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Outline:
1. A discrete analogue model of a sonic hole toy model on  a ion ring 
geometry.

-- motivation, trapped ions.
--numerical classical simulation of a BH.

2. Numerical evidence of Hawking radiation:
-- backward evolution and Bogolibouv particle creation.
--mode conversion (Unruh’s sonic-hole)
--Bloch oscillations (Corley and Jacobson,  “falling lattice”)
--Dynamical creation and point-to-point correlations.
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Sonic dumb-hole 
Unruh 81, 95

Can we “discretize” the model?

Corley & Jacobson 98
Jacobson & Mattingly 99
Lattice black holes.



Ion lattices

Oxford, England: 40Ca+ 

Innsbruck, Austria: 40Ca+ 

Boulder, USA: Hg+ (mercury)

Aarhus, Denmark: 40Ca+ (red) and 24Mg+ (blue)



Trapped IonsTrapped Ions

Courtesy of R. Blatt



Trapped ions
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Size of the wave packet << wavelength of visible light. 



Entanglement entropy in Field Theory
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Could it be that Entanglement is the quantum source of 
BH entropy?

Bombelli, Koul,  Lee, Sorkin 86 

Entanglement ∝  Area



Entanglement entropy

2-D Harmonic lattice

Entanglement ∝  Area

SAB = −tr(ρA log ρA)



Simulating detection of vacuum entanglement 

Paul Trap
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Ions internal levels
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A+σz
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H=H0+Hint

A. Retzker, J. I. Cirac, B. Reznik, PRL, 2005.

1/ωz << T<<1/ν0

Entanglement Entropy
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Discrete BH analogue

Inhomogeneous, but stationary 
velocity profile v (θ). 
The necessary (de-)acceleration of the
ions is guaranteed by a force Fe on the ions. 

Harmonic oscillations around the equilibrium motion are phonons with
velocities c (θ) ∝ (v (θ))−1/2.
When v increases the sound velocity decreases and a Black and 
White horizons can form.
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Nature (1992), PRL (1992)



Ions on a ring
N ions of mass m in a ring with radius L: 

H = −
NX
i=1

4π2~2

2mL2
∂2

∂θ2i
+

NX
i=1

V e (θi) + V
c (θ1, . . . , θN )

We treat small perturbations around the equilibrium motion

θi (t) = θ0i (t) + δθi (t)

and expand the Hamiltonian to second order in δθi

H = −
NX
i=1

4π2~2

2mL2
∂2

∂δθ2i
+
1

2

X
i 6=j

fij(t)δθiδθj (1)



Large N effective field limit

For a slowly varying v (θ) the system Lagrangian for the scalar
field Φ (θ0i (t) , t) = δθi (t) becomes

L = mL2

(2π)2

Z
dθ
n (θ)

2

h
(∂tΦ+ v (θ) ∂θΦ)

2 − (iD (θ,−i∂θ)Φ)2
i

with D (θ, k) = c (θ) k + O (k3), the density n (θ) = 1/(v (θ)T ).

c (θ) =
p
2(2π)3n (θ) e2/(4π²0 ·mL3).

We have a position dependent  dispersive fluid.



Creating a discrete BH

We want the classical dumb-hole equilibrium 
motion:
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where g maps the normalized indices i/N∈ [0,1] 
monotonically increasing onto the angles θ∈ [0,2π] 
and is periodically continued.

v(θ) = g0
¡
g−1 (θ)

¢
/TThe velocity profile is then



Dynamics

∂

∂t
hξ̂iit =

X
j

Gij(t)hξ̂jit

∂

∂t
Γ(t) = G(t) · Γ(t) + Γ(t) ·G(t)T .

Note that since the initial state is Gaussian (either thermal or vacuum)
The state will remain Gaussian for later times. Hence higher order
Correlations can be computed via Wick’s decomposition theorem.



Group velocity

D’(k)
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c (θ) =
p
2(2π)3n (θ) e2/(4π²0 ·mL3)or



Testing wave packet trajectories
From Unruh’s model we expect:

-reflection at the horizon 
-Hawking’s radiation thermal properties remain mostly unaffected 
-but in our case k has a maximal value. 



Back in time

Values of             during propagation
backwarts in time. 

Here we have v = 0.83, k = 10, 
N = 1000, N2 = 1200,

Incoming wave

Outgoing wave
(negative frequency)

(Negative and positive frequency)
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Scattering to Low k modes
We find scattering to a low wavenumber negative frequency mode, on 
the second branch, which is mostly right moving.  This scattering 
is consistent with the approximate Killing frequency conservation.

