of the complementary velocity space
unbinding, we present here a second test, in which a fast stream
traverses a halo at rest. The set-up is as follows. A halo of virial
mass Mvir = 1015 M� is placed in the centre of a box, using the
same particle mass (mp ≈ 1.2 × 109 M�) as in the previous test.
The halo is realised up to 3 Rvir with ∼1.5 × 106 particles (the
halo particles). As for the stream of particles, we considered a
curved cylindrical stream, with impact parameter b = 0.5 Rvir,
curvature radius r = 2 Rvir, radius ∆b = 250 kpc, and length
L ≈ 8.3 Mpc (so that it crosses the whole virial volume of the
halo). We assigned a density of 200ρB to the stream, so that it
amounts to a mass of 1.29 × 1013 M�, or slightly over 10 000
particles (the stream particles). The situation in configuration
space is depicted in the left panel of Fig. 7, where blue (pink)
dots represent the x − z positions of halo particles (stream parti-
cles) lying within a 20 kpc slice passing through the centre of the
halo.

Velocities for the halo particles were drawn from a normal
distribution with zero mean and an isotropic σ1D = 300 km s−1.
Stream particles were given a speed of 3000 km s−1 along the
axis of the stream, plus an isotropic dispersion component as in
the halo particles. The middle panel of Fig. 7 shows that while
most of the stream particles are nominally unbound, (v > vesc(r)),
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Fig. 7. Results from Test 3b (unbinding). Left panel: particles in a 20 kpc slice through the centre of the halo. Blue (pink) dots refer to halo (stream)
particles. The dashed grey circle corresponds to the location of the input virial radius. Middle panel: vrel − r phase plot, with the same colour coding
as in the previous panel, showing that the local escape velocity unbinding does not succeed in pruning the stream. Right panel: vz − vx phase space,
keeping the colour coding as in the previous plots. The purple cross, dashed circle, and solid circle indicate the converged centre-of-mass velocity
and the 1σv and 3σv regions, respectively. Particles outside the latter are pruned by the velocity space unbinding.

they do not reach the threshold for unbinding, 2vesc. While
lowering this threshold would remove these particles, loosely
unbound particles (i.e. those with vesc(r) < v < 2vesc(r)) may
still remain within the halo for a dynamical time. This means
that lowering the threshold is somewhat aggressive (see also the
discussion in Knebe et al. 2013 and Elahi et al. 2019).

However, the situation in velocity space clearly presents two
disjoint components, as represented in the right panel of Fig. 7.
In this case, the velocity space unbinding is able to remove all
stream particles because they lie beyond 3σv of the centre-of-
mass velocity after the iterative procedure.

3.4. Scalability

While the previous set of tests demonstrates the ability of ASOHF
to provide complete samples of haloes with unbiased properties,
here we consider the performance of the code in terms of exe-
cution time and memory requirements in more detail. We used
a set-up similar to that of Test 1 to assess how the code scales
with the number of particles and base grid size (Sect. 3.4.1),
and the performance increase with the number of OMP threads
(Sect. 3.4.2). All the results given here correspond to the perfor-
mance of ASOHF on a Ryzen Threadripper 3960X processor with
24 physical cores.

3.4.1. Scaling with Npart and Nx

To assess the scaling capabilities of the code with increasing
number of particles and size of the base grid, we replicated the
set-up in Test 1 (Sect. 3.1) with varying number of particles.
To do this, we first considered the case with the largest num-
ber of particles, Npart = 10243 (corresponding to a particle mass
of m10243

p = 2.4 × 106M�) and generated and randomly placed
366 652 haloes with masses higher than Mmin = 50 m10243

p . Then,
we realised this halo catalogue with Npart = 323, 643, etc. up
to 10243 DM particles. For each realisation, we only kept the
haloes with masses higher than or equal to that corresponding
to 50 particles. For each value of Npart, we tested Nx = 3

√
Npart

and Nx = 2 3
√

Npart
11 because Test 1 (Sect. 3.1) showed that this

latter value was able to recover all haloes. For the AMR grid

11 This is equivalent to setting the base grid cell size to the mean particle
separation and to half this value, respectively.

parameters, we used nrefine
part = 8, and the remaining parameters

were kept as in Test 1. The detailed results are presented in
Table 3 and are graphically summarised in Fig. 8.

The left panel in Fig. 8 shows the scaling of the 90% mass
completeness limit with the number of particles for the two base
grid sizes (Nx = 3

√
Npart in dark red, labelled ‘a’ in Table 3; and

Nx = 2 3
√

Npart in light red, labelled ‘b’; the same colour code is
kept in the remaining panels). The dashed grey lines are lines
of constant number of particles (at fixed total mass in the box),
so that it is explicitly shown that using Nx = 3

√
Npart (runs a) the

code is able to correctly identify barely all haloes comprising
more than ∼140 particles. For the runs b, with Nx = 2 3

√
Npart,

all haloes were detected and the completeness limit is arbitrar-
ily placed at the minimum mass of the input mass function
(50 particles) for representation purposes. Nevertheless, it is
worth stressing that in real situations, where an LSS component
surrounds the haloes, it is not generally necessary to increase the
base grid resolution beyond 3

√
Npart to detect more smaller haloes,

although this may be useful for some particular applications (e.g.
identifying haloes within voids).

The wall time taken by each of the runs is presented in the
central panel of Fig. 8. Runs 4.1, 4.2, and 4.3, with fewer than
one million particles, last for less than a few seconds. These
results are therefore biased with respect to the general scal-
ing because the measured times are likely to be dominated by
input-output, system tasks, and by the coarse time resolution
of the profiling utility used. For large enough task sizes (i.e.
for Npart & 2563), the wall time increases proportionally to the
product Npart × Nhaloes, as shown by the dashed lines, which cor-
respond to constant time per halo and particle. When the base
grid resolution is increased from Nx = 3

√
Npart to Nx = 2 3

√
Npart,

the scaling is kept, but the normalisation of the relation increases
by a factor of 2–3, mostly associated with the fact that more
haloes are detected in this case (both real haloes and spurious
peaks throughout the interpolated density field, which are later
discarded when particles are considered).

The right panel in Fig. 8 depicts the peak memory require-
ments of the code. When the grid size is fixed at Nx = 3

√
Npart,

ASOHF requires ∼180−200 bytes/particle, which allows running
the code on desktop-sized workstations for simulations with up
to hundreds of millions of particles. When the base grid res-
olution is doubled, these memory requirements increase up to
∼1 kbyte/particle.
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Table 3. Results of the scalability tests.

Test Npart Minput
min (M�) N input

haloes Nx NASOHF
haloes M90%

lim (M�) n90%
part,lim Wall time Peak RAM (bytes/part.)

4.1 a 323 3.86 × 1012 31 32 10 9.52 × 1012 123 10 ms 12.6 MB 385
b 64 31 All All 40 ms 36.0 MB 1098

4.2 a 643 4.83 × 1011 213 64 79 1.23 × 1012 127 280 ms 49.0 MB 187
b 128 214 All All 290 ms 247 MB 940

4.3 a 1283 6.03 × 1010 1263 128 495 1.73 × 1011 143 1.64 s 385 MB 184
b 256 1263 All All 2.1 s 1.98 GB 946

4.4 a 2563 7.54 × 109 8206 256 3099 2.06 × 1010 136 19.3 s 3.18 GB 190
b 512 8211 All All 37.9 s 15.1 GB 903

4.5 a 5123 9.43 × 108 54 476 512 20 617 2.58 × 109 137 13 min 38 s 25.5 GB 190
b 1024 54 495 All All 40 min 39 s 155 GB 1155

4.6 a 10243 1.18 × 108 366 653 1024 136 411 3.25 × 108 137 13 h 41 min 223 GB 208

Notes. Each row corresponds to a particular test, characterised by the number of particles (Npart) and the base grid size (Nx). For each Npart, the
mass function is truncated at Minput

min and N input
haloes are thus generated. For each run, we report the number of haloes detected by ASOHF (NASOHF

haloes ), the
90% completeness limit (in mass and number of particles; M90%

lim and n90%
part,lim, respectively), the execution (wall) time and the peak RAM usage. The

last column gives the peak RAM per particle.
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Fig. 8. Summary of the results from the scalability test (Sect. 3.4.1). Left panel: scaling of the 90% completeness limit (in terms of mass) with the
number of particles in the domain. Dashed grey lines correspond to a constant number of particles. Dark red (light red) lines represent the results
for the two base grid sizes according to the legend. Middle panel: scaling of the wall time taken by ASOHF with number of particles. Dashed grey
lines correspond to a scaling ∝ NpartN

input
haloes. Right panel: scaling of the maximum RAM used ASOHF with number of particles. Dashed grey lines

correspond to a constant amount of RAM per particle.

Last, we note that as the number of particles increases,
the scaling ∝ NpartNhaloes can greatly benefit from performing
a domain decomposition for running ASOHF, as described in
Sect. 2.6.1. This is especially useful in large domains, where
the required overlaps amongst domains (which can be as low
as the size of the largest expected halo) correspond to a neg-
ligible fraction of the volume. Therefore, when the volume is
decomposed in d domains, the CPU time is reduced by a factor
d, since the number of particles and haloes in each domain are
themselves reduced by a factor d, on average. If all domains can
be run concurrently, rather than sequentially, this amounts to an
improvement in wall time of a factor of d2.

3.4.2. Scaling with the number of threads

To explore the performance gain in terms of wall time and mem-
ory usage of the OMP parallelisation scheme, we repeated Test
4.5a (see Table 3) with ncores = 1, 2, 4, 8, 16, 24, and 32 and 36
OMP threads using nodes equipped with two 18-core CPU Intel®
Xeon® Gold 6154. The results are presented in Fig. 9.

The upper panel exemplifies the performance improvement
when the number of cores is increased. Red crosses correspond

to the actual performance of ASOHF with a varying number of
threads. We fitted these data to the functional form

∆tWall = (∆tCPU)seq +
(∆tCPU)par

nαcores
(5)

using a least-squares method, finding that the sequential part
amounts for (∆tCPU)seq ≈ 3.4 min, while the parallel part
would correspond to a CPU time of (∆tCPU)par ≈ 5.4 h. Being
(∆tCPU)seq � (∆tCPU)par, the scaling of the code is close to opti-
mal (null sequential part, which is represented by the green line
in the upper panel of Fig. 9) for ncores . 100, which is a reason-
ably high number of threads available in typical shared memory
nodes. The exponent α resulting from the fit is α = 1.007 ±
0.017 u 1, which is consistent with the expected behaviour of
the parallel part. It is interesting to note the absence of a sig-
nificant performance gain when increasing from 16 to 24 cores
because the system is comprised of two non-uniform memory
access (NUMA) nodes, with 18 physical cores each. When the
treads are increased from 16 to 24, the task can no longer be
allocated to a single node, so that memory access outside the
node is penalised. This is a well-known issue in shared-memory
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Fig. 9. Parallel performance of ASOHF. Upper panel: scaling of the wall
time of ASOHF in Test 4.5a (see Table 3) when the number of OMP
threads is varied. The solid red line is a fit of the benchmark data (red
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i.e. tWall ∝ 1/ncores. Lower panel: peak memory usage of ASOHF scaling
with the number of OMP threads.

systems, and we advise the interested users to take the architec-
ture of their system into account for optimal performance.

However, increasing the number of OMP threads implies an
increased memory usage because it is necessary to replicate part
of the data. The lower panel in Fig. 9 displays the (linear) rela-
tion between the number of threads and the peak RAM used by
the job. To conclude this section, we recall that these results are
dependent on the application and the configuration. For example,
it is reasonable to expect a smaller memory penalty by increas-
ing the number of threads in simulations of large volumes, where
each halo contains only a small fraction of the particles in the
domain, as opposed to these test cases, in which a halo contains
nearly 25% of the particles.

4. Tests on real simulation data and comparison
with other halo finders

Last, in order to evaluate the performance of ASOHF on a
cosmological simulation, we have tested our code on outputs
from the public suite CAMELS (Villaescusa-Navarro et al. 2021,
2022). The Cosmology and Astrophysics with MachinE Learn-
ing Simulations project consists of over 4000 simulations of
(25h−1 Mpc)3 ≈ (37.25 Mpc)3 cubic domains, including DM-
only and (magneto)hydrodynamic (MHD) simulations with star

formation and feedback mechanisms, and covering a broad space
of several cosmological and astrophysical parameters. Along-
side with the simulation data, the public release also includes
halo catalogues produced with three public halo finders, namely
SUBFIND (Springel et al. 2001; Dolag et al. 2009), AHF (Gill et al.
2004; Knollmann & Knebe 2009), and ROCKSTAR (Behroozi
et al. 2013), which we use here to examine how does ASOHF
compare to other well-known halo finders.

In particular, we used the simulation LH-1 from the
IllustrisTNG subset of CAMELS. These simulations were car-
ried out using Arepo (Springel 2010; Weinberger et al. 2020),
which is a publicly available code using a tree+particle-mesh
(TreePM) scheme coupled to Voronoi moving-mesh MHD for
hydrodynamical cosmological simulations, including galaxy for-
mation physics. The TreePM (Bagla 2002) method implemented
in Arepo, which combines a particle-mesh method for com-
puting the large-range force with a more accurate tree code
(Barnes & Hut 1986) at short distances, allows these simula-
tions to host very many small haloes and substructures even
though the number of DM particles, NDM

part = 2563, is mod-
est. The comoving gravitational softening length is as low as
2 kpc. While all CAMELS simulations correspond to flat universes
with a baryon density parameter Ωb = 0.049, Hubble constant
h ≡ H0/(100 km s−1 Mpc−1) = 0.6711, and spectral index ns =
0.9624, the simulation we chose, name-coded LH-1, assumes
a matter density parameter Ωm = 0.3026 and σ8 = 0.9394 as
the amplitude of the primordial fluctuations spectrum. These
parameters imply a DM particle mass of mpart = 9.8 × 107 M�.

4.1. Results analysing only DM particles

We ran ASOHF using only DM particles on the most recent snap-
shot of this simulation (at redshift z = 0), using a base grid with
as many cells as particles (Nx = 256) and n` = 6 refinement
levels, so that the peak resolution of the grid is ∆x6 ≈ 2.3 kpc,
similar to the gravitational softening length of the simulation.
The threshold particle number to mark a cell as refinable was set
to 3, and the minimum patch size was set to 14 cells. Density
was interpolated with a kernel size determined by the local den-
sity, using four kernel levels. We discarded all haloes resolved
with fewer than 15 particles. In this configuration, ASOHF detects
11 794 non-substructure haloes, the most massive of them with
a DM mass of 7.44× 1013M�, and 1263 substructures (including
sub-substructures). The wall-time duration of the test was below
4 min, using eight cores in the same architecture as described in
Sect. 3.4.1.

