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Summary
• Optical lattices

• Instability of the superfluid flow

• Effect of the radial confinement

• Managing the dispersion by tuning the lattice velocity

• Attractive interactions

• Modulation of the radial confinement

• Parametric instability and pattern formation

• Toroidal geometries, quantized circulation



Meanfield regime

Gross-Pitaevskii equation:

• 1D GPE: the radial degrees of freedom are frozen

• Effective 1D model (NPSE)

• 3D GPE  



B. Wu and Q. Niu, New Journal of Physics 5, 104.1 (2003)

the stationary
 solution 

is energetically 
stable

the system can 
lower its energy by 
emitting excitations
(dissipative process)

small fluctuations 
do not  perturb 

the evolution

small fluctuations 
grow exponentially 
in time

Instabilities



Bogoliubov excitations

linear regime:

Bogoliubov equations:

normalization:



Landau (energetic) instability

negative eigenvalues → instability



Dynamical instability

Bogoliubov equations:

imaginary frequencies → excitations grow exponentially in time



Stability of a Bloch wave

periodic system → Bloch waves

p



Dynamical instability: phonon-antiphonon resonance

p/qB=0 p/qB=0.5p/qB=0.25

p/qB=0.75p/qB=0.55 p/qB=1

phonon dispersion

anti-phonons

imaginary component

M. Modugno, et al., PRA 70, 043625 (2004)
[B. Wu and Q. Niu, PRA 64, 061603(R) (2001); C. Menotti et al., New J. Phys. 5, 112 (2003)]



Stability diagrams for Bloch waves (1D)

B. Wu and Q. Niu, PRA 64, 061603(R) (2001)
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Effect of the radial degrees of freedom

M. Modugno, C. Tozzo, and F. Dalfovo, PRA 70, 043625 (2004)

p=0 0<p<1

axial phonons

radial breathing



3D stability diagrams

Same onset for 
instability from GPE 3D 
and effective 1D (NPSE)



sound velocity

M. Krämer, C. Menotti and M. Modugno, J. of Low Temp. Phys., Vol. 138 (2005)



Dipole mode of a BEC

experiment S. Burger et al., PRL 86, 4447 (2001)



Dipole mode of a BEC

Center-of-mass velocity vs.  time.

Linear stability analysis:

Center-of-mass velocity vs.  BEC 
quasimomentum in the first Bloch band. 

Exp. critical velocity

3D GPE

M. Modugno, C. Tozzo, and F. Dalfovo, PRA 70, 043625 (2004):  
simulation of the experiment in S. Burger et al., PRL 86, 4447 (2001)



1D vs 3D

3D:

1D, effective 1D : complete loss of coherence



A BEC in a moving lattice

L. Fallani et al., PRL 93, 140406 (2004)a lattice with fixed velocity 
is ramped up adiabatically

p



L. Fallani et al., PRL 93, 140406 (2004)



Dispersion management

p

control the BEC dispersion by tuning the lattice velocity 
(for weak nonlinearity)



Dispersion management

free expansion: m∗ < 0 ⇒  time reversed evolution

P. Massignan and M. Modugno, Phys. Rev. A 67, 023614 (2003)

} m∗ < 0

} m∗ < m

m∗ ≈ ∞



L. Fallani et al., Phys. Rev. Lett. 91, 240405 (2003)
(see also B. Eiermann et al., Phys. Rev. Lett. 91, 060402 (2003))



Attractive interactions

Negative m and DI appear in separate regions 
→ tune the dispersion relation to negative values avoiding the effects of DI

Gray area: Landau instability
The system is energetically unstable for any velocity
→ no superfluidity according to the Landau criterion.

naive explanation: changing the sign of g ≃ change of sign of m

Dotted region in (g-i): regimes of 
DI for the repulsive case

Colored regions: DI 
(Color scale ~ growth rate of the unstable modes = Im(ωpq))

DI at low p, can be stabilized above a critical threshold 
(opposite behaviour of that for repulsive BECs)

Weak interactions/shallow lattices: DI takes place via long wavelength 
(low q) excitations → no site-to-site dephasing, collective oscillations

G. Barontini and M. Modugno, Phys. Rev. A 76, 041601(R) (2007)



Waveguide expansion: v=0.2 vB

Axial density plot of the BEC 
as a function of time during the 

expansion in the waveguide....

......and its momentum distribution

oscillation accounted for by the real part of the excitations spectrum + momentum spread due to 
finite size (fitted frequency  = 44.5 Hz ∼ real part of frequency of the most unstable modes)

rapid population of modes at small q (≃ 0.058qB) 
(most unstable modes of the uniform system) 

density modulations over several sites of the lattice

breathing-like oscillation,  no decoherence 
as observed so far with repulsive BECs



0.5vB < v < vB

change of sign of m∗ ⇒ time-reversed evolution 

⇒ contraction of a BEC initially expanding outwards

reduced expansion for very 
large |m∗|

|m∗| < m : 
enhancement of the expansion 
near the band edge  

attractive interactions are turned 
into an effective repulsion: 
boost of the expansion with 
respect to the free case even 
when |m∗|>m

}



L

→ parametric amplification of counter-propagating 
axial phonons of frequency ω(k) = Ω/2

Modulation of the transverse confinement at frequency Ω 
(GPE + initial quantum/thermal fluctuations)

Parametric instability & pattern formation

M. Modugno, C. Tozzo and F. Dalfovo, Phys. Rev. A 74, 061601(R) (2006)



periodic boundary contitions → discrete spectrum, k = m2π/L
→ resonance behaviour

amplitude of the ±k axial phonons 
as a function of tmod 

for  Ω=0.6ω⊥ (resonance m=8)

maximum value of Pk 
as a function of Ω 

black squares: 2ω(k) of the Bogoliubov excitations



parametric amplification of phonons → spontaneous pattern 
formation of standing waves with m-periodicity

analogous to Faraday’s instability
M. C. Cross and P. P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

K. Staliunas et al., Phys. Rev. Lett. 89, 210406 (2002)

P. Engels et al., Phys. Rev. Lett. 98, 095301 (2007)



toroidal geometry

• periodic boundary conditions 

• produced in current experiments
S. Gupta et al., Phys. Rev. Lett. 95, 143201 (2005)
A. S.  Arnold et al., Phys. Rev. A 73, 041606(R) (2006)
C. Ryu et al., Phys. Rev. Lett. 99, 260401 (2006)

• tools for observing fundamental properties: 
quantized circulation, persistent currents, 
matter-wave interference, sound waves and solitons in low-D, 
rotation sensors



Periodic pattern in the velocity field → interference fringes of atoms expanding in 
preferred directions: flower-like structure with m “petals” in the expanded density 
profile, reflecting the periodicity of the initial pattern.

Density distribution

Azimuthal velocity field

Expanded density 
(texp=7 ms)

max visibility 
of the density pattern

(20%)

max visibility 
of the velocity pattern

(a) (b) (c)

(d) (e) (f)

45 μm 



quantized circulation
The pattern formation is affected by the presence of quantized circulation:          
if the condensate is initially rotating with angular momentum Lz = κh per particle:

• in-situ pattern: rotates at the same angular velocity of the condensate 

• expandend pattern: misalignment of opposite petals proportional to κ

→ sensitive detection of quantized circulation