It was argued that conformal invariance in 1D prevents scattering. 
We find that both for the full and truncated models there is a small non-
vanishing scattering.



In the commoving frame

Wave remains a right mover Scattering to a left mover

Unruh’s process Corley & Jacobson’s Bloch oscillation



Late time outgoing and early time ingoing distributions 
|∆ xi(t)| in the lab frame. 



Positive and negative frequencies

ω
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Positive and negative modes

If the phononic excitations are localized in the flat subsonic re-
gion, the excitations δθi(t) = hδθiit and δθ̇i(t) = h−i~∂δθiit can be
expressed as modes δθk(t) and δθ̇k(t) with wavenumber k. The pos-
itive and negative frequency part of these excitations are defined
by

δθ±k (t) =
1

2

³
δθk(t)± iδθ̇k(t)/ωk

´
,

δθ̇±k (t) =
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³
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First mechanism: mode conversion 
(Unruh 96)

Late time (final)  negative frequency pulse is depicted in Green.
Initial negative frequency pulse in light blue (dash-
dotted), and positive frequency pulse in red (dashed).
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In the commoving frame

Wave remains a right mover

Unruh’s process



Second mechanism: 
Block-like oscillations (Jacobson 98)

Soltions to                       lie outside the Brillouin zone:0 ( )vk D kω = ±
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In the commoving frame

Scattering from right to left mover



Testing Hawking’s hypothesis

We compare between the occupation number of the outcoming
Wave packet under the thermal Hypothesis 
And the the Bogoliubov coefficient:  
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Which taken to be localized at flat space.



Hawking temperature
The Black Hole horizon is located at c(θH)=v(θH). The temperature TH of 
Hawking radiation is given by the expression (c depends on θ)

2 2 )1 1( | ( ) | .
4 2
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In the case of a Coulomb chain with nearest neighbor interactions only, 
where the sound velocity of an homogeneous system  c=\sqrt{2e^2N}, 
it can be evaluated in the local density approximation as
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Numerical results
1. If only nearest neighbor Coulomb interactions are considered, the relative 
difference between these quantities is lower than ²<0.01 in our 
calculations with up to N=1000 ions. 

2.  For the long range Coulomb interactions it is of the order of ²<0.14. Here the 
definition of a global Hawking temperature is difficult because of the non-
linear dispersion relation at low wavenumbers. Possibly also due to the 
“non-conformal” scattering.

3. We have checked, that anharmonic effects do not significantly alter these 
results for oscillation amplitudes comparable to h θ2 i at the Hawking 
temperature. 

Therefore qualitatively Hawking radiation (mode mixing) seems to persists even 
in a fundamentally discrete system with long range interactions and a 
logarithmically diverging group velocity at low wavenumbers



Experimental Parameters
The ion velocity must lie in the same order of magnitude as the 

phonon velocity in the proposed experimental setup. 

For N=1000 singly charged 7Li ions with an average spacing of 
L/N=10µm the rotation frequency of the ions must be ωion=6.3kHz. 
The Hawking temperature in this system is 

. 62kHz=ionω=9.8~/HTBk

These parameters and such a temperature can be realized 
experimentally. 



Creation of a black hole
Experimental sequence to measure evidence for Hawking radiation on 
ion rings:

Begin with a thermal state of the excitations around homogeneously 
spaced subsonic rotating ions. 

Create in a short time a supersonic region to avoid white hole and finite 
size effects.  We change the velocity profile parameter in an 
exponentially smooth way.

In our case we used

So we have a time of order up to 0.5 T to observe the radiation.

0.01 <
Tcreation
T

< 0.1



in Stability

Deviation of the ions position relative to equilibrium as function
Of time.  BH Creation time is here ~0.01.



Correlations
We analyze the correlations obtained from the covariance matrix Γ
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Local creation operators:
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Where we use  Wick’s theorem:

ha†ia†jaiaji = ha†iaiiha†jaji+ ha†ia†jihaiaji+ ha†iajiha†jaii

Note that the interpretation is quite different compared to the BEC case!



Density-density correlations

correlations

bh

t=0,0.1,0.2,0.3,0.4T R=2.25



On the left Non-normalized correlations. t=0.4T

Possible breakdown of the harmonic approximation.



Testing kinematics by modifying the charge e2

The Black hole is not created. Different in/out relative velocities



Summary

(a) We suggest another avenue towards realization of an    
analogue BH  with cold ions. 

(b) This fully discrete Physical analogue model agrees with 
previously  suggested theoretical models.

(c) It appears to be accessible in today's experiments with  
ions.

(d) Various other tests can be easily done in this model.
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