The halo mass function recovered by ASOHF is shown as the
solid thick red line in the upper panel of Fig. 10, together with
the same quantity obtained from the catalogues of AHF (solid
blue), Rockstar (solid green), and Subfind (solid orange). For
reference, the thick pale purple line represents a reference Tinker
et al. (2008) mass function with the cosmological parameters of
the simulation. At first glance, all four halo finders yield compa-
rable mass functions (both amongst them and with the reference
one) for Npart & 1000, with some variations at the high-mass end
due to the combination of small number counts and subtleties in
the mass definitions.

To allow a more precise comparison, the lower panel presents
each of the mass functions, normalised to the geometric mean of
all four finders, which we take as the baseline for comparison.
In this plot, the red line (corresponding to ASOHF) displays the
Poisson (

√
N) confidence intervals as the shadowed red area.

The magnitude of these uncertainties is similar for the other
lines. ASOHF, Subfind, and Rockstar match reasonably well
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Fig. 10. Comparison of the mass functions of the halo catalogues
obtained by ASOHF (red), AHF (blue), Rockstar (green), and Subfind
(orange) in the CAMELS Illustris-TNG LH-1 simulation at z = 0.
Upper panel: mass functions obtained by each code, as solid lines. The
thick purple line corresponds to a Tinker et al. (2008) mass function at
z = 0 and with the cosmological parameters of the simulation for refer-
ence. Dashed lines present the mass function of subhaloes in the same
colour scale. Lower panel: mass function of non-substructure haloes,
normalised by the geometric mean of this statistic for the four halo find-
ers. The shadow on the red line (ASOHF) corresponds to

√
N errors in

halo counts. The errors are similar for the other finders.

inside their respective confidence intervals, while AHF shows a
small &15% excess with respect to them at Npart ∼ 104. Inter-
estingly, Rockstar and ASOHF present the largest similarities in
their mass function. They match each other within a few percents
all the way down to 50−100 particles, when ASOHF starts to iden-
tify a larger number of structures. Compared to them, Subfind
starts to present a larger abundance of haloes below Npart . 1000,
mostly driven by the larger number of substructures, while the
AHF halo counts stall below a few hundred particles.

Dashed lines in the upper panel of Fig. 10 present the sub-
structure mass functions for the four halo finders, using the
same colour code. In this case, substructure mass functions are
not so easily comparable, and thus the differences amongst the
finders are exacerbated (see e.g. Onions et al. 2013). In partic-
ular, Subfind finds the largest number of substructure, nearly
2.5 times as many as ASOHF, 6 times more than Rockstar and
30 times more than AHF. Even the high-mass end of the subhalo

mass function shows important differences, with Subfind hav-
ing the highest and ASOHF the lowest mass of their respective
most massive substructure. This is mainly due to the funda-
mentally different definitions of substructure. The ASOHF choice
of using the Jacobi radius, which approximately delimits the
region in which the gravitational attraction of the substructure is
stronger than that of the host, is more restrictive than other defi-
nitions, for example, using density contours traced by the AMR
grid (AHF), reducing the 6D linking-length (Rockstar), or find-
ing the saddle point of the density field (Subfind). This more
stringent definition of the substructure extent may indeed also be
the reason that ASOHF recovers less substructure than Subfind
because many of the small substructures identified by the lat-
ter may contain fewer than 15 particles using our more stringent
definition based on the Jacobi radius.

Focusing on the main properties of haloes, in Fig. 11 we
present the comparison of ASOHF radii and masses to the corre-
sponding magnitudes obtained by AHF (left column), Rockstar
(middle column), and Subfind (right column). For each halo
finder, we first matched its catalogue to the catalogue produced
by ASOHF. Here, we only focus on haloes and exclude substruc-
ture because, as mentioned above, the substructure definitions of
each algorithm are fundamentally different. The results are also
summarised in Table 4.

Surprisingly, and despite their agreement regarding the mass
functions, we are only able to match ∼20% of Rockstar haloes
to ASOHF’s12, in contrast to ∼80% of matches when comparing to
AHF and Subfind. For each property, X, that is to be compared,
we fitted the matched data to a power law of the form

log
Xfinder

X∗
= log N + α log

XASOHF

X∗
, (6)

where N is the normalisation and α is the index (both are unity
if the finders yielded identical results). X∗ is a normalisation for
the quantities, which we selected as the median over the ASOHF
sample: R∗ = 43.2 kpc and M∗ = 5.18 × 109 M�. For each fit,
we computed the scatter as the RMS of the relative residuals
between the data points and the fit,

s =

√√√
1

Nmatched

Nmatched∑

i=1

(
1 − X̂finder(XASOHF)

Xfinder

)2

, (7)

where X̂finder(XASOHF) is the fitting function from Eq. (6) with
the best parameters obtained by least-squares estimation.

The largest discrepancies with ASOHF are seen when it is
compared to AHF, which overall finds ∼6% larger radii than
ASOHF. This may be well due to the fact that AHF uses all particles
(including gas and stars) to determine the spherical overdensity
radius, while we only use DM particles. This normalisation off-
set in radii propagates to a ∼22% offset in masses. There is a
significant amount of scatter in radii and masses at the low-mass
end, with a population of matched haloes with AHF radii a few
times that of ASOHF. This is not seen when comparing with the
rest of halo finders.

Although only ∼1200 haloes are matched between
Rockstar and ASOHF catalogues, their virial radii and
masses match tightly, with ∼4 and 5% offsets, respectively. A
few outliers increase the overall scatter figure, which reaches
12 This is due to some systematic off-centring between the halo centres
reported by Rockstar and those reported by the other finders (as well
as ASOHF) in the CAMELS suite. Discussing the origin of this off-centring
is beyond the scope of this paper.
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Fig. 11. Comparison of the main properties (masses, top row; and radii, bottom row) of the matched haloes between ASOHF and AHF (left column),
Rockstar (middle column), and Subfind (right column). For the two latter we compare virial radii and masses, and for the former, we use R200c
and M200c because the AHF catalogues given in the public release of CAMELS have used this overdensity for marking the boundary of the halo.

Table 4. Summary of the main features of the comparison between ASOHF, AHF, Rockstar, and Subfind.

Halo finder
Halo statistics Radii fit Masses fit

Nhaloes Nsubs Mmax (1013M�) max(nsubs) NR αR sR NM αM sM

ASOHF 11 794 1263 7.44 122 – – – – – –
AHF 3141 101 8.07 7 1.0595(33) 0.9639(45) 6.8% 1.219(13) 0.9627(48) 12.9%
Rockstar 6089 519 9.14 50 1.0369(43) 1.0077(38) 5.2% 1.051(12) 1.0077(38) 16.2%
Subfind 16 129 3037 9.38 343 1.00968(33) 1.02632(61) 2.5% 1.03081(96) 1.02632(61) 8.0%

Notes. From left to right, the columns contain the total number of detected haloes (Nhaloes), the total number of substructures (Nsubs), the mass of
the largest halo (Mmax), the maximum number of substructures of a single halo (max(nsubs)), and the normalisation, index, and scatter (NX , αX , and
sX as defined in Eqs. (6) and (7)) of the radii and mass comparison between each finder and ASOHF.

∼5 and ∼16% for radii and masses, respectively. When they are
excluded, the relation is quite tight.

Strikingly, despite their very different natures, the Subfind
results are the most compatible with ASOHF of the halo finders
we considered. With almost 8000 matched haloes, the normali-
sations as defined in Eq. (6) only show a 1% offset in radii and
a 3% offset in mass. The scatter, dominated by the low-mass
haloes, is 2.5 and 8%, respectively.

Overall, and despite the difficulties of comparing results of
different halo finders on a halo-to-halo basis, which has been
thoroughly explored in the literature (see Knebe et al. 2011, 2013;
Onions et al. 2012), these analyses show that ASOHF is capable of
providing results that generally agree well with other widely used
halo finders. The largest discrepancies are seen at the smallest
scales.

4.2. Results including stellar particles

By the last snapshot, at z = 0, the simulation contains 227 454
stellar and black hole (BH) particles, accounting for ∼2h of the
DM mass in the computational domain. While the mass in stars
is too low to significantly impact the process of halo finding (by
enhancing DM density peaks that would otherwise be too small
to be detected), we can still demonstrate the ability of ASOHF of
characterising stellar haloes.

We ran ASOHF on the DM+stellar particles of the same simu-
lation and snapshot as considered above and kept the same values
for the mesh creation and DM halo-finding parameters. The
stellar halo-finding parameters, which as discussed in Sect. 2.5
do not affect the resulting galaxy catalogues strongly, were set
such that all stellar haloes with more than Nstellar

min = 15 stellar
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particles inside the half-mass radius were kept. We preliminar-
ily cut the stellar haloes whenever the density increased by more
than a factor fmin = 5 from the profile minimum, there was a
radial gap of more than `gap = 10 kpc without any stellar par-
ticle or stellar density fell below the background density, ρB(z)
( fB = 1).

In this configuration, ASOHF identifies 337 stellar haloes,
with masses ranging between 1.1 × 108M� and 1.5 × 1011M�,
and whose cumulative mass distribution is shown in Fig. 12 by
a red line (here, Mgal makes reference to the stellar mass inside
the stellar half-mass radius, defined in Sect. 2.5). The dashed
green line presents a fit to a Schechter (1976) function. The fit
was performed over the differential mass function, and obtained
a chi-squared per degree of freedom χ2

ν ≈ 1.8 (computed assum-
ing Poissonian errors for number counts). This implies that the
fit is not inconsistent with a Schechter (1976) mass function.

An example of such an identification is represented graph-
ically in Fig. 13. In this figure, the background colour encodes
the DM+stellar projected density in grey scale, as computed
by ASOHF, around the most massive DM halo in the simulation
(which is a ∼8 × 1013M� group). Each colour represents all the
particles of a given stellar halo. A central halo, represented in
turquoise, dominates the stellar mass budget. This halo has a
half-mass stellar radius of ∼36 kpc, whose extent is represented
as the dashed white circle in the figure, around a white cross
marking the stellar density peak. Around it, ASOHF detects ten
satellite haloes, each represented in a different colour. In dark
blue, we plot all the particles inside the virial volume of the main
DM halo that do not belong to any stellar halo. Although a few
groups of stars on top of some DM haloes that are not identified
as galaxies are visible, these objects correspond to poor stellar
haloes, with fewer than 15 stellar particles. They were therefore
discarded by ASOHF.

We summarise some of the properties of the stellar haloes
catalogue in Fig. 14. The left panel contains a histogram of the
half-mass stellar radii. The distribution of galaxy sizes peaks at

Fig. 13. Example of the stellar halo finding capabilities of ASOHF. The
background greyscale colour map is a projection of DM+stellar den-
sity around the most massive halo in the simulation. The solid black
line indicates its virial radius. The coloured dots correspond to stellar
particles, and each colour corresponds to a different stellar halo. The
dark blue dots are the particles inside the virial volume of the DM
halo that do not belong to any identified stellar structure. For the cen-
tral galaxy, the white cross and circle represent the stellar density peak
(which we regard as centre) and the half-mass radius of the stellar halo,
respectively.

around (6−8) kpc, while a handful of haloes as large as R1/2 &
20 kpc are found, most typically associated with massive DM
haloes. Although more rare, some of them correspond to small
(∼1011M�) DM haloes with an extended stellar component.

In the middle panel of Fig. 14, we present the relation of
stellar mass inside the half-mass radius (vertical axis) to DM
host halo mass (horizontal axis). For reference, we indicate
some constant stellar fractions as grey lines. At low stellar mass
(M∗,1/2 . 2×109), we find a large scatter between stellar and DM
halo masses. The relation becomes tighter at high stellar halo
masses, approaching but not reaching 1%. The particularities of
these results may have to do with the particular IllustrisTNG
feedback scheme implemented in the simulation and numerical
resolution. Discussing them is beyond the scope of this work.

Last, the right panel of Fig. 14 contains the stellar 3D veloc-
ity dispersion correlated to the stellar mass of the halo. This
relation shows a clear increasing trend because more massive
haloes (if virialised) have larger kinetic energy budgets or are
dynamically hotter. This result provides a dynamical confirma-
tion of the fact that our galaxy identification scheme targets bona
fide stellar haloes and not spurious groups of particles. In sum,
with these examples, we show the capabilities of ASOHF, not only
as DM halo finder, but also as a galaxy finder for cosmological
simulations.

5. Conclusions

We have introduced and discussed a revised version of the DM
halo finder ASOHF, which constitutes a profound revision of most
of the features of the original version that was presented over a
decade ago by Planelles & Quilis (2010). The ever-increasing
trend in cosmological simulation sizes and resolution, and the
accordingly greater abundance and richness of structures at a
wide range of scales, required revisiting several aspects related
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fractions. Right panel: relation of 3D velocity dispersion to stellar mass.

to the halo-finding process. Because they are the basic building
blocks of the LSS of the Universe, an exceptionally precise char-
acterisation of DM haloes is a mandatory condition for bridging
the gap between simulations and observations and bringing cos-
mological predictions from simulations to accuracies below the
percent level (e.g. Borgani 2008; Clerc & Finoguenov 2022,
for several reviews about cluster cosmology), especially when
the smallest scales are involved (e.g. Vogelsberger et al. 2020,
and references therein). Related to this, given that the baryonic
processes leading to galaxy formation are being exhaustively
analysed in numerical works (e.g. Murante et al. 2010; Iannuzzi
& Dolag 2012; Vogelsberger et al. 2014; Schaye et al. 2015;
Kaviraj et al. 2017; Pillepich et al. 2018; Villaescusa-Navarro
et al. 2021, for some large galaxy formation simulation projects),
it is of the utmost importance to devise numerical techniques to
describe them accurately.

