Supersonic motion of impurities in a Bose gas

Michael Köhl

What is a Bose-Einstein condensate?

The "pedestrian" approach

 $T >> T_C$: classical gas

Thermal de-Broglie wavelength $\lambda_{dB} = h/mv \alpha T^{-1/2}$

 $T > T_C$: $T < T_C$: $\lambda_{dB} \approx d$ **Bose-Condensate** starts growing

T = 0: pure Condensate, coherent matter wave

What is a Bose-Einstein condensate?

Penrose and Onsager (1956):

$$\rho(r_1, r_2) = \left\langle \hat{\Psi}^{\dagger}(r_1) \hat{\Psi}(r_2) \right\rangle$$
$$= \Psi^{*}(r_1) \Psi(r_2) + \left\langle \delta \hat{\Psi}^{\dagger}(r_1) \delta \hat{\Psi}(r_2) \right\rangle$$
$$\boxed{\begin{array}{c} \text{condensate} \\ \text{wavefunction} \end{array}} \quad \text{fluctuations}$$

off-diagonal long-range order of the density matrix

Impurities: why spoiling a clean system?

- Understanding real world systems
- Test & measurement: Impurities as probes and tools
- Transport experiments

What is a one-dimensional gas?

transverse degrees of freedom are frozen out

Conditions for 1D $k_B T < \hbar \omega_\perp$ Bosons: $\mu < \hbar \omega_\perp$ Fermions: $E_F = N \hbar \omega_z < \hbar \omega_\perp$

 asymptotic scattering states are one-dimensional wave functions

Many exactly solvable problems

Dimensionality modifies ground state and excitation spectrum

Important role of quantum fluctuations

Mapping of Bose and Fermi systems

Confinement induced scattering phenomena

Energy scales in one dimension

	1D	3D
Kinetic energy	$E_{kin} = \frac{\hbar^2 n_{1D}^2}{2m}$	$E_{kin} = \frac{\hbar^2 n_{3D}^{2/3}}{2m}$
Interaction energy	$E_{\rm int} = \frac{\hbar^2}{m a_{1D}} n_{1D}$	$E_{\rm int} = \frac{4\pi\hbar^2 a}{m} n_{3D}$
	$\gamma = \frac{E_{\text{int}}}{E_{kin}} = \frac{2}{a_{1D}n_{1D}}$	$\frac{E_{\text{int}}}{E_{kin}} = 8\pi a n_{3D}^{1/3}$

Strong interaction at **low density**.

Strong interaction at **high density**.

Regimes of degeneracy in 1D

1960: $\gamma \rightarrow \infty$ limit solved by Girardeau

- 1963: Exactly solved for all values of γ by Lieb & Liniger
- 2003: 1D Bose gases first realized by Esslinger et al. (ETH Zürich).
- 2004: Tonks gas experimentally realized by Weiss et al. (Penn State) & Bloch et al. (Mainz)

Excitations in a weakly interacting Bose gas

Excitations in a Tonks gas

Two branches of excitations: "particle" excitations and "hole" excitations

Tools of the trade

Making a Bose-Einstein condensate

April 2008

Bose-Einstein condensation

Cold atomic gases

- Dilute gases: n ≈ 10¹⁴ cm⁻³
- Tunable from weak to strong interactions
- Ultracold: T_{degeneracy} ≈ 100 nK
- Detection by absorption imaging

How to detect ultracold atoms

Absorption imaging

Advantages

- precise atom number determination
- good momentum resolution
- technically very simple

Disadvantages

- integration along the line of sight
- no in-situ measurements: cloud is too small and dense
- correlation measurements are difficult

More advanced detection techniques

Noise-correlation measurements

[Altman et al. PRA (2004); Bloch group (Mainz), Nature (2005 & 2006)]

Hanbury Brown and Twiss correlations of metastable atoms

[Aspect group (Orsay), Science (2005) & Nature (2006)]

Single atom counting by cavity QED

[A. Öttl, S. Ritter, M. Köhl, T. Esslinger, PRL (2005)
S. Ritter, T. Donner, A. Öttl, M. Köhl, T. Esslinger, PRL (2007)
T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, T. Esslinger, Science (2007)].

Spectroscopic detection

Experimental realization of 1D Bose gases

Generating tight confining potentials

Hybrid optical/magnetic trap

Experimental parameters: Atoms: ⁸⁷Rb (bosons) Wavelength of lattice: 764 nm $\omega_x = \omega_y \le 2\pi$ 65 kHz (optical lattice) $\omega_z = 2\pi$ 39 Hz (magnetic trap) *N*<120 per tube 0.5 < γ < 5

Other experiments in 1D: ETH, ENS, Mainz, MIT, NIST, Penn State, Rice, Vienna ...

Spatial addressing

 $\begin{array}{l} \mbox{Radio frequency resonance: } |F=1, \ m_F=-1 > \rightarrow |F=1, \ m_F=0 > \\ \mbox{at } \hbar \nu_{RF} = g_F \mu_B B(x,y,z) \approx \mu_B B(z)/2 \end{array}$

Generation of spin impurities

- width of impurity wave packet:
 2.5 μm (≈ 3 atoms)
- same transverse confinement: propagation of impurities is purely one-dimensional
- same scattering lengths: a_{-1,-1} ≈ a_{-1,0} ≈ a_{0,0}

In-situ spectroscopy of the Tonks gas

In-situ spectroscopy of the Tonks gas

Propagation of a density wave packet

Impurity momentum distribution

Comparison with numerical calculations

Gross-Pitaevskii equation does not account for

- strong interactions (γ>>1)
- excitations of wave vector $k > \pi$ n

Length of the "tail": Release measurement

Dynamic structure factor

Dynamic structure factor

Towards immersing single ions into a Bose-Einstein condensate

A new hybrid system: Atoms and ions

Quantum technology

- Cooling ions by superfluid immersion
- Ion as scanning probe

Fundamental physics

- Ultracold atom-ion interactions
- Ions provide tunable nano-potential

position accuracy of the ion: <10 nm

Trapping ion crystals

- Linear Paul trap with 0.8 mm spacing between electrodes
- RF drive: 750 V @ 42 MHz
- Trap loading by photo-ionization from an atomic beam

Axial trap frequency: $\omega_z = 2\pi \cdot 45 \text{ kHz}$ Radial trap frequency: $\omega_{\perp} = 2\pi \cdot 1 \text{ MHz}$

Thanks!

Carlo Sias (Postdoc), Christoph Zipkes (PhD), Stefan Palzer (PhD), Michael Feld (PhD), Bernd Fröhlich (PhD), M.K., not in the picture: Alexander Beck (undergraduate)

www.quantumoptics.eu

£££: EPSRC, University of Cambridge, Herchel-Smith Fund

