

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy

Workshop EHR - Valencia - February 3rd, 2009

Summary

- Optical lattices
 - Instability of the superfluid flow
 - Effect of the radial confinement
 - Managing the dispersion by tuning the lattice velocity
 - Attractive interactions
- Modulation of the radial confinement
 - Parametric instability and pattern formation
 - Toroidal geometries, quantized circulation

Meanfield regime

Gross-Pitaevskii equation:

$$i\hbar\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + g|\psi(\mathbf{x},t)|^2\right)\psi(\mathbf{x},t)$$

- ID GPE: the radial degrees of freedom are frozen
- Effective ID model (NPSE)
- 3D GPE

Instabilities

Bogoliubov excitations

linear regime:

$$\psi(\boldsymbol{x}, t) = e^{-i\mu t} \left[\phi_0(\boldsymbol{x}) + \delta \phi(\boldsymbol{x}, t) \right]$$
$$\delta \phi(\boldsymbol{x}, t) = \sum_j u_j(\boldsymbol{x}) e^{-i\omega_j t} + v_j^*(\boldsymbol{x}) e^{i\omega_j t}$$

Bogoliubov equations:

$$\left[H_0 - \mu + 2g |\phi_0|^2 \right] u + g \phi_0^2 v = \hbar \omega u \left[H_0 - \mu + 2g |\phi_0|^2 \right] v + g \phi_0^{*2} u = -\hbar \omega v$$

normalization: $\int d\boldsymbol{x}(u_i^*u_j - v_i^*v_j) = \delta_{ij}$

Landau (energetic) instability

$$E[\phi] = E[\phi_0] + \int d^3x (\delta\phi^*, \delta\phi) M\left(\frac{\delta\phi}{\delta\phi^*}\right)$$

$$M = \begin{pmatrix} H_0 + 2g|\phi_0|^2 & g\phi_0^2 \\ g\phi_0^{*2} & H_0 + 2g|\phi_0|^2 \end{pmatrix}$$

negative eigenvalues \rightarrow instability

Dynamical instability

Bogoliubov equations:

$$\sigma_z M \begin{pmatrix} \delta \phi \\ \delta \phi^* \end{pmatrix} = \hbar \omega \begin{pmatrix} \delta \phi \\ \delta \phi^* \end{pmatrix}$$

imaginary frequencies \rightarrow excitations grow exponentially in time

$$\delta\phi \sim A e^{-i\omega t}$$
 $Im(\omega) \neq 0$

Stability of a Bloch wave

periodic system \rightarrow Bloch waves

$$\varphi(z,t) = e^{i(\mu t - pz)} \left[\phi_p(z) + \delta\phi_p(z,t)\right]$$

$$\delta\phi_p = \sum_{q,n} \left[u_{pq,n} \mathrm{e}^{i(qz - \omega_{pq,n}t)} + v_{pq,n}^* \mathrm{e}^{-i(qz - \omega_{pq,n}t)} \right]$$

Dynamical instability: phonon-antiphonon resonance

M. Modugno, et al., PRA **70**, 043625 (2004) [B.Wu and Q. Niu, PRA **64**, 061603(R) (2001); C. Menotti et al., New J. Phys. **5**, 112 (2003)]

Stability diagrams for Bloch waves (ID)

B.Wu and Q. Niu, PRA 64, 061603(R) (2001)

Effect of the radial degrees of freedom

M. Modugno, C. Tozzo, and F. Dalfovo, PRA 70, 043625 (2004)

3D stability diagrams

sound velocity

M. Krämer, C. Menotti and M. Modugno, J. of Low Temp. Phys., Vol. 138 (2005)

Dipole mode of a BEC

experiment S. Burger et al., PRL 86, 4447 (2001)

Dipole mode of a BEC

3D GPE

Center-of-mass velocity vs. time.

Linear stability analysis:

Center-of-mass velocity vs. BEC quasimomentum in the first Bloch band.

M. Modugno, C. Tozzo, and F. Dalfovo, PRA **70**, 043625 (2004): simulation of the experiment in S. Burger *et al.*, PRL **86**, 4447 (2001)

ID vs 3D

ID, effective ID : complete loss of coherence

A BEC in a moving lattice

is ramped up adiabatically

L. Fallani et al., PRL 93, 140406 (2004)

Dispersion management

control the BEC dispersion by tuning the lattice velocity (for weak nonlinearity)

Dispersion management

free expansion: $m^* < 0 \Rightarrow$ time reversed evolution

P. Massignan and M. Modugno, Phys. Rev. A 67, 023614 (2003)

L. Fallani *et al.*, Phys. Rev. Lett. **91**, 240405 (2003) (see also B. Eiermann *et al.*, Phys. Rev. Lett. **91**, 060402 (2003))

Attractive interactions

G. Barontini and M. Modugno, Phys. Rev. A 76, 041601(R) (2007)

Negative m and DI appear in separate regions

 \rightarrow tune the dispersion relation to negative values avoiding the effects of DI

Waveguide expansion: $v=0.2 v_B$

oscillation accounted for by the <u>real part of the excitations spectrum</u> + momentum spread due to finite size (fitted frequency = 44.5 Hz ~ real part of frequency of the most unstable modes)

$0.5v_B < v < v_B$

Parametric instability & pattern formation

Modulation of the transverse confinement at frequency Ω (GPE + initial quantum/thermal fluctuations)

→ parametric amplification of counter-propagating axial phonons of frequency $\omega(k) = \Omega/2$

M. Modugno, C. Tozzo and F. Dalfovo, Phys. Rev. A 74, 061601(R) (2006)

periodic boundary contitions \rightarrow discrete spectrum, $k = m2\pi/L$ \rightarrow resonance behaviour

black squares: $2\omega(k)$ of the Bogoliubov excitations

parametric amplification of phonons \rightarrow spontaneous pattern formation of standing waves with *m*-periodicity

analogous to Faraday's instability

M. C. Cross and P. P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

K. Staliunas et al., Phys. Rev. Lett. 89, 210406 (2002)

FIG. 1. In-trap absorption images of Faraday waves in a BEC. Frequency labels for each image represent the driving frequency at which the transverse trap confinement is modulated.

P. Engels et al., Phys. Rev. Lett. 98, 095301 (2007)

toroidal geometry

- periodic boundary conditions
- produced in current experiments
 S. Gupta et al., Phys. Rev. Lett. 95, 143201 (2005)
 A. S. Arnold et al., Phys. Rev. A 73, 041606(R) (2006)
 C. Ryu et al., Phys. Rev. Lett. 99, 260401 (2006)
- tools for observing fundamental properties: quantized circulation, persistent currents, matter-wave interference, sound waves and solitons in low-D, rotation sensors

Periodic pattern in the velocity field \rightarrow interference fringes of atoms expanding in preferred directions: flower-like structure with *m* "petals" in the expanded density profile, reflecting the periodicity of the initial pattern.

quantized circulation

The pattern formation is affected by the presence of quantized circulation: if the condensate is initially rotating with angular momentum $L_z = \kappa \hbar$ per particle:

- in-situ pattern: rotates at the same angular velocity of the condensate
- expandend pattern: misalignment of opposite petals proportional to K

 \rightarrow sensitive detection of quantized circulation