Amongst the main improvements to the halo-finding proce-
dure that were assessed in a battery of complex, idealised tests
and in a cosmological simulation, we summarise the main points
below. They can be useful not only for ASOHF, but for halo finders
in general (especially for those that are based on configuration
space).
1. The density interpolation procedure is, naturally, critical to

the procedure of halo finding because an overly smoothed
interpolation would accidentally smear true density peaks,
thus losing small-scale structures, while a density interpo-
lation that is too sharp (e.g. applying a CIC or TSC at the
resolution of each grid) increases the computational cost of
the process dramatically by producing a large number of spu-
rious peaks due to sampling noise. A compromise between
these extremes is achieved by spreading particles in a cloud,
whose size can be tuned either by local density or by parti-
cle mass (i.e. by the volume sampled by the particle in the
initial conditions), but is independent of the grid level. Nev-
ertheless, since any interpolation will tend to be more diffuse
than the particle distribution itself, it is generally harmless to
also consider density peaks above a certain fraction of ∆vir(z)
as candidates for halo centres.

Because the grid resolution is finite (one cell can contain
thousands of particles even at the finest levels for very cuspy
haloes), the implementation of a recentring scheme (using
information at finer levels, and ultimately using the particle
distribution to iteratively relocate the local maximum of the
density field) is crucial to avoid centre offsets. Preventing
this erroneous centring is critical to describe the properties
of the inner regions of haloes.

2. While the local escape velocity unbinding that is imple-
mented in many halo finders is successful in removing physi-
cally unbound particles, the fact that a conservative threshold
(e.g. 2vesc) is normally used can make it insufficient in some
occasions. This can be improved by an additional unbinding
scheme in pure velocity space, which proves useful to disen-
tangle dynamically unrelated particles from the halo (see the
examples in Sect. 3.3, especially Fig. 7).

3. The new version of ASOHF implements an entirely new
scheme for searching for substructure that is different from
the search for isolated haloes. In our experiments, we find
that delimiting substructures by their density profile (e.g.
placing a radial cut when the spherically averaged density
profile increases) leads to too generous radii, which there-
fore contaminate the mean velocity of the halo and can
degrade the performance of unbinding and even miss the
halo. In ASOHF, density peaks located within the volume
of previously identified haloes, at finer levels of refinement,
are characterised by their Jacobi radius, which approxi-
mately delimits the region in which the gravitational force
towards the substructure centre is dominates that of the host.
In addition to its clear physical motivation, this (typically
more stringent) radius together with the improved unbinding
scheme helps to avoid the bias in the halo properties.

4. Using the DM haloes, ASOHF is able to identify and char-
acterise stellar haloes, that is, galaxies. While the starting
point for this identification is the catalogue of DM haloes
and subhaloes, the stellar haloes are subsequently treated as
independent objects. In particular, they can have a different
centre, radial extent, dynamics, and so on than the DM halo
they are built onto.

5. We have implemented a domain decomposition for ASOHF
that enables the analysis of large simulations that would
otherwise not fit in memory. Incidentally, as discussed
in Sects. 2.6.1 and 3.4.1, the domain decomposition also
strongly reduces the CPU time. Furthermore, the procedure
is implemented by external, automated scripts, and each
domain can be treated as a separate job (requiring no com-
munication). This means that different domains can be either
run concurrently (so that the wall time is reduced by a factor
equal to the number of cores) or sequentially. The resulting
outputs for each domain can be merged by an independent
script, so that the whole process is transparent to the user.

6. By saving the particle IDs of all the bound particles of each
halo, the merger tree can easily be built once the catalogues
have been obtained for (at least) a pair of code outputs.
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This process is dramatically accelerated by pre-sorting the
lists of particles by ID, and thus intersecting them in O(N)
operations, instead of O(N2). Building the merger tree as
a separate task from the halo-finding procedure has several
benefits, such as avoiding the need to overload the memory
with all the information of previous iterations, or the abil-
ity to connect a halo with a progenitor skipping iterations, if
it has not been found in the immediately previous iteration.
There are also drawbacks of this approach: for instance, the
inability to incorporate the merger tree information into the
halo finding process itself, such as other modern finders do
(e.g. HBT+; Han et al. 2018).

Through a battery of tests described in Sect. 3, we have shown
the ASOHF capabilities of recovering virtually all haloes and
subhaloes in a broad range of masses in idealised but complex
set-ups. When compared to other publicly available halo finders,
such as AHF, Rockstar, or Subfind, ASOHF produces compa-
rable results in terms of halo mass functions and properties of
haloes. It provides excellent results in terms of substructure iden-
tification (in the sense that it is able to identify a large number
of substructures, while using a tight, physically motivated defi-
nition of substructure extent). This is commonly a tough task for
SO halo finders when compared to 3D-FoF, but especially when
compared to 6D-FoF finders.

Regarding computational performance, the new version of
ASOHF has been rewritten to be extremely efficient in terms
of speed, parallel scaling, and memory usage. As discussed in
Sect. 3.4.2, the parallel behaviour of the code scales nearly
ideally, which allows a large performance gain using shared-
memory platforms with a large number of cores. Moreover, the
optimisation of the code allows analysing individual snapshots
from simulations of &107 particles within tens of seconds and
using a few GB of RAM, and simulations with & 108 particles
within tens of minutes and using less than 30 GB of RAM in any
case.

When large domains with an even larger number of particles
are involved, the time taken by ASOHF can be further improved
by the domain-decomposition strategy, which involves no com-
munication between different domains until a last step at which
catalogues are merged. As an example, for a simulation with
∼1010 particles within a cubic domain with a side length of
500 Mpc/h, where ∼15 × 106 haloes are expected to form by
z = 0, scaling the benchmarks characterised in Sect. 3.4.1 we
estimate that by performing a decomposition in d = 43 sub-
domains, ASOHF could run over all the domains (sequentially
i.e. one domain at a time) in ∼93 h of wall time, in a 24-core
processor like the one used for the Tests in Sect. 3.4.1. If 8 of
such nodes were concurrently available in a distributed mem-
ory architecture, this would take .12 h. The implementation of
ASOHF, together with the several utilities and scripts mentioned
in this paper, is publicly available and documented13.
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Appendix A: Solution of Poisson’s equation in
spherical symmetry

The local unbinding procedure, described in Sect. 2.3, relies
on the computation of the gravitational potential in spheri-
cal symmetry. Here we describe our implementation of the
procedure.

In general, the gravitational potential, Φ, of any continuous
or discrete density distribution ρ is obtained by solving Poisson’s
equation,

∇2
rΦ =

1
a2∇2

xΦ = 4πGρ, (A.1)

which is an elliptic partial derivative equation, where r and
x ≡ r/a are the physical and the comoving position vectors,
respectively, related by the expansion factor a(t) that solves
Friedmann equations for a given cosmology. Under the assump-
tion of spherical symmetry in the density distribution (and thus
in the potential), the Poisson equation reduces to a non-linear
second-order ordinary differential equation,

d
dr

[
r2 dΦ

dr

]
= 4πGρ(r)r2. (A.2)

If the mass distribution is bound, it is always possible to take
limr→∞Φ(r) = 0 and show that

Φ(r) =

∫ r

∞

GM(< r′)
r′2

dr′, (A.3)

where M(< r) ≡
∫ r

0 4πr′2ρ(r′)dr′ is the mass enclosed in a
sphere of radius r. Assuming the mass distribution to be bound
within a maximum radius rmax, it is then straightforward to
rewrite this expression in a more convenient form for its numer-
ical integration,

Φ(r) =

∫ r

0

GM(< r′)
r′2

dr′ − GM(< rmax)
rmax

−
∫ rmax

0

GM(< r′)
r′2

dr′.

(A.4)

Only the first term in Eq. A.4 is a function of r. Operationally,
we use the following recipe to efficiently perform the integration.

1. Start from a list of npart particles (i = 1, . . . , npart), with
masses {mi}npart

i=1 , sorted in increasing comoving distance to
the halo centre (density peak), {ri / r j ≤ rk∀ j ≤ k}npart

i=1 .
Denote rmax = rnpart .

2. Compute the cumulative mass profile, which we denote Mi ≡∑i
j=1 m j.

3. Identify J as the smallest integer such that rJ > 0.01rmax,
and define Φ̃ j≤J =

MJ
rJ

.
4. Compute iteratively, for j = J + 1, . . . , npart, the value of Φ̃

at the position of the next particle as Φ̃ j = Φ̃ j−1 +
M j(r j−r j−1)

r2
j

.

5. Define the constant C = Φ̃npart +
Mnpart

rnpart
.

6. The spherically symmetric gravitational potential at comov-
ing radius ri is Φi = G

a (C − Φ̃i) ≤ 0 ∀ i.

We perform step 3, that is, we assume a constant gravita-
tional potential in the inner 1% of the radial space, to mitigate
numerical errors since ri can be arbitrarily small. This has a neg-
ligible impact on the unbinding procedure because it is rare to
find unbound particles near halo centres.

Appendix B: Computation of the gravitational
binding energy by sampling

The gravitational binding (or potential) energy of a system of N
particles is explicitly given by the sum over all particle pairs:

Egrav = −G
N∑

i=1

N∑

j=i+1

mim j

|ri − r j| , (B.1)

which therefore implies and O(N2) calculation, which becomes
prohibitively expensive for large enough N. In ASOHF, we per-
form a direct summation over the N(N − 1)/2 pairs for haloes
with N ≤ Nenergy

max particles (see the discussion of Fig. B.1 for
the dependence of the accuracy of the results on this parame-
ter), while for larger haloes, we use a sampling estimate of this
quantity, which we describe and test below.

In order to estimate the gravitational binding energy
of large haloes by sampling, we consider n2

sample =

max(bNenergy
max /

√
2c, 0.01N)2 pairs of particles and compute

the contribution of each to the potential energy, that is,
Egrav,ij = −G mim j

|ri−r j | for the pair of particles (i j). The procedure is
as follows:

First, we randomly select nsample particles (with replace-
ment), which we denote i = 1, . . . , nsample. For each of these
particles, we select a new set of nsample particles (with replace-
ment), which we denote j = 1, . . . , nsample, and compute for
particle i its contribution to the gravitational energy, Esample

grav,i =
∑nsample

j=1 Egrav,ij. The gravitational energy per pair of particles
therefore is

〈Egrav,pairs〉 =
1

n2
sample

nsample∑

i=1

Esample
grav,i =

1
n2

sample

nsample∑

i=1

nsample∑

j=1

Egrav,ij.

(B.2)

Since there are N(N − 1)/2 pairs of particles in the halo, we
estimate its gravitational energy as

Egrav u
N(N − 1)

2
〈Egrav,pairs〉. (B.3)

We note that Egrav ∝ 〈Egrav,pairs〉 and thus the relative error
in Egrav is equal to the relative error in 〈Egrav,pairs〉, which in
turn is proportional to 1/√nsample and independent of N. This
is graphically exemplified in Fig. B.1.

The gravitational binding energy per unit mass of particle i
is proportional to Egrav,i/mi. Thus, we report as the most bound
particle the particle with the most negative value of Egrav,i/mi,
which can incidentally be used as an estimation of the location of
the minimum of gravitational potential. The uncertainty in deter-
mining this position can be estimated as the sphere, with centre
in the most-bound particle, that encloses dN/nsamplee particles.

To assess the convergence of this method, we generated
NFW haloes with an arbitrarily fixed concentration of c = 10
and radius R = 1.5 (in arbitrary units), realised using different
numbers of particles, N, from 5 × 104 to 106. We then computed
the gravitational energy by direct O(N2) summation as in Eq.
B.1, and by the sampling method varying nsample between 102

and 104. For each pair of values of (N, nsample), we performed
nboots = 100 bootstrap iterations of the calculation by sampling,
so that we can estimate the mean relative error in the gravita-
tional potential energy by comparing with the result by direct
summation, and its (16 − 84)% confidence intervals.
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Fig. B.1. Dependence of the error in obtaining the gravitational bind-
ing energy by sampling, rather than by direct summation over all the
pairs of particles, with the fraction nsample/N (upper panel) and with just
the number of sample particles nsample (lower panel). The number of
evaluated pairs of particles is n2

sample. Different colours, according to the
legend in the lower panel, represent different number of particles within
the halo. The shadowed regions correspond to (16 − 84)% confidence
regions.

This is shown in Fig. B.1, whose upper panel shows the mean
of the relative error, computed over the 100 bootstrap iterations,
in computing the gravitational energy by sampling. Each colour
represents a different number of particles in the halo according
to the legend in the lower panel, while on the horizontal axis, we
show the fraction of nsample to N. For each N, the error clearly
decreases as 1/√nsample. These curves can be brought to match
each other when we represent the relative error as a function of
nsample, as shown in the lower panel of Fig. B.1. In this case,
regardless the number of particles of the halo, the mean errors
fall below 1% when more than nsample ≈ 2000 are used, while
nsample must be increased to ∼ 5000 − 6000 to achieve an error
below 1% at the 84 percentile.

It would be reasonable to ask why the error scales as
1/√nsample, instead of 1/√npairs = 1/nsample, which would be

expected from averaging npairs values of the energy per pair of
particles. This is due to the fact that we are considering nsample
particles, and estimating the gravitational binding energy of each
of these with a new set of nsample particles. This is fundamentally
different from choosing npairs completely independent pairs, in
which case it is easy to verify that the error indeed scales as
∝ 1/nsample. However, this latter method, although much faster
in terms of convergence (lower values of nsample are required,
and the computational cost is therefore greatly reduced), does
not allow us to estimate the most-bound particles of haloes (and
therefore the position of the gravitational potential minima). This
is so because to achieve this aim, we require a good estimate of
the energies of a subsample of individual particles. This cannot
be achieved by randomly picking pairs of particles because each
particle will be considered a few times as much. We therefore
opt in ASOHF for this more slowly converging method.
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A B S T R A C T 

The dynamical state and morphological features of galaxies and galaxy clusters, and their high-redshift precursors, are tightly 

connected with their assembly history, encoding crucial information about the formation and evolution of such cosmic structures. 
As a first step towards finding an optimal indicator of the assembly state of observed structures, we use a cosmological simulation 

of a moderate volume to critically examine the best definition of an indicator that is able to discriminate dark matter haloes 
under going mer gers and/or strong accretion from haloes e xperimenting a relax ed e volution. Using a combination of centre of fset, 
virial ratio, mean radial velocity , sparsity , and ellipticity of the dark matter halo, we study how the thresholds on these parameters, 
as well as their relative weights, should evolve with redshift to provide the best classification possible. This allows us to split a 
sample of haloes in a totally relaxed, a marginally relaxed and an unrelaxed subsamples. The resulting classification strongly 

correlates with the merging activity obtained from the analysis of complete merger trees extracted from whole simulation data. 
The results on how the different indicators depend on redshift and halo mass, and their optimal combination to better match the 
true assembly history of haloes, could constitute rele v ant hints to find a suitable set of indicators applicable to observational data. 

