
NEUROANATOMY

neuroanatomical studies have investigated the olfactory system in a 
number of species of different taxa including fishes (s.l.; Hara, 1975; 
Laberge and Hara, 2001; Hamdani el and Doving, 2007), amphib-
ians (Duchamp-Viret and Duchamp, 1997), reptiles (Lohman 
and Smeets, 1993), birds (Rieke and Wenzel, 1978), and mammals 
(Shepherd, 1972). These reports have allowed the characterization 
of the olfactory “cortex” in most vertebrates. Also, neuroanatomical 
investigations lead to the identification of the vomeronasal “cortex” 
in mammals (Winans and Scalia, 1970; Raisman, 1972; Scalia and 
Winans, 1975). The main conclusions of all these reports were 
that chemosensory cortex lacks odotopy and that olfactory and 
vomeronasal projections reached adjacent, non-overlapping zones 
in the telencephalon.

During the last two decades, the cloning of different olfactory 
(Buck and Axel, 1991; Liberles and Buck, 2006) and vomerona-
sal (Dulac and Axel, 1995; Bargmann, 1997, 1999; Herrada and 
Dulac, 1997; Matsunami and Buck, 1997; Ryba and Tirindelli, 1997) 
receptors has allowed considerable progress in tracing olfactory and 
vomeronasal perception from receptors to the activity of sensory 
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Most tetrapods possess two nasal organs for detecting chemicals in their environment, which 
are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that 
the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system 
was exclusively specialized for pheromone detection was challenged by accumulating data 
showing deep anatomical and functional interrelationships between both systems. In addition, 
the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being 
questioned as well. The aim of the present work is to use a comparative strategy to gain insight 
in our understanding of the evolution of chemical “cortex.” We have analyzed the organization 
of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and 
we have compared our findings with data from other taxa in order to better understand the 
evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal 
cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums 
(Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and 
accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-
amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-
recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal 
edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively 
dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like 
marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal 
telencephalon. These data raise the interesting question of how the telencephalon has been 
re-organized in different groups according to the biological relevance of chemical senses.
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Abbreviations: ac, anterior commissure; ACo, anterior cortical amygdaloid area; 
ADVR, anterior dorsal ventricular ridge; AOB, accessory olfactory bulb; aot: acces-
sory olfactory tract; BAOT, bed nucleus accessory olfactory tract; BNST, bed nucleus 
stria terminalis; CA, cornu ammonis areas; CA1-3, fields CA1-3 of cornu ammonis; 
CxA, cortex–amygdala-transition zone; DC, dorsal cortex; DG, dentate gyrus; DLA, 
dorsolateral amygdaloid nucleus; dlo, dorsal lateral olfactory tract; dmRF, dorso-
medial retrobulbar formation; GL, glomerular layer; GrL, granular cell layer; IC, 
islands of calleja; iot, intermediate olfactory tract; LC, lateral cortex; LE, lateral en-
torhinal cortex; lfb, lateral forebrain bundle; lot, lateral olfactory tract; MC, medial 
cortex; Me, median eminence; MeAD, medial amygdaloid nucleus, anterodorsal; 
MeAV, medial amygdaloid nucleus, anteroventral part; meot, medial olfactory tract; 
MePD, medial amygdaloid nucleus, posterodorsal part; MePV, medial amygdaloid 
nucleus, posteroventral part; NS, nucleus sphaericus; MOB, main olfactory bulb; 
mot, medial olfactory tract; OG, olfactory gray; OT, olfactory tubercle; ot, optic 
tract; PDVR, posterior dorsal ventricular ridge; Pir, piriform cortex; PMCo, poste-
romedial cortical amygdaloid area; PMLo, posterolateral cortical amygdaloid area; 
S, septum; sm, stria medullaris; ST, striatum; Tu, olfactory tubercle; TT, taenia tecta; 
VPA, ventral posterior amygdala.