Key words: methods: numerical – galaxies: clusters: general – dark matter – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

Deeply interwo v en through a comple x network of filaments and 
sheets, dark matter (DM) haloes are bound, diffuse structures which 
result from the gravitational collapse of the primordial density 
fluctuations and a hierarchical merging history (Zel’dovich 1970 ; 
Press & Schechter 1974 ; Gott & Rees 1975 ). DM haloes constitute 
the fundamental building blocks of the large-scale structure (LSS) of 
the Universe, and host their baryonic counterparts that we observe 
o v er the electromagnetic spectrum (see, for instance, Planelles,
Schleicher & Bykov 2015 , for a re vie w). At the galactic scale, the
current theories of galaxy formation typically assume DM haloes
to be virialized (e.g. White & Rees 1978 ), although this does not
necessarily hold for each galactic DM halo; while, at larger masses
(at the galaxy cluster scale), most DM haloes are still expected to be
in the process of virialization, since they are the latest objects to have
assembled (e.g. Kravtsov & Borgani 2012 , for a re vie w on galaxy
cluster formation).

Ho we ver, the dynamical state of individual haloes is tightly 
connected to their assembly history and, in particular, to the presence 
of mergers and the accretion rates in the last one or few dynamical 
times. A merger or a period of intense accretion usually triggers many 
morphological and dynamical disturbances in the halo (asphericity, 
higher velocity dispersions, abundance of substructures, changes to 
the internal structure, etc.), which gradually fade away once the 
assembly episode is o v er (see e.g. Poole et al. 2006 for a thorough 

� E-mail: david.valles-perez@uv.es

analysis of the disturbances and the subsequent relaxation after a 
merger event at cluster scales). 

Since dynamically relaxed and disturbed structures often present 
fundamentally different properties, a characterization of the dynam- 
ical state of the sample of cosmic structures is often a necessary 
procedure in many analyses of very different natures, such as in 
studies about the geometry of the cosmic web (Gouin, Bonnaire & 

Aghanim 2021 ), statistical properties of the population of galaxy 
clusters (scaling relations, mass functions, etc.; e.g. Chen et al. 2019 ; 
Seppi et al. 2021 ), hydrostatic mass bias (Nelson et al. 2014 ; Biffi
et al. 2016 ; Angelinelli et al. 2020 ), turbulence (Vazza et al. 2017 ; 
V aldarnini 2019 ; V all ́es-P ́erez, Planelles & Quilis 2021a , b ; Simonte 
et al. 2022 ), or galactic environments (Kuchner et al. 2022 ), just to 
mention a few. 

Even though we usually define haloes using the virial radius 
prescription of Eke, Cole & Frenk ( 1996 ) and Bryan & Norman 
( 1998 ), based on the spherical collapse model, this does not imply 
that, in general, 3D haloes (non-necessarily spherical, in a full- 
cosmological, i.e. not isolated environment) defined this way are 
necessarily in virial equilibrium. While in simulations one can access 
the whole temporal evolution of the objects, and thus reco v er the 
assembly history of the halo under study in order to assess the 
dynamical state, this is not possible in observations. Thus, for the 
sake of a more direct comparison with observational works, simple 
schemes for characterizing the dynamical state using halo properties 
at a given time are usually involved in many analyses. 

For the time being, most works have relied on placing a threshold 
on some halo property expected to correlate with the dynamical state, 
in order to split the relaxed and unrelaxed subsamples. Perhaps, the 
most direct of such indicators is the virial ratio , usually defined 

© 2023 The Author(s) 
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as η ≡ 2 T / | W | , where T is the intrinsic kinetic energy of the halo 
and W is its gravitational potential energy. η would be expected to 
be 1 for an isolated system in a steady state. Ho we ver, dif ferent 
works have found different thresholds to best suite their particular 
classification (e.g. Shaw et al. 2006 ; Neto et al. 2007 ; Knebe & 

Power 2008 , see also the discussion in Cui et al. 2017 ). Similarly, 
there is debate about the necessity of including a surface tension 
term to account for the fact that haloes are not isolated (Poole et al. 
2006 ; Shaw et al. 2006 ; Knebe et al. 2011 ). Another frequently 
used indicator, both in simulations and observations, is the centre 
offset, which quantifies the departure from smoothness and spherical 
symmetry of the matter distribution, and serves as an indicator of 
substructure (Crone, Evrard & Richstone 1996 ). In practice, ho we ver, 
there are many possibilities regarding the choice of centres (see Cui 
et al. 2016 ) and how to set the thresholds (cf. D’Onghia & Navarro 
2007 ; Macci ̀o et al. 2007 ). Additionally, in observations the centre 
offset may depend crucially on the orientation, posing an additional 
challenge. Last, other authors have used the fraction of mass in 
substructures as a measure of the dynamical unrelaxedness of a DM 

halo (e.g. Neto et al. 2007 ; cf. other recently suggested approaches, 
e.g. Kimmig et al. 2022 ). While the election of this magnitude is well- 
moti v ated, the mass contained in substructures in simulated haloes
depends critically on numerical resolution and the precise definition
of the substructure extent (see e.g, the discussion in Vall ́es-P ́erez,
Planelles & Quilis 2022 ), making this criterion less comparable.

Since it is difficult that a single property can reflect the complex 
picture of the dynamical state of a halo, many recent studies have used 
combinations of these indicators, either by considering as relaxed the 
haloes which simultaneously fulfill several relaxation criteria (Neto 
et al. 2007 ; Biffi et al. 2016 ), or by defining some combined indicator 
(Haggar et al. 2020 ; De Luca et al. 2021 ; Zhang et al. 2021a ). 
Finally, other metrics of the dynamical state are based on the X-ray 
morphology, such as the centroid shift ω (Mohr, Fabricant & Geller 
1993 ), or the power ratio, P 3 / P 0 (Buote & Tsai 1995 , see also the 
re vie w of Rasia, Meneghetti & Ettori 2013 on X-ray morphological 
estimators for galaxy clusters); or more sophisticated ones such as 
those involving Fourier analyses of the fluctuations in mass and X- 
ray maps (Cerini, Cappelluti & Natarajan 2022 ), or the expansion of 
the Compton y -maps in Zernike polynomials (Capalbo et al. 2021 ). 

Ho we ver, in most of the previous works, the parameters being 
used and, especially, the thresholds imposed on them have been 
tuned in a somewhat empirical way. This has lead to variations in 
the criteria from work to work, even though the underlying idea is 
kept. Furthermore, a possible redshift evolution of these thresholds 
or of their very rele v ance has been devoted marginal attention, either 
because the studies were focused on a particular cosmic epoch or 
because it had been implicitly assumed that these criteria should not 
evolve with redshift. 

In this work, we intend to critically examine a set of possible 
indicators of the assembly state, all of which can be obtained 
from the complete 3D information in simulations, and develop a 
criterion which accommodates redshift-dependent thresholds and 
the possibility that different indicators have more or less rele v ance 
at different cosmic epochs. We note the reader that, while in the 
following we may refer to the dynamical state of haloes, our main 
focus is oriented towards the dynamical disturbances associated 
with the assembly history of haloes (i.e. the presence of merger 
events or episodes of strong accretion; rather than a more general 
sense of dynamical unrelaxedness which could include, e.g. the 
presence of substructures even when they are not associated with 
a merger episode, since they have an impact on properties such as 
the hydrostatic equilibrium). 

The rest of the manuscript is organized as follows. In Section 2 , we 
introduce our simulation, halo sample, and the methodology that we 
employ for setting the thresholds and relative weights of the different 
dynamical state indicators. Our resulting criterion is presented in 
Section 3 , including the analysis of the mass dependence of our 
results and a validation of our method with a different simulation. 
Finally, we discuss the applicability of our results in Section 4 . 
Appendix A contains the fitting formulae for the thresholds and 
weights applicable for massive haloes. 

2  M E T H O D S  

The results reported in this paper have been extracted from the 
analysis of a Lambda cold dark matter ( � CDM) cosmological 
simulation tracking the coupled evolution of baryons and DM. We 
describe the rele v ant details of the simulation in Section 2.1 , then 
co v er the halo catalogues and merger tree elaboration in Section 2.2 , 
and discuss how do we compute the dynamical state indicators 
in Section 2.3 . Finally, we introduce our classification strategy in 
Section 2.4 . 

2.1 The simulation 

The haloes we analyse in this paper are extracted from a numer- 
ical simulation run with MASCLET (Quilis 2004 ; Quilis, Mart ́ı & 

Planelles 2020 ), a (magneto-)hydrodynamics and N -body code 
primarily designed for cosmological applications. For evolving the 
DM component, which is the primary focus of this work, MASCLET 
implements a multilevel Particle-Mesh (PM) scheme (Hockney & 

Eastw ood 1988 ), which tak es adv antage of the adapti ve-mesh re- 
finement (AMR) strategy (Berger & Colella 1989 ) to gain spatial, 
temporal and force resolution. 

We have simulated a periodic, cubic ( L = 100 h 

−1 Mpc ) do- 
main, under the assumption of a flat, � CDM cosmology speci- 
fied by the matter density parameter �m 

= 0.31 ( �� 

= 1 − �m 

), 
baryon density parameter �b = 0.048, and Hubble parameter 
h ≡ H 0 / (100 km s −1 ) = 0 . 678. The initial conditions stem from a
realization of the primordial Gaussian random field assuming a 
spectral index n s = 0.96 and an amplitude yielding σ 8 = 0.82, 
and are set up at redshift z ini = 100 using a CDM transfer function 
(Eisenstein & Hu 1998 ). The values selected for the cosmological 
parameters are consistent with the latest results reported by Planck 
Collaboration ( 2020 ). 

A first simulation is run at low resolution, using a fix grid of 
N 

3 
x = 256 3 cells and the same number of equal-mass particles. This 

is used to identify the Lagrangian regions in the initial conditions 
which will evolve into dense structures by z = 0, and mapping 
them with enhanced numerical resolution already at z ini . We use 
this approach to establish three nested levels of initial conditions, 
resulting in a best mass resolution of 1 . 48 × 10 7 M �. 

Using these high-resolution initial conditions, the simulation is 
evolved again using AMR based on gas/DM o v erdensities, conv erg- 
ing flows, and Jeans length criteria, achieving a peak resolution of 
�x 8 = 2 . 3 kpc at the maximum ( 	 = n 	 ≡ 8) level of refinement. 
While the baryonic component is not the primary focus of this work, 
the simulation includes gas cooling, but no other baryonic effect or 
feedback mechanism. 

2.2 Halo catalogue and merging history 

For each snapshot of the simulation, we have identified the DM 

haloes using the public halo finder ASOHF (Planelles & Quilis 2010 ; 
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Knebe et al. 2011 ; Vall ́es-P ́erez et al. 2022 ), 1 which is based on the 
spherical-o v erdensity definition and uses the virial radius (according 
to the prescription of Bryan & Norman 1998 ) to delimit the extent 
of the haloes that are not substructure. 

After determining the halo catalogues, these are linked in between 
snapshots using the merger tree code presented by Vall ́es-P ́erez et al. 
( 2022 , their section 2.6.2), which identifies all the haloes at a given 
code output which have contributed to an object in a following one, 
allowing to skip an arbitrary number of snapshots, if necessary. Using 
it, we determine the main evolutionary line of each halo, as well as 
the presence and characterization of mergers. 

Following Planelles & Quilis ( 2009 ), Chen et al. ( 2019 ), and 
Vall ́es-P ́erez, Planelles & Quilis ( 2020 ), we have classified each 
merger event in the sample as either a major merger (if the mass 
ratio, M min / M max , between the two haloes involved exceeds 1/3), or 
a minor merger (1/3 > M min / M max ≥ 1/10). Mergers below a mass 
ratio of 1/10 are disregarded. The merger time is determined as the 
moment in which the centre of the infalling (the least massive) halo 
crosses the virial boundary of the host (the most massive) halo. 

2.2.1 Fiducial classification: assembly history of the haloes 

In order to determine the optimal thresholds on the dynamical state 
indicators (see below, Section 2.3 and therein), we compare with 
a reference, or fiducial , classification of the dynamical state based 
on the full assembly history of haloes (i.e. the presence of past or 
ongoing mergers, as well as the accretion rates). 

As a tentative classification of the unrelaxedness induced by a 
merger event, we will assume that a typical halo remains in a 
disturbed state for one dynamical time after a major merger, or half 
a dynamical time after a minor merger, with the dynamical time τ dyn 

being defined as 

τdyn ( z ) ≡ 1 √ 

Gρ
= 

1 √ 

GρB ( z ) � vir ( z ) 
, (1) 

with G the gravitational constant, ρ the density of the halo, ρB ( z) 
the background matter density, and � vir ( z) the virial o v erdensity 
(Bryan & Norman 1998 ). 

While the choice of the time-span is a crude approximation, it 
responds to the fact that many works have shown that the disturbance 
triggered by a minor merger is, in general terms, smaller than the 
effect of a major merger, both for the dark and for the baryonic 
components (Planelles & Quilis 2009 ; Yu et al. 2015 ; Vall ́es-P ́erez 
et al. 2020 ; Zhang et al. 2021b ). In practical terms, since τ dyn ( z) 
varies strongly with redshift and reaches considerable fractions of 
the age of the Universe, especially at low redshift, we choose to 
define the number of dynamical times between two moments, t 1 and 
t 2 , as in Jiang & van den Bosch ( 2016 ) and Wang et al. ( 2020 ): 

N τ ( t 1 , t 2 ) = 

∫ t 2

t 1

d t 

τdyn ( z) 
. (2) 

Additionally, it might be the case that a halo is accreting strongly, 
but without undergoing any significant merger (either physically or 
due to the finite resolution of a simulation). Thus, we also consider 
as unrelaxed, for the purpose of the fiducial classification, any halo 
which has assembled more than 50 per cent of their mass in the last 
dynamical time. 

For the analyses within this work, all the 28 snapshots of the 
simulation since redshift z = 5 are considered. We select the 1000 

1 https:// github.com/dvallesp/ ASOHF . 

Figure 1. Evolution of the distribution of halo masses in our sample. 
The solid line indicates the median mass of the sample, with the dark 
and light shaded regions enclosing the 16 –84 per cent (dark blue) and 
2 . 5 –97 . 5 per cent (light blue) confidence intervals (CIs) around it, respec- 
tively. The dashed line corresponds to the mean mass, while the dotted lines 
correspond to the maximum and minimum masses. 

most massive haloes at each epoch, and discard all those which 
cannot be reliably traced back in time for at least one τ dyn ( z). 
We show, in Fig. 1 , the redshift evolution of the median mass in 
the sample (solid line), together with shaded regions enclosing the 
confidence intervals corresponding to the 16 –84 per cent (dark blue) 
and 2 . 5 –97 . 5 per cent (light blue) percentiles of the distribution of 
masses. The dotted lines mark the maximum mass (upper line) and 
the minimum mass, or mass limit (lower line) in the sample at each 
time. Thus, the mass limit in our sample evolves from ∼10 12 M � at 
z = 5 to ∼4.5 × 10 12 M � at z = 0. The wide redshift interval 
considered in this study includes from the cluster-, group-, and 
massive galaxy-sized haloes at z � 0, to the DM counterpart of 
galaxies and the progenitors of low-redshift clusters at the high- 
redshift end. 

The results of the fiducial classification are summarized in Fig. 2 , 
where we show the number of haloes which are finally considered at 
each snapshot (blue line, referring to the axis on the left). Only at high 
redshift ( z � 3), a large fraction (10–25 per cent ) of the preliminary
haloes get discarded because they cannot be tracked back in time 
for at least one dynamical time. The fraction of unrelaxed haloes 
according to the fiducial classification (green, dashed line; referring 
to the axis on the right) varies from ∼ 80 to ∼ 30 per cent through 
the considered redshift interval. Purple and orange, dotted lines show 

the number of haloes, as a fraction of the total, which are unrelaxed 
due to either the condition on recent mergers or the condition on the 
accretion rate, respectively. Most of the low-redshift haloes that are 
labelled unrelaxed are undergoing mergers, while at high redshift 
the cause for unrelaxedness is more usually a high level of smooth 
accretion. This may be due to several reasons, amongst which we can 
mention the higher density in the vincinity of haloes at high redshift, 
or resolution limitations of the simulation (i.e. at high redshift, a 
halo may be accreting small, under-resolved structures, which are 
therefore not accounted as mergers). 
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Figure 2. Fiducial classification of dynamical states of the halo sample. The 
blue line represents the number of haloes selected per snapshot, according to 
the left axis. The dashed/dotted lines, according to the right axis, describe the 
evolution with redshift of the fraction of unrelaxed haloes (green), which can 
have been labelled as such due to mergers (purple) or strong accretion/mass 
growth (orange). 

2.3 Indicators for the assembly state 

Many possible proxies for the dynamical and assembly state of a 
DM halo, or their corresponding baryonic structure (e.g. a galaxy 
or a galaxy cluster) have been proposed in the literature (see for 
instance, Cole & Lacey 1996 ; Crone et al. 1996 ; Shaw et al. 2006 ; 
Haggar et al. 2020 ; Zhang et al. 2021a , just to cite a few). While 
simulations allow to access the complete 3D picture, the lack of 
the whole information in observations (due to, e.g. projection or 
the inability to observe the dark component, or even the plasma out 
to large radii) requires that, generally, different quantities are used 
for assessing the dynamical state in simulations and in observations 
(Rasia et al. 2013 ; De Luca et al. 2021 ; Yuan, Han & Wen 2022 ). 
While comparison with observations is crucial and will be dealt with 
in future work, here we shall focus on the dynamical state indicators 
extracted from the complete, 3D data in simulations as a first step. 
Unless otherwise specified, all quantities below are referred to the 
virial volume. 

2.3.1 Centre offset. 

The centre offset is usually defined as the distance between two 
different choices of centre, in units of some aperture radius (typically, 
the virial radius of the halo, R vir ). Many examples for the choices of 
centre pair exist in the literature, such as centre of mass (CM) versus 
density peak (Baldi et al. 2017 ) or CM versus potential minimum 

(Biffi et al. 2016 ), extracted from the 3D description in simulations, or 
the morphological offset of the BCG location versus X-ray surface 
brightness peak (Rossetti et al. 2016 ), amongst many others. We 
address the interested reader to Cui et al. ( 2016 ), who compare many 
different choices of observable for defining the centre of galaxy 
clusters. 

In this work, we have tested the three possible combinations 
between the minimum of gravitational potential (defined as the 
location of the most-bound DM particle, as obtained by ASOHF 

and described in detail in Vall ́es-P ́erez et al. 2022 ), the DM density 
peak, and the DM centre of mass. We find that the most robust results 
are obtained for the Peak–CM pair. Therefore, we defined the centre 
offset parameter as 

� r = 

∣∣r peak, DM 

− r CM , DM 

∣∣
R vir 

. (3) 

2.3.2 Virial ratio 

For a gravitational system in steady state, the virial theorem predicts 
2 T + W − E s = 0, where T is the kinetic energy, W is the gravitational 
binding energy, and E s is the surface energy term (Chandrasekhar 
1961 ). Neglecting the surface term, the virial ratio is usually defined 
as 

η ≡ 2 T 

| W | , (4) 

and it is expected that η → 1 for isolated systems. Ho we ver, 
haloes are not generally isolated systems, and therefore there is 
not a good a priori reason to drop the surface term in the virial 
theorem. Thus, many works define the virial ratio as η′ = (2 T −
E s )/ | W | (Shaw et al. 2006 ), while others claim that the surface term 

o v ercorrects the virial ratio (Power, Knebe & Knollmann 2012 ).
As the latter, we find that correcting the virial ratio by the surface
term wipes out the correlation with merging activity, and thus we
shall use the definition in equation ( 4 ) in the remainder of this
work.

2.3.3 Mean radial velocity 

In a relaxed object, we do not expect important changes in 
the radial structure, while an unrelaxed system will experience 
significant disturbances as it settles down to equilibrium. This 
moti v ates the consideration of the mean radial velocity of DM 

particles 

〈 v r 〉 DM 

= 

∑ 

i m i v r,i ∑
i m i 

, (5) 

being m i the mass of the i th DM particle, and v r , i its radial velocity 
relative to the halo reference frame. In practical terms, we scale 
this quantity by the circular velocity at the virial radius, V circ , vir ≡√ 

GM vir / R vir , and define the corresponding normalized indicator as 

〈 ̃  v r 〉 DM 

≡ | 〈 v r 〉 DM 

|
V circ , vir 

. (6) 

2.3.4 Sparsity 

Systems which have experienced recent significant mergers tend 
to display shallower central density profiles due to the disturbance 
caused by the infalling halo, and thus are less concentrated. Many 
works (e.g. Neto et al. 2007 ; Wang et al. 2020 ) have pointed out 
the relation between the time spanned since the last major merger 
and halo concentration, c vir = R vir / R s , being R s the scale radius of 
the Navarro, Frenk & White ( 1997 ) profile (or the radius where the 
logarithmic slope of the DM density profile equals −2). 

More recently, sparsity has been suggested as a non-parametric 
alternative to concentration, which reduces the scatter with halo mass 
(Balm ̀es et al. 2014 ; Corasaniti et al. 2018 ), and has also been found to 
correlate with the timing since the last rele v ant merger (Richardson & 

Corasaniti 2022 ). While sparsity is generally defined as the quotient 
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between the masses at different spherical o v erdensities, we find that 
the one maximizing the correlation with merging activity is 

s 200 c, 500 c ≡ M 200 c

M 500 c 
. (7) 

2.3.5 Ellipticity 

DM haloes are generally triaxial (Frenk et al. 1988 ; Knebe & 

Wießner 2006 ), with significant scatter in halo shape at a given 
mass and redshift. Many recent studies have pointed out at the 
correlation between triaxiality and/or ellipticity of the halo shape 
and the formation history of a halo, with relaxed haloes tending to 
be rounder (Chen et al. 2019 ; Lau et al. 2021 ). 

We define the o v erall shape of the DM halo by finding the 
eigenvalues of the shape tensor, defined as 

S αβ = 

∑ 

i

m i 

r i,αr i,β

r 2 i 

, (8) 

which are proportional to the semiaxes squared. The positions, r i , 
are relative to the cluster centre (defined as the location of the density 
peak), and we choose to normalize them to be unit length to prevent 
the shape to be dominated by the particles in the outskirts of the halo. 
Note this corresponds to the E2 method introduced by Zemp et al. 
( 2011 ). If a , b , and c are the semiaxes sorted in non-increasing order, 
we define the ellipticity of the halo, ε, as 

ε = 1 − c

a 
. (9) 

2.3.6 Other indicators not considered in this work 

Amongst the most widely used proxies for the dynamical state 
of DM haloes in the literature, we have not included the fraction 
of substructure, f sub , in this study (neither defined as the mass in 
substructures as a fraction of the host mass, nor as the ratio between 
the mass of the heaviest substructure and the host mass, as in Cialone 
et al. 2018 ). While f sub should naturally correlate with the assembly 
state (especially, with the merging state), its interpretation is very 
subtle due to several factors. First, there is not a unique way to 
define the extent of a subhalo, and differences amongst halo finders 
have a dramatic impact on the reco v ered masses of substructures 
(Vall ́es-P ́erez et al. 2022 , see their figs 5 and 10). In second 
place, the amount of substructure produced in simulations depends 
strongly, not only on resolution, but also on the numerical scheme 
employed to solve gravity. This introduces strong mass biases (while 
the most massive haloes in our simulation may host well-resolved 
substructure, haloes with less than a few ten thousands particles 
are likely to be substructure-deficient). These obscure dependencies 
with mass, resolution, and numerical scheme limit our ability to 
consistently incorporate this indicator in our work. Simulations with 
enhanced resolution, capable of fully resolving rich substructure in 
our wide range of masses, could be able to o v ercome this limitation 
of the present work. 

Regarding the indicators describing the shape of the mass distri- 
bution, while ε alone does not fully characterize the shape of an 
ellipsoid, we have not considered any additional parameter, such as 
triaxiality T ≡ a 2 −b 2 

a 2 −c 2 
(Franx, Illingworth & de Zeeuw 1991 ). While

ellipticity measures directly the deviation from sphericity, which is 
expected during assembly episodes, the same is not true for triaxiality. 
As a matter of fact, triaxiality is undefined for spherical objects, and 
we do not find a clear reason to have a preference towards either 
prolateness/oblateness during mergers or strong accretion periods. 

Table 1. Summary of the redshift binning considered for the subsequent 
analyses. Each bin contains the haloes extracted from the N snaps available 
with z ∈ [ z min , z max ]. The mean redshift of the N haloes haloes in the bin 
is z̄ , with a fraction f unrelaxed of them being unrelaxed (either merging or 
experiencing intense accretion) according to the fiducial classification. Note 
we report ̄z , instead of the median, because z is not continuously distributed 
(at each redshift bin, there are only N snaps different values of z). 

z min z max N snaps z̄ N haloes f unrelaxed 

0 0.2 4 0.084 3828 0.309 
0.2 0.5 4 0.381 3830 0.360 
0.5 0.75 3 0.651 2890 0.406 
0.75 1.0 3 0.897 2871 0.468 
1.0 1.5 4 1.253 3769 0.512 
1.5 2.0 3 1.808 2788 0.562 
2.0 3.0 3 2.536 2742 0.600 
3.0 4.0 2 3.350 1791 0.657 
4.0 5.0 2 4.443 1564 0.751 

2.4 Classification strategy 

2.4.1 Redshift binning 

A total of 28 snapshots of the simulation, since z = 5, are saved and 
used in this analysis. To augment the statistics, we have grouped the 
snapshots in several redshift bins, which are described in Table 1 . 2 

2.4.2 Optimizing the thresholds 

In a first step, we place a threshold, X 

thr 
i , for each of the dynamical 

state indicators, X i , described in the previous section ( i = 1, . . . , 5, for 
the five dynamical state indicators). This is performed independently 
at each redshift bin. To do so, we vary X 

thr 
i from the minimum to the 

maximum value of X i through the sample, and identify how well does 
X 

thr 
i separate the relaxed and the unrelaxed samples of the fiducial 

classification. 
For each value of X 

thr 
i , we compute two complementary metrics 

of the goodness of the classification, 3 namely the efficiency in 
discriminating the unrelaxed haloes, 

εunrelaxed ( X 

thr 
i ) = 

# of unrelaxed haloes properly identified

# of unrelaxed haloes (fiducial) 
(10) 

and the efficiency in discriminating the relaxed haloes, 

εrelaxed ( X 

thr 
i ) = 

# of relaxed haloes properly identified 

# of relaxed haloes (fiducial) 
. (11) 

Out of all the possible values of X 

thr 
i , we choose the one which 

maximizes the product of both metrics, that is to say: 

ˆ X 

thr 
i = argmax X thr

i 

[
εunrelaxed ( X 

thr 
i ) · εrelaxed ( X 

thr 
i ) 

]
. (12) 

Since εunrelaxed ( εrelaxed ) can be thought, in a frequentist approach, as 
the probability of correctly identifying an unrelaxed (relaxed) halo as 

2 Not all bins contain the same number of snapshots (or haloes): higher redshift 
bins comprise less snapshots. While this may increase the scatter in our results 
at high redshift, grouping more snapshots together at high redshift would 
increase the systematic uncertainty due to stacking objects of more different 
epochs. 
3 Note that the metrics introduced in equations ( 10 ) and ( 11 ) also correspond, 
respectively, to the True Positive Rate (TPR) or sensitivity, and the True 
Ne gativ e Rate (TNR) or specificity in the usual jargon of binary classifications 
(e.g. F a wcett 2006 ). Ho we ver, we choose this notation here for better 
readability. 
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such, our choice of threshold in equation ( 12 ) corresponds to picking 
the one which enhances the likelihood of correctly classifying both 
an unrelaxed and a relaxed halo, and thus serves as a compromise 
between too generous and too stringent thresholds. 

2.4.3 Totally relaxed, marginally relaxed and disturbed haloes 

Once the final (redshift-dependent) thresholds, 
{
X 

thr 
i ( z) 

}5

i= 1 
, are 

established, any halo will be regarded as totally relaxed if 

X i < X 

thr 
i ( z) ∀ i = 1 , . . . , 5 , (13) 

that is, if it has a low value of all the dynamical state indicators (low 

centre offset, mean radial velocity and ellipticity, virial ratio and 
sparsity close to unity). This allows a very conserv ati ve definition of 
the most relaxed haloes. 