IntroductIon
Odor perception is initiated by interactions between odorants 
(sensu lato) and a diverse repertoire of receptors in sensory neurons 
(Ache and Young, 2005; Bargmann, 2006; Kaupp, 2010). Classical 
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neurons to higher processing centers and, ultimately, to behavior 
(Buck, 1995, 1996, 2000, 2004; Mombaerts, 1996, 1999a,b, 2004; 
Mombaerts et al., 1996; Dulac, 1997, 2000; Dulac and Torello, 2003; 
Brennan and Keverne, 2004; Brennan and Zufall, 2006; Dulac and 
Wagner, 2006; Cleland, 2010). Interactions and synergic activation 
of both systems, however, occurs in early stages of neural processing 
(Xu et al., 2005; Slotnick et al., 2010).

The genetic and molecular approaches to the study of the 
organization of chemosensory systems have allowed a step for-
ward to understand the organization of chemosensory systems. 
Genetic tracing of given receptors constitutes a valuable tool for 
this aim. The present review tries to provide a global panorama 
on the organization and evolution of olfactory and vomeronasal 
cortices with emphasis on recent advances including tract-tracing 
as well as genetic and molecular approaches. Own data of reptiles, 
marsupials and placental mammals are re-analyzed in the context 
of current knowledge of main taxa of vertebrates.

taxonomIc overvIew of vertebrates
Although a complete description of the taxonomic classification 
of vertebrates is out of the scope of the present manuscript, a brief 
outline of the main vertebrate taxa will be useful not only for the 
comparative strategy herein used but also to help non-familiarized 
readers to understand such organization. For the sake of clarity, the 
main taxonomic categories have been maintained but simplified. 
This hierarchical organization is explained below and has been 
adapted from Hickman and collaborators (Hickman et al., 2007).

The Phylum Chordata is defined by the presence of notochord. In 
its basic plan these animals are bilateral, coelomed, metameric, and 
cephalized. This Phylum includes the Groups Prochordata (with the 
Subphyla Urochordata –tunicates – and Cephalochordata –amphioxus) 
and Craniata (with the Subphylum Vertebrata). Within Subphylum 
Vertebrata are included the Superclasses Agnata (jawless, with the 
Classes Mixinoidea –mixins – and Cephalaspidomorpha –lampreys) 
and Gnathostomata (jawed, with the Classes Chondrichthyes – car-
tilaginous fishes – Osteichthyes –bony fishes – Amphibia, Reptilia, 
Aves, and Mammalia. The Class Mammalia includes the Subclasses 
Prototheria –monotremas – and Theria. The Subclasse Theria com-
prises the Infraclasses Metatheria – marsupials – and Eutheria with 
several Orders in which highlights the Order Primate. Finally, within 
the Order Primate consist of the Superfamilies Platyrrhini –new world 
monkeys – Catarrhini – old world monkeys – and Hominidae in 
which we are included.

agnata, jawless
Among superclass Agnata most data in the literature regarding the 
organization of the olfactory system have been obtained in lam-
preys. Reports on the lamprey olfactory system has been devoted 
to the organization of the olfactory mucosa (Thornhill, 1967; 
Suzuki, 1984; VanDenbossche et al., 1995; Laframboise et al., 2007), 
olfactory bulbs (Iwahori et al., 1987a; Melendez-Ferro et al., 2001; 
Pombal et al., 2002), and telencephalon (Chiba, 1999; Pombal et al., 
2002; Perez-Costas et al., 2004). The projections from the olfactory 
bulb identified medial and lateral olfactory tracts (LOT) reaching 
dorsal, lateral, and probably medial pallium as well as the posterior 
diencephalon as well as reciprocal, centrifugal projections to the 
bulb (Northcutt and Puzdrowski, 1988; Polenova and Vesselkin, 

1993). On the other hand, the origin of the vomeronasal system is 
uncertain. It was classically considered that the vomeronasal sys-
tem was developed by tetrapods and it was hypothesized to be an 
adaptation to terrestrial life (Eisthen, 1997). It has been demon-
strated that lampreys detect pheromones (Fine and Sorensen, 2008) 
and display some genetic components of the vomeronasal system 
(Grus and Zhang, 2009). Also, an accessory olfactory organ has 
been shown to send separated projections from those of the main 
olfactory epithelium to the medial portion of the bulb (Ren et al., 
2009). No further differential projections from this medial portion 
of the bulb to the pallium have been investigated. Therefore, data in 
the literature suggests that primordial elements of the vomeronasal 
system could be already present in jawless vertebrates.