Ho we ver, it may be the case that a halo has a high value of one 
of the parameters, but is relaxed according to the rest. This might 
be the case for a variety of reasons, ranging from physical (e.g. a 
halo with high ellipticity due to a strong tidal field generated by the 
surrounding large-scale structure; Chen et al. 2016 ) to numerical (e.g. 
under-resolved haloes with higher sparsities, misidentification of the 
centre, etc.). Thus, we deal with all haloes not falling into the totally 
relaxed category by defining a combined relaxedness indicator, in the 
manner of Haggar et al. ( 2020 ; see also Kuchner et al. 2020 ; Zhang 
et al. 2021a ; Gouin, Gallo & Aghanim 2022 ) but adding weights 
which account for the fact that some dynamical state indicators can 
be more insightful than others at any given particular epoch. 

χ = 

[ 

w 1 

(
� r 

� 

thr 
r 

)2

+ w 2

(
η − 1 

ηthr − 1 

)2

+ w 3

( 〈 ̃  v r 〉 DM 

〈 ̃  v r 〉 thr 
DM

)2

+ w 4

( 

s 200 c, 500 c − 1 

s thr 
200 c, 500 c − 1

) 2

+ w 5

( ε

εthr 

)2 

⎤ 

⎦ 

−1 / 2

. (14) 

The weights, { w i } 5 i= 1 , are normalized so that
∑ 5 

i= 1 w i = 1, and
are fixed at each redshift bin to be proportional to the performance 
of their corresponding indicator in splitting the merging and non- 
merging subsamples of the fiducial classifications. In particular, 
we set w i ∝ εrelaxed εunrelaxed − 0.25 (the absolute values being set 
by the closure relation 

∑ 5 
i= 1 w i = 1). If, at a given redshift bin,

εrelaxed εunrelaxed ≤ 0.25, we consider that the particular indicator is 
not meaningful and its weight is set to w i = 0. 

A particular halo that does not belong to the totally relaxed 
category will be classified as mar ginally r elaxed if χ ≥ 1, and 
disturbed whenever χ < 1. Additionally, this classification scheme 
can naturally handle missing data. For instance, if s 200 c , 500 c is missing 
(e.g. due to a low resolution not enabling to resolve R 500 c ), one can 
simply e v aluate χ neglecting the sparsity term (and multiplying χ by
a factor 

√ 

1 − w 4 ; or, alternatively, renormalizing the weights after 
setting w 4 = 0). 

2.4.4 Redshift evolution of the thresholds and weights 

With the procedure outlined in Sections 2.4.2 and 2.4.3 , we obtain 
a threshold and a weight for each dynamical state indicator at 
each of the redshift bins specified in Table 1 . In order to obtain 
a continuous trend for each of these parameters, we fit them to 
polynomial functions of arbitrary degree. 

First, we estimate the uncertainties in the thresholds ( X 

thr 
i ) and 

weights ( w i ) by computing the standard deviation of the distribution 
of these parameters obtained in 1000 bootstrap resamplings (Efron 

1979 ). Then, we fit the redshift evolution of the given parameter to 
polynomial functions of increasing degree, until the p -value of the 
highest degree coefficient falls above p = 0.046 (low significance), or 
the reduced chi-squared falls below 1 (indicating possible o v erfitting 
of the model). Fits are performed using least squares weighted to the 
inverse of the variance of each data point. 

3  RESULTS  

Following the procedure described in Sections 2.4.2 and 2.4.4 over 
the whole sample, we have found the optimal thresholds for the 
dynamical state indicators, and fitted them to the best possible 
polynomial models. The results are shown in Fig. 3 , from top 
to bottom, for the centre offset, virial ratio, mean radial velocity, 
sparsity, and ellipticity thresholds. 

Most of the thresholds on the assembly state indicators present 
a clear redshift evolution. At earlier times, the thresholds on the 
dynamical state indicators tend to take higher values, reflecting the 
fact that haloes at earlier times were more irregular or exhibited 
more disturbed features, even when not having experienced any 
rele v ant merging activity or growth during the last dynamical 
time. 

The evolution of the thresholds ranges from very mild or almost 
non-existent (e.g. � 

thr 
r , ε thr ) to noticeable (and definitely worth 

taking into account; e.g. ηthr , s thr 
200 c, 500 c , 〈 ̃  v r 〉 thr ). This unequivocally 

evidences that fixed, set thresholds on certain parameters may not be 
able to correctly discriminate relaxed from merging haloes through 
the whole evolutionary history of the objects, especially when delving 
into the realm of high-redshift haloes. 

The thresholds can be fitted by the following equations (solid lines 
in Fig. 3 , whose uncertainties are represented by the shaded regions), 
valid for 0 ≤ z ≤ 5, where the figures in parentheses correspond to 
the uncertainty in the two last digits of each coefficient: 

� 

thr 
r ( z) = 0 . 0849(13) (15) 

ηthr ( z) = 1 . 3383(56) + 0 . 197(11) z − 0 . 0276(32) z 2 (16) 

〈 ̃  v r 〉 thr 
DM 

( z) = 0 . 0718(22) + 0 . 0056(14) z (17) 

s thr 
200 c, 500 c ( z) = 1 . 491(16) + 0 . 064(37) z − 0 . 031(22) z 2

+ 0 . 0060(35) z 3 (18) 

ε thr ( z) = 0 . 2696(27) . (19) 

Based on the performance of each assembly state indicator in 
matching the fiducial classification, we fix the weights of each 
indicator in equation ( 14 ) as described in Section 2.4.3 . The results 
are summarized in Fig. 4 , which is analogous to Fig. 3 but this 
time showing the weights instead of the thresholds. Note that, if all 
indicators were equi v alently important, w i = 0 . 2 ∀ i. Thus, w i > 0.2 
( w i < 0.2) implies abo v e-av erage (below-av erage) performance for 
the given dynamical state indicator at the given epoch. 

Interestingly, the importance of each indicator in determining the 
dynamical state of DM haloes varies strongly with redshift. For 
example, one of the most widely used indicators, the centre offset 
� r , is exceedingly ef fecti ve in discriminating the disturbed haloes at 
high redshift, but its ef fecti veness declines steeply with decreasing 
redshift and has slightly below-average performance at z � 0. As 
an example of the opposite trend, the virial ratio, η, appears to be 
irrele v ant at high redshift ( z � 2), and is only useful at low redshifts
( � 1). This dissimilar behaviour between centre offset and virial ratio
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Figure 3. Redshift evolution of the thresholds on the dynamical state 
indicators. From top to bottom, the panels refer to the centre offset ( � 

thr 
r ), 

virial ratio ( ηthr ), mean radial velocity ( 〈 ̃  v r 〉 thr 
DM 

), sparsity ( s thr 
200 c, 500 c ), and

ellipticity ( ε thr ) thresholds. Dots correspond to the optimal threshold obtained 
within the redshift bin, with the error bars obtained by means of bootstrap 
resampling. Solid lines correspond to the best polynomial fits, with their 
(16–84) per cent confidence interval as the shaded region. 

Figure 4. Redshift evolution of the weights on the dynamical state indicators. 
From top to bottom, the panels refer to the centre offset ( w[ � r ]), virial ratio 
( w[ η]), mean radial velocity ( w[ 〈 ̃  v r 〉 ]), sparsity ( w[ s 200 c , 500 c ]), and ellipticity 
( w [ ε ]) weights. Dots correspond to the weights obtained within the redshift 
bin, with the error bars obtained by means of bootstrap resampling. Solid lines 
correspond to the best polynomial fits, with their (16–84) per cent confidence 
interval as the shaded region. 
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Figure 5. Overall fitted redshift evolution of the weights of the dynamical 
state indicators, using the complete sample. 

is also reported by the analyses at high redshift of Davis, D’Aloisio & 

Natarajan ( 2011 ). 
As a purely dynamical parameter, the mean radial velocity 〈 ̃  v r 〉 

is especially rele v ant at high redshift, likely due to the fact that 
smooth (nearly radial) accretion could be more important at these 
stages given the relatively higher density in the surroundings of the 
halo. Sparsity, as well as ellipticity, are especially correlated with 
the fiducial dynamical state classification at more recent redshifts, 
although they cannot generally be neglected at any epoch. As a 
matter of fact, at low redshift, ε is the most relevant indicator of the 
dynamical state of haloes. 

With the same procedure as abo v e, we hav e fitted the weights to 
polynomial functions capturing their evolution (solid lines in Fig. 4 , 
whose uncertainties are represented by the shaded regions), valid for 
0 ≤ z ≤ 5: 

w[ � r ]( z) ∝ 0 . 1679(70) + 0 . 0423(50) z (20) 

w[ η]( z) ∝ 0 . 1965(78) − 0 . 1037(60) z + 0 . 0134(11) z 2 (21) 

w[ 〈 ̃  v r 〉 DM 

]( z) ∝ 0 . 1370(70) + 0 . 0364(48) z (22) 

w[ s 200 c, 500 c ]( z) ∝ 0 . 2327(97) + 0 . 051(14) z − 0 . 0153(38) z 2 (23) 

w [ ε ]( z) ∝ 0 . 2603(75) − 0 . 0181(51) z (24) 

We note that, while at any epoch the data points fulfilled∑ 5 
i= 1 w i = 1, this is not necessarily true for the fitting polyno- 

mials e v aluated at any arbitrary redshift (although it holds to a 
few per cents). Thus, they must be normalized by their sum before 
plugging them into equation ( 14 ). 

For better comparison of the relative importance of each of the 
indicators, Fig. 5 presents the fits of the weights on each dynamical 
state indicator, as a function of decreasing redshift. The behaviour 
can be roughly summarized as 

(i) At high redshift ( z ∈ [2, 5]), the centre offset provides the most
insightful information about the recent assembly activity. This can be 
primarily complemented by the mean radial velocity (especially at z 
� 3), or sparsity and ellipticity (at z � 3). The virial ratio does not
seem to provide any insight on the dynamical state at high redshift.

Figure 6. Definition of the mass subsamples in terms of mass, as a function 
of redshift. The grey (salmon) shaded regions correspond to the low-mass 
(high-mass) subsamples. The dotted lines mark the mass limits. 

(ii) At intermediate redshifts, ( z ∈ [1, 2]), sparsity , ellipticity ,
and centre offset provide similarly useful information about the 
dynamical state. The rele v ance of the virial ratio is still limited at 
this epoch. 

(iii) At low redshifts ( z � 1), the ellipticity of the DM halo
correlates exceptionally well with the dynamical state, as well as 
sparsity does. While no dynamical state indicator is negligible at 
this stage, centre offset and virial ratio also present reasonable 
performances, while mean radial velocity is the least useful indicator 
at this time. 

3.1 Dependence on halo mass 

The previous analyses have considered all haloes on an equal footing, 
despite their broad distribution in masses. Invoking self-similarity 
(see e.g. Navarro et al. 2010 for a thorough analysis on the level of 
self-similarity of haloes), it may be argued that the same thresholds 
and weights could be used for all halo masses. Ho we ver, the fact that 
many halo properties (related to the dynamical state indicators in our 
work) scale with mass demands to explicitly check how our results 
depend on the mass scale of the haloes being considered. 

We have split the complete sample, introduced in Section 2.4.3 , 
in two subsamples, namely a low-mass and a high-mass subsample. 
The high-mass subsample contains, at each redshift, the 20 per cent 
most massive haloes in the complete sample. This is chosen so as to 
contain, at redshift 0, all the haloes associated with massive groups 
and clusters ( M DM 

> 3 × 10 13 M �). Fig. 6 shows the evolution of 
the mass limits on each subsample. Note that, therefore, our mass 
groups do not correspond to fixed-mass ranges, but rather to two 
sub-populations with a redshift-dependent mass threshold. While it 
would definetely be interesting to explore the dependence of our 
thresholds and weights with actual mass ranges, our limited statistics 
prevent us from this goal and we may defer this for future work. 

Repeating the analyses abo v e separately for each mass subsam- 
ple, we can infer the mass dependence of the thresholds on the 
dynamical state indicators, and that of their corresponding weights 
in equation ( 14 ). The redshift evolution of the thresholds for each 
mass subsample is presented in Fig. 7 , which is analogous to Fig. 3 
but displaying only the fits for clarity. The same colour coding as in 
Fig. 6 is used here. 
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Figure 7. Mass dependence of the redshift evolution of the thresholds on the 
dynamical state indicators. The figure is analogous to Fig. 3 , with each line 
corresponding to the fit performed with a mass subsample (the same colour 
coding as in Fig. 6 is used: gray [salmon] lines correspond to the low-mass 
[high-mass] subsamples), and the shaded regions enclosing 1 σ confidence 
intervals. 

For some indicators, such as ellipticity, there is no hint for any 
significant trend of the evolution of the threshold with mass, at least 
within the statistical uncertainties given by our sample size. That is to 
say, at least within the mass range considered in this work (roughly, 
[10 12 − 10 15 ] M �), the relaxation criteria based on this indicator can 
be used regardless of the scale of the objects (as customarily done 
with many indicators, e.g. Power et al. 2012 ). 

Ho we ver, the rest of indicators of the dynamical state do present 
significant dependence on halo mass. In particular, the threshold 
on � r remains constant with redshift for the low-mass subsample, 
while it increases linearly with increasing redshift for group and 
cluster-sized DM haloes. This would suggest that imposing a constant 
threshold on the centre offset may be too conserv ati ve and could, for 
massive haloes at high redshift, artificially increase in excess the 
number of disturbed haloes. 

Regarding virial ratio, there is a minor trend with mass at 
intermediate and low redshifts ( z � 3), with higher-mass haloes 
preferring a slightly more stringent threshold to separate dynamically 
relax ed and unrelax ed haloes, but this difference corresponds to a 
small variation on the value of the parameter ( �ηthr ∼ 0.05). The 
most striking difference appears at high redshift, but is not relevant 
since we have found that η itself is not meaningful at high redshift 
(see the second panel in Fig. 4 , as well as Fig. 8 below). 

The mass dependence of 〈 ̃  v r 〉 is moderate, with massive haloes 
preferring a constant threshold around 〈 ̃  v r 〉 ≈ 0 . 085 and low-mass 
systems displaying a decreasing trend with decreasing redshift. 

Last, the two mass subsamples present a different behaviours 
with respect to the threshold on halo sparsity, s thr 

200 c, 500 c . In this 
case, lower mass haloes require consistently larger thresholds on 
sparsity to discriminate relaxed and merging objects. While smaller 
haloes tend to be more concentrated (see for instance, Dutton & 

Macci ̀o 2014 ), the mass-dependence of sparsity is much more 
contained (Corasaniti et al. 2018 ; Corasaniti & Rasera 2019 ). It 
might be the case that, both for physical (e.g. stronger influence of 
the environment) and numerical (e.g. less mass resolution elements 
leading to more unresolved central regions) reasons, low-mass haloes 
present a broader distribution in sparsities (see e.g. fig. 10 in Balm ̀es 
et al. 2014 ) and thus a larger sparsity threshold is required at the 
low-mass end. 