chondrIchthyes, cartIlagInous fIshes
The olfactory system, including the olfactory epithelium (Ferrando 
et al., 2006, 2007, 2009; Zaccone et al., 2010) and the secondary 
connections from the olfactory bulbs have been investigated in 
sharks and rays (Smeets, 1983). Secondary olfactory centers have 
been neurochemically characterized as well (Yuen et al., 2005). Like 
lampreys, cartilaginous fishes display some genetic components 
of the vomeronasal system (Grus and Zhang, 2009). The distribu-
tion of G proteins suggests incipient segregated primary olfactory 
projections (Ferrando et al., 2009).

osteIchthyes, bony fIshes
The teleosts olfactory system has been investigated including the 
olfactory organs (Wilson and Westerman, 1967; Westerman and 
Wilson, 1968; Goel, 1978; Jain and Sahai, 1991), olfactory bulbs 
(Kosaka and Hama, 1982; Alonso et al., 1989; Satou, 1990), and 
olfactory-recipient areas (Singru et al., 2003; Gaikwad et al., 2004). 
The olfactory projections from the olfactory bulbs have been inves-
tigated in teleosts, with studies including early anatomical reports 
(Scalia and Ebbesson, 1971; Finger, 1975; Murakami et al., 1983). 
These projections have been re-investigated using modern genetic 
approaches (Miyasaka et al., 2009). In teleost fishes, whose telen-
cephalon is everted (Butler, 2000; Mueller and Wullimann, 2009), 
the secondary olfactory projections terminate in non-cortical areas 
of the telencephalon (Folgueira et al., 2004). Interestingly, three 
pathways from different receptors to different areas in the olfac-
tory bulb and to different areas in the telencephalon have been 
characterized in teleost fishes devoted to detect social cues, sex 
pheromones, and food odors (Hamdani el and Doving, 2007). In 
fact, not only vomeronasal receptors have been described in several 
species (Pfister et al., 2007), but, in lungfishes, it has been recently 
reported a complete vomeronasal system (Gonzalez et al., 2010).

amphIbIa
Studies on the amphibian olfactory system include reports focused 
in the olfactory epithelium (Getchell et al., 1989; Daston et al., 
1990; Crowe and Pixley, 1992; Krishna et al., 1992), olfactory bulb 
(Scalia et al., 1991b), and olfactory-recipient areas (Gonzalez and 
Smeets, 1991; Petko and Santa, 1992; Marin et al., 1997; Brox 
et al., 2004). The differential projections from the olfactory and 
vomeronasal epithelia to the main and accessory olfactory bulbs 
(AOB) were reported in several species (Taniguchi et al., 2008). The 
amphibian AOB has been investigated as well (Saito et al., 2006). 
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navigation (Gagliardo et al., 2009). In fact, the olfactory forebrain is 
quite specialized in migratory birds like anseriforms (Ebinger et al., 
1992). New techniques based on the combinatorial expression pat-
terns of neural markers and developmental regulatory genes have 
allowed to identify zones in the olfatorecipient area of the ventral 
pallium comparable to piriform, entorhinal, amygdalopiriform, 
and amygdaloid cortices of mammals (Martinez-Garcia et al., 2002; 
Abellan et al., 2009). Finally, analysis of olfactory receptor gene rep-
ertoires show that in all species studied, amplified olfactory receptor 
sequences were predicted to be from potentially functional genes 
thus suggesting that olfaction in birds may be a more important 
sense than generally believed (Steiger et al., 2008; Balthazart and 
Taziaux, 2009). The issue of avian pheromones is still far from been 
resolved (Caro and Balthazart, 2010).

metatherIa, marsupIals
Marsupials lack corpus callosum and consequently the telen-
cephalon shows a different organization as compared to placental 
mammals. The rhinal fissure is located more dorsal in marsupi-
als than in placental mammals and their anterior commissure is 
hypertrophied to communicate both hemispheres (Gloor, 1997). 
The olfactory epithelium (Kratzing, 1982) and olfactory bulbs are 
organized in a particular way in marsupials (Switzer and Johnson, 
1977; Jia and Halpern, 2004). Olfactory projections were already 
investigated in the middle of twentieth century (Adey, 1953). The 
projections from the main and AOBs were described in opossums 
using the Fink–Heimer method (Scalia and Winans, 1975; Meyer, 
1981; Shammah-Lagnado and Negrao, 1981). The olfactory-
 recipient and vomeronasal- recipient cortices occupied adjacent 
non-overlapping areas. Using neural tracers, the projections from 
the opossum main (Martinez-Marcos and Halpern, 2006) and acces-
sory (Martinez-Marcos and Halpern, 1999b) olfactory bulbs were 
later re-investigated using modern neural tracers. The projections 
from the MOB course mainly via the LOT to reach the anterior 
olfactory nucleus, olfactory tubercle, nucleus of the LOT, anterior 
and posterolateral cortical amygdaloid nuclei and the piriform, 
and lateral entorhinal cortices (Figure 4). The projections from 
the AOB course through the AOT to reach the medial amgydaloid 
complex and the posteromedial cortical amygdaloid nucleus (Figure 
5). Both projections converge at rostral levels such as the medial 
amgydala, whereas are non-overlapping at caudal levels (Figure 6). 
The differential expression of G proteins in the vomeronasal system 
(Halpern et al., 1995) and the cloning of the two families of vome-
ronasal receptors (Dulac and Axel, 1995; Herrada and Dulac, 1997; 
Matsunami and Buck, 1997; Ryba and Tirindelli, 1997) allowed to 
identify the differential projections to the anterior and posterior 
portions of the AOB (Jia and Halpern, 1996; Belluscio et al., 1999; 
Rodriguez et al., 1999). Both portions send convergent but also 
differential projections to the vomeronasal amygdala in opossums 
(Martinez-Marcos and Halpern, 1999b), which are also reciprocated 
by differential centrifugal projections to the anterior and posterior 
divisions of the AOB (Martinez-Marcos and Halpern, 1999a).

eutherIa, placental mammals
In placental mammals, the projections from the olfactory epithe-
lium to the MOB (Clark, 1951) and from the bulb to the cortex 
(Clark and Meyer, 1947) were already addressed in the middle of 

Secondary olfactory projections were early addressed in amphib-
ians (Northcutt and Royce, 1975). The differential projections from 
the main and AOBs were reported later on reaching cortical and 
non-cortical areas of the telencephalon, respectively (Scalia, 1972; 
Scalia et al., 1991a). The vomeronasal system was fully described 
more recently including not only hodology, but neurochemical 
and gene expression characterization (Moreno et al., 2005; Moreno 
and Gonzalez, 2007). Interestingly, heterogeneous expression of 
G proteins have been reported in the amphibian olfactory and 
vomeronasal epithelia (Jungblut et al., 2009). Vomeronasal receptor 
genes have been reported to be also expressed in the main olfac-
tory epithelium indicating that some pheromone-like triggered 
behaviors (Woodley, 2010) are mediated via the olfactory system 
in some amphibians species (Date-Ito et al., 2008).