Finally, we show in Fig. 8 the evolution of the weights on each 
of the dynamical state indicators (as they appear in equation 14 ), 
for each of the mass subsamples. Besides the general trends already 
analysed for the whole sample when Fig. 4 was presented, several 
differences emerge between the high-mass and the low-mass subsam- 
ples, especially at intermediate and high redshifts. At low redshift, 
ho we ver, the weights are essentially compatible amongst the two 
subsamples, with only a small hint of virial ratio and centre offset 
being – comparatively – more effective in higher-mass haloes. 

At intermediate redshifts, z ∼ 2–3, high-mass haloes find ellipticity 
and mean radial velocity to be better indicators of their dynamical 
state, and centre offset and sparsity comparatively worse ones, when 
confronted to the low-mass sample. At high redshifts, z ∼ 5, the 
performance of sparsity gets more penalized for lower mass haloes 
and, in these objects, centre offset can be relatively more important 
than in higher mass haloes. This further highlights that, besides not 
being able to put fix criteria (in the sense of them not evolving with 
redshift) for assessing the dynamical state of dark matter haloes, 
the y hav e to be carefully chosen depending on the scale of the object 
being studied. 

We provide fits for the thresholds and weights for the high-mass 
(group and cluster-sized) subsample in Appendix A . 
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Figure 8. Mass dependence of the redshift evolution of the weights on the dynamical state indicators. Each panel is analogous to Fig. 5 (also using the same 
colour coding), showing the results for each of the mass samples defined in Fig. 6 : low-mass (left-hand panel) and high-mass (right-hand panel) subsamples. 

Figure 9. Classification summary at redshifts z = 0 (left-hand panel), z = 1 (middle panel), and z = 2 (right-hand panel). Within each panel, each of the 
columns corresponds to one of the possible classifications (totally relaxed, if X i < X 

thr 
i ∀ i; marginally relaxed, if the previous condition fails but χ ≥ 1; or 

unrelaxed otherwise). Within each bar, the green portion represents the fraction of the haloes which have not suffered any mergers nor strong accretion, while 
the red portion corresponds to the fraction of haloes having suffered mergers or strong accretion (i.e. the colour encodes the fiducial classification). Below each 
column, N indicates the number of objects falling into each category. 

3.2 Classification assessment 

The aim of this section is to validate to which extent the dynamical 
state classification introduced in this work, which only uses informa- 
tion at a given time-step, is capable of predicting the merging state 
of the DM halo. That is to say, whether we can predict the fiducial 
classification (Section 2.2.1 ) based on the dynamical state indicators, 
when confronting our method with haloes from a different simulation 
(corresponding to different resolution, gravity solver, etc.). 

We use public simulation data from the suite CAMELS 
(Villaescusa-Navarro et al. 2021 , 2022 ), which contains o v er 4000 
simulations of 25 h 

−1 Mpc cubic, periodic volumes run with dif- 
ferent physics, cosmological and astrophysical parameters, and 
numerical codes. In particular, we have analysed the haloes in the 
IllustrisTNG-DM CV-0 simulation, which corresponds to a 
DM-only simulation run with Arepo (Springel 2010 ; Weinberger, 
Springel & Pakmor 2020 ). Arepo implements a Tree + Particle- 
Mesh approach (Bagla 2002 ) for solving the evolution of DM, thus 
providing a high dynamical range even though the number of particles 
( N part = 256 3 ) is rather small. The CV-0 simulation corresponds to 
a background cosmology with h = 0.6711, �m 

= 0.3, n s = 0.9624, 
and σ 8 = 0.8, the initial conditions having been set up at z ini = 127. 

We hav e e xtracted the halo catalogues and merger trees with 
ASOHF (Vall ́es-P ́erez et al. 2022 ) by following the exact same 
procedure described in Section 2.2 , and determined the dynamical 
state indicators (Section 2.3 ). For our analyses, we have considered 

the 30 most massive haloes at each time, which corresponds to a 
similar mass limit as in the main analysis (cf. Fig. 1 ). Out of these 30 
haloes, we have dropped the ones that we are not able to trace back 
in time for at least one dynamical time (which is most usually none 
or one halo, at the considered epochs). 

In Fig. 9 , we assess the performance of our classification scheme 
at three cosmological epochs ( z = 0 , 1 , and 2, for the panels left 
to right) by computing, at each time, the fraction of haloes in 
each class (totally relaxed, marginally relaxed and unrelaxed) which 
have recently suffered mergers or strong accretion (red), or has 
undergone a quiet evolution (green). We note that, when e v aluating 
the dynamical state criteria, at any given z we only apply the 
indicators with weight w i ( z) > 0.05. Otherwise, we consider the 
given dynamical state indicator as not meaningful at that particular 
epoch. While this particular threshold is arbitrary, it is a sensible 
choice and the results do not depend strongly on variations around 
this value. According to Fig. 5 , this only remo v es the virial ratio, η, 
at z � 1.9.

The totally relaxed subsample is, naturally, the smallest one, since 
it is defined rather conserv ati vely as the set of haloes simulta- 
neously fulfilling all five relaxation criteria. It typically contains 
∼ 10 per cent of the haloes (slightly lower in this case; nevertheless,
the statistics are small). Within this test, all haloes being classified
as totally relaxed have not suffered any major (minor) merger within
one (half) τ dyn or built up more than half of their mass in the last
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Figure 10. Trends of the evolutionary properties of the haloes according to their dynamical state classification. In each panel, red, orange, and green dots 
correspond, respectively, to the unrelaxed, marginally relaxed and totally relaxed subsamples. At each redshift (encoded in the horizontal axis) the dot and the 
error bars represent, respectively, the mean and the 1 σ dispersion of the distribution of the given variable within the subsample. The left-hand panel presents 
the time since the last merger (either major or minor) in units of the dynamical time ( � t LM 

/ τ dyn ), the central panel corresponds to the time since the last major 
merger ( � t LMM 

/ τ dyn ), and the right-hand panel shows the accretion rate � vir . 

dynamical time, thus proving to be a selection of the relaxed sample 
with high specificity. 

The marginally relaxed sample is the most numerous at low 

redshifts ( z � 1) and mostly contains objects which have not 
e xperienced an y rele v ant merging or accretion acti vity, although the 
fraction of objects having experienced it increases with increasing 
redshift (from ∼ 15 per cent at z � 0 to ∼ 40 per cent at z � 2). 
The unrelaxed subsample, which is especially numerous at high 
redshift when merger rates are higher (see e.g. Wetzel, Cohn & 

White 2009 ), contains mostly merging objects, although a small 
fraction (10 –25 per cent ) of objects not experiencing mergers or 
accretion seem to fall into this category. This may happen because 
a halo appears to be disturbed, even when not merging or accreting 
intensely, due to environmental effects (e.g. strong tidal field due 
to the presence of another nearby massive halo, for instance in a 
pre-merger state), or even numerical effects (mainly associated to 
low resolution). Naturally, it may also be the case that unrelaxedness 
after a major merger is last for longer than 1 τ dyn ( z), since the fiducial 
classification in Section 2.2.1 was only a rough estimation. 

Expanding upon the previous figure, in Fig. 10 we focus on 
some quantities tied to the merger and accretion history of the 
haloes. In particular, the left-hand panel represents, at three redshifts 
( z = 0 , 1 , and 2, respectively, from left to right) and for the three 
subsamples, the distribution of the time since the last merger (either 
major or minor) in units of the dynamical time. Haloes classified as 
unrelax ed hav e usually suffered some merger recently while, on the 
other hand, the totally relaxed sample has typically not experienced 
any merging activity since several dynamical times ago. A similar 
situation is seen for the major mergers (middle panel), although 
naturally not all unrelaxed haloes have suffered a major merger 
(the unrelaxedness can be due to one or several minor mergers, 
or smooth accretion, as well). Ho we ver, the same trend holds, with 
major mergers having occurred a longer time ago as we mo v e from 

unrelaxed to marginally relaxed, and to totally relaxed haloes. 
Finally, the third panel presents, in a similar way, the distribution of 

accretion rates � vir , which are computed according to the prescription 
of Diemer & Kravtsov ( 2014 ), 

� vir = 

� log M vir 

� log a 
(25) 

with a being the scale factor of the Universe, and the increments com- 
puted o v er a dynamical time following its definition in equation ( 2 ). 

The figure shows, in line with the previous results, an increasing 
trend of the accretion rate when moving from the relaxed to the more 
disturbed subsamples, within a wide redshift interval. This reflects 
how the dynamical state classification presented in this work, which 
only uses information at a fixed time, can offer insight on the temporal 
evolution of the systems o v er the last dynamical time. 

3.2.1 Does a smaller set of indicators provide similar insight? 

Lastly, it might be interesting to assess whether a single dynamical 
state indicator, or a combination of them, is capable of providing a 
similarly accurate classification; i.e. to moti v ate why it is important 
to involve a high number of indicators. This is briefly e x emplified in 
Table 2 , where we show the classification summary for each indicator 
(or combination). In particular, for each classification class we give 
the number of haloes falling into this class (and its percentage with 
respect to the total), and the fraction of them which is unrelaxed 
according to the fiducial classification ( f merging ). Ideally, this fraction 
would be 0 for the totally relaxed class and 1 for the unrelaxed class. 
Naturally, when using only one indicator, there is no marginally 
relaxed or intermediate category, since the value of the dynamical 
state indicator can only be abo v e or below the threshold. In the 
case of using two indicators, we have defined the marginally relaxed 
sample as the set of haloes fulfilling only one of the two relaxedness 
conditions, as it is often done in the literature (e.g. Biffi et al. 2016 ; 
Planelles et al. 2017 ). 

Generally speaking, involving only one dynamical state indicator 
leads to far poorer results, since the relaxed sample gets often 
contaminated (around ∼ 40 per cent ) by haloes which have suffered 
mergers. Likewise, the unrelaxed sample may end up containing 
a high fraction of haloes undergoing quiescent evolution for some 
indicators (e.g. ε; although the particular results have to be considered 
carefully due to the reduced statistics). 

Interestingly, when using a combination of virial ratio and centre 
offset, which is a common option in the literature (e.g. Power 
et al. 2012 ), we are still not able to pick out all merging haloes 
with these criteria and even the totally relaxed subsample gets 
contaminated with ∼ 40 per cent of merging haloes. Other common 
options in the literature are the combination of mass ratio and 
centre offset (De Luca et al. 2021 ), or centre offset, virial ratio 
and mass ratio (Cui et al. 2017 ; Haggar et al. 2020 ). We have 
also tested these combinations, taking f thr 

sub = 0 . 1 from the afore-
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Table 2. Classification properties using only one or a combination of dynamical state indicators, e x emplified at z = 1. Each row corresponds to one dynamical 
indicator or combination, and for each classification class we give the number of objects falling into the class ( N , and the percentage with respect to the total) and 
the fraction of them which is unrelaxed according to the fiducial classification ( f merging ). When only one indicator is used, there is no intermediate ( marginally 
relaxed ) class. The first block corresponds to the individual indicators involved in this work. The second block contains several combinations widely used in 
the literature, with the fitted thresholds in this work (for f sub , not involved in this work, we use f thr 

sub = 0 . 1). The last row corresponds to the complete method 
introduced here, using the five indicators (therefore, these results are the same shown in the central panel of Fig. 9 ). 

Totally relaxed Marginally relaxed Unrelaxed 
Indicator(s) N f merging N f merging N f merging 

� r 20 (69%) 0.40 – – 9 (31%) 0.78 
η 25 (86%) 0.48 – – 4 (14%) 0.75 
〈 ̃ v r 〉 21 (72%) 0.43 – – 8 (28%) 0.75 
s 200 c , 500 c 17 (59%) 0.47 – – 12 (41%) 0.58 
ε 10 (34%) 0.50 – – 19 (66%) 0.53 

� r and η 19 (66%) 0.42 7 (24%) 0.57 3 (10%) 1.00 
f sub 23 (79%) 0.48 – – 6 (21%) 0.67 
η and f sub 18 (62%) 0.44 7 (24%) 0.43 4 (14%) 1.00 
� r , η, and f sub 17 (59%) 0.47 3 (10%) 0.33 9 (31%) 0.67 

Full set of indicators 2 (7%) 0.00 16 (55%) 0.38 11 (38%) 0.82 

mentioned references, since we have not involved this indicator in 
our previous analyses. In these cases, the results are similar to the 
� r and η combination. This highlights the necessity of involving and 
combining as many indicators of the dynamical state as possible. 
When using the full set of indicators derived in this work, the 
totally relaxed subsample is rather small, due to its conserv ati ve 
definition. Ho we ver, e ven our marginally relaxed subsample is purer 
(contains a smaller fraction of merging/accreting haloes) than the 
totally relaxed sample of the previous combinations, proving to 
provide a robust splitting of haloes according to their dynamical 
state. 

4  DIS C USSION  A N D  C O N C L U S I O N S  

To fully exploit the capabilities of ongoing surveys (e.g. eROSITA ; 
Ghirardini et al. 2022 ), and in the advent of upcoming instruments 
o v er the electromagnetic spectrum (from X-ray, e.g. ATHENA ,
Nandra et al. 2013 ; to radio, e.g. SKA , Acosta-Pulido et al. 2015 ;
going through the optical, e.g. EUCLID , Sartoris et al. 2016 ; Euclid
Collaboration 2019 ), which will provide samples of galaxies and
galaxy clusters unprecedented in size and depth, it remains crucial
to provide reliable indicators of the dynamical state (which in turns
is a fast proxy of the – recent – evolution of the system). As a first
step towards that aim, using N -body + hydrodynamics simulations,
in this work we have systematically analysed how to best combine
a series of quantities which can be measured from simulation data
at a given time in order to be able to detect the presence of mergers
and/or ongoing strong accretion.