reptIlIa
Research on the reptilian olfactory system includes reports focused 
to olfactory receptors (Steiger et al., 2009), olfactory and vomero-
nasal epithelia (Wang and Halpern, 1982a,b, 1988; Iwahori et al., 
1987b; Kondoh et al., 2010), olfactory bulbs (Iwahori et al., 1989a,b; 
Kosaka et al., 1991), and olfactory-recipient telencephalic areas 
(Smeets et al., 1986, 1987; Smeets, 1988; Smeets and Steinbusch, 
1990). In reptiles, the main and AOBs projections were investi-
gated in a number of species, mainly lizards and snakes (Gamble, 
1952, 1956; Halpern, 1976; Lohman et al., 1988; Martinez-Garcia 
et al., 1991; Lanuza and Halpern, 1998). These projections have also 
reviewed (Lohman and Smeets, 1993). Both projections are recipro-
cated by backwards centrifugal projections (Martinez-Garcia et al., 
1991; Lanuza and Halpern, 1998). The projections from the main 
olfactory bulb (MOB) are characterized by lateral, intermediate, 
and medial olfactory tracts (MOT; Figure 1). The lateral projec-
tion is the most robust projection and ends in the superficial layer 
of the reptilian lateral cortex (Figure 1). The projection from the 
AOB courses through the accessory olfactory tract (AOT) to reach 
the vomeronasal amygdala, within the reptilian amygdaloid com-
plex (Martinez-Garcia et al., 1993; Martinez-Marcos et al., 1999). 
The vomeronasal amygdala is mainly composed by the nucleus 
sphericus, a folded, cortical-like structure. The vomeronasal pro-
jection ends in the inner layer of this nucleus (Figure 2). The 
projections from the main and AOBs in reptiles are summarized 
in Figure 3.

aves
The avian olfactory system has been investigated from olfactory 
receptors (Nef et al., 1996) to olfactory epithelium (Slaby, 1987), 
olfactory bulb (Cobb, 1960; Ioale and Papi, 1989), and olfacto-
ry-recipient areas (Dietl and Palacios, 1988). The olfactory bulb 
projections in Aves were studied with Fink–Heimer technique 
demonstrating a bilateral non-symmetrical terminal field (Rieke 
and Wenzel, 1978). Using autoradiographic techniques, the avian 
olfactory bulb projections were compared to those of turtles. The 
main conclusions were that both projections were similar regarding 
“olfactory cortex,” but they do differ significantly regarding pro-
jections to the amgydaloid region, being this latter reduced to the 
nucleus taeniae in the case of birds (Reiner and Karten, 1985). These 
projections have been characterized using neural tracers as well 
(Ebinger et al., 1992). Avian olfaction have been largely related to 
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nucleus, taenia tecta, olfactory tubercle, the nucleus of the LOT, ros-
tral levels of the medial amgydaloid complex and the anterior and 
posterolateral cortical amygdaloid nuclei as well as the piriform and 
lateral entorhinal cortices (Figure 7). The projections from the AOB 
(Larriva-Sahd, 2008) travel through the AOT to reach the cortex–
amygdala-transition zone and the medial amgydaloid complex and 
posteromedial amygdaloid nucleus. Also, fibers course through 
the stria terminalis to reach the bed nucleus of the stria terminalis 
(Figure 8). Olfactory and vomeronasal projections converge at rostral 
levels of the basal telencephalon (Pro-Sistiaga et al., 2007) but not at 

the twentieth century. The characterization of projections from the 
main and AOBs were reported later on (Heimer, 1968; Winans and 
Scalia, 1970; Raisman, 1972; Price, 1973; Scalia and Winans, 1975; 
Devor, 1976; Skeen and Hall, 1977; Kosel et al., 1981; Schoenfeld 
and Macrides, 1984; Shipley and Adamek, 1984; De Carlos et al., 
1989) including the centrifugal projections (Davis et al., 1978; de 
Olmos et al., 1978; Davis and Macrides, 1981; Shipley and Adamek, 
1984; Coolen and Wood, 1998). As in marsupials, the projections 
from the MOB form a minor projection through the MOT and a 
major projection through the LOT to reach the anterior olfactory 

Figure 1 | Bright field microscopic images from rostral to caudal of coronal sections of one brain hemisphere showing biotinylated dextran-amine 
labeling Nissl-counterstained in the snake (Thamnophis sirtalis) olfactory cortices after one injection in the main olfactory bulb (MOB). (A) injection site in 
the MOB. (B–H) labeling in olfactory-recipient areas of the telencephalon. Scale bar A–D = 267; e–H = 400 μm.
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Figure 2 | Bright field microscopic images from rostral to caudal of coronal sections of one brain hemisphere showing biotinylated dextran-amine 
labeling Nissl-counterstained in the snake (Thamnophis sirtalis) vomeronasal amygdala after an injection in the accessory olfactory bulb (AOB). 
(A) injection site. (B–F) labeling in vomeronasal-recipient areas. Scale bar A = 160; B–C = 267; D–e = 400; F = 533 μm.

Figure 3 | Schematic representation of main (red) and accessory (green) projections from rostral to caudal (A-D) areas in the snake (Thamnophis sirtalis) 
olfactory – and vomeronasal-recipient areas.
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structures including the anterior olfactory nucleus, piriform 
cortex, tenia tecta, periamygdaloid cortex, and rostral entorhinal 
cortex. Centrifugal projections were also revealed originating in 
olfactory-recipient areas by using retrograde tracers. The vome-
ronasal system exists, but it is poorly developed in New World 
monkeys. In marmoset, that possess an intact vomeronasal organ, 
sequences of vomeronasal receptors (V1R) appear to correspond 
to pseudogenes (Giorgi and Rouquier, 2002). Neuron-specific 
markers have been reported to be expressed in the vomeronasal 
epithelium of different species of primates including marmoset 
(Dennis et al., 2004). Neurons in the AOB express markers typi-
cal of mitral/tufted cells (Nakajima et al., 2003). Marmoset, like 
other mammals and in contrast to rodents and opossums, display 
a homogeneous vomeronasal system where only V1R and Gi pro-
teins are expressed (Takigami et al., 2004). To our knowledge, the 
secondary vomeronasal projections from the AOB have not been 
traced in marmosets.

caudal ones (Figure 9; Martinez-Marcos, 2009; Gutierrez-Castellanos 
et al., 2010). The differential expression of G proteins in the vomero-
nasal system (Halpern et al., 1995) and the cloning of two families of 
vomeronasal receptors (Dulac and Axel, 1995; Herrada and Dulac, 
1997; Matsunami and Buck, 1997; Ryba and Tirindelli, 1997) led 
to the description of differential projections from the vomeronasal 
epithelium to the anterior and posterior divisions of the AOB (Jia 
and Halpern, 1996; Belluscio et al., 1999; Rodriguez et al., 1999). Both 
divisions of the AOB show convergent (Von Campenhause and Mori, 
2000), but also partially divergent projections in the vomeronasal 
amygdala (Mohedano-Moriano et al., 2007) that are preserved in 
the hypothalamus (Mohedano-Moriano et al., 2008).

platyrrhInI, new world monkeys
The MOB connections were recently characterized in the mar-
moset (Liebetanz et al., 2002). Injections of anterograde tracers 
revealed the medial and LOTs as well as the olfactory-recipient 

Figure 4 | Bright field microscopic images from rostral to caudal of coronal sections of one brain hemisphere showing biotinylated dextran-amine 
labeling Nissl-counterstained in the opossum (Monodelphis domestica) olfactory cortices after an injection in the main olfactory bulb (MOB). (A) injection 
site. (B–F) labeling in olfactory-recipient areas. Scale bar A, D, and F = 160; B, C, and e = 800 μm.
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Figure 5 | Bright field microscope images from rostral to caudal of coronal (A is sagittal) sections of one brain hemisphere showing biotinylated 
dextran-amine labeling Nissl-counterstained in the opossum (Monodelphis domestica) vomeronasal cortices after an injection in the accessory olfactory 
bulb (AOB). (A) injection site. (B) labeling in vomeronasal-recipient areas. Scale bar A = 400; B–F = 800 μm.

Figure 6 | Schematic representation of main (red) and accessory (green) projections from rostral to caudal (A-D) areas in the opossum (Monodelphis 
domestica) olfactory and vomeronasal cortices.
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nucleus of the amygdala, periamygdaloid cortex, and olfactory divi-
sion of the entorhinal cortex. Interestingly, olfactory fibers reach 
layer I of the medial amygdaloid complex. This structure has been 
traditionally described as a vomeronasal-recipient area, but recent 
data (Pro-Sistiaga et al., 2007; Kang et al., 2009) indicate that it is a 
mixed chemosensory structure receiving olfactory and vomeronasal 
inputs. Therefore, it could be hypothesized that this structure has 
changed from vomeronasal- to olfactory-recipient. Further inves-
tigations are needed to confirm this point (Figure 10).