As a result, we ha ve b uilt an algorithm that combines a series of 
different indicators of the dynamical state of a DM halo (namely, its 
centre offset � r , the virial ratio η, the mean radial velocity 〈 ̃  v r 〉 , the 
sparsity s 200 c , 500 c , and the ellipticity ε) in order to classify haloes 
within three classes. The totally relaxed haloes, comprising the 
objects simultaneously fulfilling all relaxedness conditions (which 
are redshift-dependent, in general), is a conserv ati vely defined 
subsample which, therefore, only contains around ∼ 10 per cent of 
the haloes at a given time. Haloes where some relaxedness condition 
may fail, but are remarkably relaxed according to the rest of indicators 
may be categorized in the marginally relaxed class, using a criterion 
similar to Haggar et al. ( 2020 ), but allowing different indicators to 

have different (redshift-dependent) weights, which are tuned based 
on the performance of each indicator on telling relaxed and unrelaxed 
haloes apart. Thus, we defined a r elaxedness parametr e ( χ ), which 
tells marginally relaxed ( χ ≥ 1) and unrelaxed ( χ < 1) apart. The fits 
for the redshift dependence of the thresholds and weights are given 
in equations ( 15 )–( 24 ), while equi v alent results for massive haloes 
are provided in Appendix A . 

Furthermore, we have confronted our classification scheme 
against an independent DM-only simulation from the CAMELS suite 
(Villaescusa-Navarro et al. 2021 , 2022 ), corresponding to different 
input physics, initial conditions, and numerical solvers. Using it, 
we find that our algorithm performs a clean splitting of relaxed and 
unrelaxed haloes across a wide cosmic time interval, and that this 
classification impro v es upon the usage of an y single indicator or 
some widely used combinations ( � r and η; f sub and η; or � r , η and 
f sub ). 

As a qualitative summary of the main highlights of the classifica- 
tion scheme, we can mention: 

(i) Placing fix thresholds (which do not evolve with redshift) is
generally undesirable. While some indicators do not show strong 
evolution of their optimal thresholds with redshift (e.g. ellipticity, 
centre offset), others do (e.g. sparsity, mean radial velocity; all 
tending to increase with redshift). This has important consequences, 
since it implies that classification schemes for the dynamical state of 
haloes that are set at z = 0 cannot be directly used at high redshifts. 

• At high halo mass (see the precise definition of the high- 
mass subsample in Fig. 6 ), ho we ver, the results are slightly 
changed: in particular, the redshift dependence of the thresholds 
on 〈 ̃  v r 〉 and s 200 c , 500 c is not significant anymore, while the 
classification based on the � r benefits from an increasing trend 
with increasing redshift. This warns us that the classification 
cannot be universal, and that haloes on different mass scales 
may need slightly modified criteria. 

(ii) At low redshift ( z � 1), even though all indicators offer insight
into the merging state of the halo, it is sparsity and ellipticity of the 
DM halo the ones which provide the most valuable information, well 
beyond other, more widely used indicators such as centre offset or 
virial ratio. Nevertheless, the fact that all relative weights are not 
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very dissimilar at this epoch (see Fig. 5 ) means that the classification 
scheme can importantly benefit from combining as many indicators 
as possible. 

• The difference in weights amongst the different observ- 
ables (except 〈 ̃  v r 〉 ) is importantly reduced when looking at the 
high-mass sample (right-hand panel in Fig. 8 ), reinforcing that, 
for group- and cluster-sized haloes at low redshift, it may be 
important to combine all indicators suggested in this work. 

(iii) At high redshifts ( z � 3), η becomes irrele v ant for the
determination of the assembly state of the halo, while centre offset 
and mean radial velocity become, by far, the dominant indicators. 

• Again, the differences are lower for the high-mass subsam- 
ple, but the pre v alence of � r and 〈 ̃  v r 〉 still holds. 

In this work, we have focused on the determination of the 
assembly state of DM haloes using the full information contained 
in a snapshot of a numerical simulation. The moti v ation for this is 
two-fold. On the one hand, it is important to devise efficient methods 
to classify large samples of simulated haloes, especially given the 
e ver-gro wing trend of simulations, both in size and resolution (see 
e.g. Angulo & Hahn 2022 , their table 1), made possible by the
increasing computational power available. On the other hand, it
serves as a first step, which can be further connected to observations
using projected data or, more realistically, mock multiwavelength
observations (e.g. Planelles et al. 2018 ).

Much of the information comprised in the dynamical state in- 
dicators we involve in this work can be lost, or at least hindered, 
when moving from the 3D description to the 2D observed data. 
The first, most natural consequence is the effect of projection on 
any geometrical indicator, such as the centre offset, ellipticity or the 
mean radial v elocity. F or the case of centre offset and ellipticity, the 
measured values will only be a lower limit, with the actual 3D value 
depending on the inclination between the direction of the offset, or 
the plane containing the major and minor axis, with the line of sight. 

Regarding the mean radial velocity, which is especially important 
for determining the dynamical state at high redshift, besides the 
difficulty induced by projection (only velocities along the line of 
sight, and distances on the plane of the sky, can be measured), 
future kinetic Sun yaev–Zel’do vich (kSZ) observations could be able 
to provide some constraints on proper velocities of the intracluster 
medium (ICM; see for instance, the estimates of Baldi et al. 2018 
about the kSZ effect due to the coherent rotation of the ICM), even 
for high-redshift objects since the SZ effect is essentially distance- 
independent (e.g. Voit 2005 ). Even though the dynamics of the ICM, 
especially in the inner regions of haloes, may differ significantly 
from those of the DM halo, probing the velocity field of the diffuse 
gas in haloes could supply useful insight onto the dynamical state of 
haloes at high redshift. 

Lastly, sparsity may be a suitable option for observ ations, gi ven its 
good performance shown across the whole redshift span considered 
here (especially, for high-mass haloes). Ho we ver, care must be taken 
when using this quantity: here, we have defined sparsity from the 
DM masses obtained from the full, 3D information. Ho we ver, in 
observations, masses can be obtained from several methods (e.g. 
hydrostatic, lensing, and caustic masses), and biases amongst them 

are non-negligible (see for instance, Lovisari et al. 2020 ). Moreover, 
mass biases tend to correlate with the merging state (Bennett & 

Sijacki 2022 ; cf. Gianfagna et al. 2022 ) and, while the quotient of 
two masses at different apertures derived from the same method may 
cancel out part of these biases, the fact that the bias itself depends 

on the aperture and the large object-to-object scatter still make the 
interpretation non-trivial and deserve further attention themselves. 

This work provides a moti v ated definition of a scheme for 
classifying DM haloes according to their dynamical status, based 
on simple properties which can be readily extracted from the outputs 
of typical halo finders. Future work will need to deal with the 
connection of these dynamical and morphological properties of the 
DM halo with the baryonic component, as well as the application 
to observations, in order to being able to extract the largest possible 
amount of information about the assembly state of haloes from future 
observational campaigns. 
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APPENDI X  A :  E VO L U T I O N  O F  T H E  

T H R E S H O L D S  A N D  W E I G H T S  O N  T H E  

DY NA M I C A L  STATE  I N D I C ATO R S  F O R  T H E  

HI GH-MASS  SAMPLE  

The high-mass subsample, defined in Section 3.1 and shown in 
Fig. 6 , corresponds to a redshift-dependent mass limit, which can 
be parametrized by 

log 10 

M lim 

( z) 

M �
= 13 . 49 − 0 . 21 z (A1) 

within � 0 . 05 dex . Thus, the sample corresponds to massive groups
and clusters at z ∼ 0; to objects abo v e 10 13 M � at z ∼ 2; and to a 
mass limit of ∼3 × 10 12 M � at z ∼ 5, which might most often be the 
progenitors of the massive haloes we find at z ∼ 0. 

Within this sample, the evolution with redshifts of the thresholds 
on the dynamical state indicators, shown in Fig. 7 , can be given by 
the following polynomial fits: 
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� 

thr 
r ( z) 

∣∣
massive 

= 0 . 0863(39) + 0 . 0066(23) z (A2) 

ηthr ( z) 
∣∣

massive 
= 1 . 3371(88) + 0 . 151(14) z − 0 . 0139(37) z 2 (A3) 

〈 ̃  v r 〉 thr 
DM 

( z) 
∣∣

massive 
= 0 . 0842(32) (A4) 

s thr 
200 c, 500 c ( z) 

∣∣
massive 

= 1 . 495(10) (A5) 

ε thr ( z) 
∣∣

massive 
= 0 . 2710(33) (A6) 

The weights on these indicators, as they appear on the relaxedness 
parameter (equation 14 ), are fitted by 

w[ � r ]( z) 
∣∣

massive 
∝ 0 . 218(16) − 0 . 134(26) z + 0 . 0356(69) z 2 (A7)

w[ η]( z) 
∣∣
massive 

∝ 0 . 250(11) − 0 . 0603(66) z (A8) 

w[ 〈 ̃  v r 〉 DM 

]( z) 
∣∣
massive 

∝ 0 . 092(17) + 0 . 109(27) z − 0 . 0141(71) z 2

(A9) 

w[ s 200 c, 500 c ]( z) 
∣∣

massive 
∝ 0 . 2251(87) (A10) 

w [ ε ]( z) 
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massive 

∝ 0 . 2537(86) (A11) 
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APPENDIX B

Summary of co-authored contributions

This Appendix contains a brief summary of the contributions done to works led by
other authors during the course of this PhD, where I have contributed and I am
a co-author. These topics are not part of the Publications included in Appendix
A, which constitute the compendium of publications of this Thesis. The list is
presented in chronological order of the submission date of the corresponding
publication.

The imprints of galaxy cluster internal dynamics
on the Sunyaev-Zeldovich effect
This section contains a brief summary of Monllor-Berbegal, Vallés-Pérez, Planelles
& Quilis (2024)1.

Overview

Context. The morphological features of galaxy groups and clusters, in several
bands, could be connected with the dynamical and thermodynamic state of the
intracluster medium. In the near future, measurements of the Sunyaev-Zeldovich

1Ó. Monllor-Berbegal et al. “The imprints of galaxy cluster internal dynamics on the
Sunyaev-Zeldovich effect.” In: Astron. Astrophys. 686, A243 (June 2024), A243. doi: 10.
1051/0004-6361/202348967

https://doi.org/10.1051/0004-6361/202348967
https://doi.org/10.1051/0004-6361/202348967
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(SZ) effect in groups and clusters will become a powerful tool to study these
properties.

Aims. We aim to study the impact of the dynamics of galaxy clusters (charac-
terised through the presence of merger events and dynamical state indicators)
on the thermal and kinetic SZ signals (tSZ and kSZ, respectively).

Methods. With a sample of simulated galaxy clusters, we produce synthetic
maps of the SZ effect (both thermal and kinetic) in several projections. We
use the correlations between properties extracted from these SZ maps, and the
dynamical history extracted from the full three-dimensional description of the
simulation, to look for the imprints of the evolutionary events, mainly mergers,
on the SZ signals.

Results. The integrated tSZ signal does not show any noticeable dependence
with dynamical state, although its radial distribution does. The kinetic effect,
however, shows a remarkable segregation amongst dynamical state classes. Un-
relaxed clusters present a higher signal at all masses and radii. Studying the
individual evolution of a few systems, we find that galaxy cluster mergers are the
main responsible agents for this enhancement on the kSZ signal. Additionally,
performing a harmonic expansion of the kSZ signal, we find that the dipolar
component of the signal is correlated with the projected angular momentum of
the cluster, but this correlation is only significant in relaxed systems.

Conclusions. Even though the scatter in the different relations is large, the
results presented in this work suggest that the SZ signal can yield valuable
information about the dynamical history of galaxy clusters.

My contribution

I have participated in this work within several aspects. First, I have contributed
to the simulation (in the form of the different improvements and optimisations
to MASCLET), generated the halo catalogues and merger trees, and the
corresponding dynamical state classification. Subsequently, I have participated
in the analysis of the results: in particular, in several aspects regarding the
study of the kSZ signal and its harmonic decomposition, as well as the statistical
analysis. Finally, I have contributed to the discussion of the results and the
revision of the manuscript.
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Unravelling the relativistic magnetised jet dynam-
ics of the microquasar SS 433

This section contains a brief summary of the work by López-Miralles, Perucho,
Vallés-Pérez, et al., which is currently in the last stages of preparation for
submission to the journal Nature Astronomy.

Overview

Context. The high-mass X-ray binary SS 433 is one of the most powerful and
exotic star systems in our Galaxy, which has exerted a huge influence in the field
of high-energy Astrophysics. Discovered more than four decades ago, numerous
multi-wavelength observations of this source have unveiled unconventional phys-
ical processes, seemingly unique among other galactic binaries. In particular,
the precessing jet synchrotron emission, along with its polarization signature
at the sub-parsec scale, suggests a complex outflow morphology and a highly
specific magnetic field configuration, parallel to the motion of the SS 433 jet
components.

Aims. Using large-scale numerical simulations, in this work we explore the way
a precessing jet based on the inferred physical parameters of SS 433, together with
an initial toroidal magnetic field configuration, can develop a component aligned
with the local velocity direction after the first precession period, and specifically,
the role of discrete blob collisions into this process. We also address the effect
of these interactions on the overall jet morphology, deceleration and long-term
stability. This information is also essential for improving our understanding of
particle acceleration and high-energy emission.

Methods. We developed large-scale three-dimensional relativistic magnetohy-
drodynamics (RMHD) simulations of the SS 433 precessing jets at the scale of
the sub-parsec, including for the first time the dynamical evolution of magnetic
fields. These simulations were performed with the code Lóstrego (López-
Miralles et al. 2022, López-Miralles, Martí, and Perucho 2023) in the Picasso
supercomputer (Red Española de Supercomputación), using 4096 cores and a
total of four million hours of HPC computing time.

Results. These numerical simulations show that a discrete flow morphology
drives a magnetic field orientation aligned with the local velocity after one
precession period, in good agreement with observations. The interaction of the
jet discrete components in the sub-parsec scale leads to elongated bullets with
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no significant evidence of flow deceleration. A continuous stream is by contrast
prone to the development of different types of hydrodynamical instabilities.
Conclusions. The results of the RMHD simulations suggest that the observed
characteristics of the source are compatible with the existence of discrete struc-
tures, rather than with jets based on a continuous flow. This was previously
suggested by radio and X-ray polarization studies. Further work is also required
to probe the existence of ultra-relativistic outflows (as previously inferred from
X-ray data).

My contribution

My contribution to the project focused on the post-processing stage of the
simulations, developing and implementing algorithms to extract the information
that can be compared with the polarization data. For instance, these algorithms
allowed us to integrate the jet velocity and magnetic field vectors along the line
of sight, extract the kinematic jet trace, and derive the projected angles between
all these variables, what ultimately enabled us to show how the discrete flow
generates an aligned magnetic field configuration after one precession period.
In the first stages of the project, I also contributed to the simulation setup, by
deriving the necessary transformations for the injection of the precessing jet. In
a more secondary level, I have also participated in the discussion of the results,
as well as the revision of the manuscript.
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