catarrhInI, old world monkeys
Olfactory receptors are quite reduced in humans and great apes 
including a 40% of pseudogenes (Sharon et al., 1999). The pro-
jections from the MOB were traced in Old World monkeys using 
lesion–degeneration, autoradiographic (Turner et al., 1978), and 
neural tracing (Carmichael et al., 1994; Mohedano-Moriano 
et al., 2005) techniques. Among structures identified as olfactory-
 recipient were included the anterior olfactory nucleus, piriform 
cortex, ventral tenia tecta, olfactory tubercle, anterior cortical 

Figure 7 | Bright field microscopic images from rostral to caudal of coronal (A is sagittal) sections of one brain hemisphere showing biotinylated 
dextran-amine labeling Nissl-counterstained in the rat (Rattus norvegicus) olfactory cortices after an injection in the main olfactory bulb (MOB). 
(A) injection site. (B–H) labeling in olfactory-recipient areas. Scale bar A–B and D–H = 800; C = 400 μm.
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Figure 8 | Bright field microscopic images from rostral to caudal of coronal (A is sagittal) sections of one brain hemisphere showing biotinylated 
dextran-amine labeling Nissl-counterstained in the rat (Rattus norvegicus) vomeronasal cortices after an injection in the accessory olfactory bulb (AOB). 
(A) injection site. (B–H) labeling in vomeronasal-recipient areas. Scale bar A = 400; B–C and e–H = 800; D = 160 μm.

homInIdae, human beIngs
Olfactory receptor genes have been identified in humans (Ben-Arie 
et al., 1994; Glusman et al., 1996, 2000; Buettner et al., 1998; Rouquier 
et al., 1998), although up to 40% appear to correspond to pseudo-
genes (Sharon et al., 1999). In fact, evolutionary pressures have led 
to the loss of part of the olfactory receptor repertoire (Young et al., 
2002; Gilad et al., 2003; Niimura and Nei, 2003). The characteriza-
tions of olfactory projections in human have been only addressed 
by indirect methods such as comparative approaches with other 

 primates (Insausti, 1993; Insausti et al., 2002). Putative olfactory areas 
include the same structures identified in other primates such as ante-
rior olfactory nucleus, piriform cortex, ventral tenia tecta, olfactory 
tubercle, anterior cortical nucleus of the amygdala, periamygdaloid 
cortex, and olfactory division of the entorhinal cortex. In humans, the 
vomeronasal system is vestigial. The vomeronasal organ is apparently 
only present during embryonic development and its presence is quite 
controversial in adult humans (Stensaas et al., 1991; Smith et al., 1998, 
2001; Smith and Bhatnagar, 2000; Trotier et al., 2000; Abolmaali et al., 
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Figure 9 | Schematic representation of main (red) and accessory (green) projections from rostral to caudal (A-D) areas in the rat (Rattus norvegicus) 
olfactory and vomeronasal cortices.

Figure 10 | Cladogram illustrating the main taxa analyzed in the present report and the main changes in the olfactory and vomeronasal systems 
occurred during evolution.

2001; Bhatnagar and Smith, 2001; Knecht et al., 2001, 2003; Meredith, 
2001; Witt et al., 2002; Besli et al., 2004; Witt and Hummel, 2006; Witt 
and Wozniak, 2006). Putative pheromone receptors have been identi-
fied in human olfactory mucosa (Rodriguez et al., 2000; Rodriguez 
and Mombaerts, 2002). Further, to our knowledge, the human AOB 
has not been described. Therefore, the human “pheromonal-like” 
behaviors are probably mediated through the olfactory system (Mast 
and Samuelsen, 2009; Savic et al., 2009).

conclusIon
Olfaction plays a main role in most vertebrate taxa. Cladistic 
analysis of different vertebrates indicates that during evolu-
tion an early anatomical and functional subdivision of nasal 

chemical systems occurred – mainly olfactory and vome-
ronasal systems – including different receptors, and primary 
and secondary projection areas. The different chemical sys-
tems have suffered differential involution in given taxa due to 
 evolutionary pressures.
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