VNIVERSITAT
DFVALENCIA

Discussion
Papers

in Economic
Behaviour

DPEB
04/11

games: conflicting
preferences

> Penélope Hernandez
Universitat de Valencia and ERI-CES, Spain

>Manuel Mufioz-Herrera
Universitat de Valencia and ERI-CES, Spain

>Angel Sanchez
Universidad Carlos Ill, Spain

February, 2011

o [ OF-COS

Heterogeneous network



Heterogeneous Network Games:
Conflicting Preferences

Penelope Hernandez! ~ Manuel Mufioz-Herrera!  Angel Sanchez?

July 7, 2010

Abstract

We propose a model of network games with heterogeneity introduced by endow-
ing players with types that generate preferences among their choices. We study two
classes of games: strategic complements or substitutes in payoffs. The payoff function
depends on the network structure, and we ask how does heterogeneity shape players’
decision making, what is its effect on equilibria, conditions of stability, and welfare.
Heterogeneity in players’ type establishes the existence of thresholds which determine
the Nash equilibrium conditions in a network game. Network configurations in equilib-
rium can be satisfactory if each player chooses the action corresponding to her type or
frustrated when at least one player is not. Also, equilibria can be specialized if all play-
ers are choosing the same action (only in strategic complements), or hybrid when both
actions coexist. A refinement of the Nash equilibria through stochastic mutations of
pairs of neighbors limits multiplicity to a subset of Stable Equilibrium Configurations.
We find that the Nash networks are absorbing states from where it is possible to leave
only through mutations and that such mutations in most cases will lead to a frustrated
hybrid configuration which, for most networks, is the risk dominant equilibrium.
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1 Introduction

In a population or society, agents can be involved in different social and economic interac-
tions, aiming to coordinate (anti-coordinate) choices with their counterparts. Interactions
thus define a social network, the neighbors of a specific agent being those with whom she
interacts. As a consequence, agents’ wellbeing depends on the behavior adopted by them-
selves and their neighbors. Examples such as acquiring a specific technology (input) between
companies, getting involved in a riot, or job search, show the relevance of the network for
the decisions made by the agents. Within this approach, past and current literature have
considered players as homogeneous, in the sense that their only difference arises from the
specific number of contacts every agent has. In such framework, it is generally the case that
an agent chooses an action if the number of her neighbors making that same choice is higher
than a given threshold. This paper proposes a model of network games with individual-level
heterogeneity introduced by endowing players with types that generate preferences over an
action among their choices. We advance the field in the direction of a more realistic modeling
by going beyond contextually different agents and considering intrinsically different agents.
Thus, this paper is motivated by the consideration that when endowing players with prefer-
ences over their choice set, the game played might be different depending on a player’s and
her opponents’ type, even if they have the same degree. We ask how does heterogeneity in
types and degree shape players’ decision making and payoffs, what is its effect upon equi-
librium when local information is available, the conditions of stability for equilibrium, and
how does this affect welfare.

As a general framework for the strategic interactions that take place in such setting, we
study two classes of network games: strategic complements (SC) or strategic substitutes
(SS). For both cases we find how heterogeneity affects the structure and conditions of the
game depending on the type of players interacting. The games can be played between two
players of different or same type, generating multiple cases. This will lead to conflicting
preferences when two players of different (the same) type interact in games with strategic
complements (substitutes).

A game with strategic complements in payoffs can be considered as a coordination game,
where each player faces a binary choice set. When players are endowed with types, they will
prefer one action rather than the other, so that even though they wish to coordinate, the
payoff differs if the coordination occurs in the preferred choice or in the one a player dislikes.
However, payoffs are higher by coordinating in the disliked option than in the case of anti-
coordination, when the agent is left alone in choosing her favorite action. There are many
examples of strategic complements in the literature. One simple case is that of coauthors
choosing an operating system or a specific technology to work with. Consider two brands
A and B among which they can choose. Type A players will receive higher payoff when
coordinating in (A, A), whereas type B players will receive higher payoff when coordinating
on (B, B). However, it is clear that, due to their interest in working together, players of both
types prefer to coordinate in the action they dislike rather than sticking to their preferred
action and being left with an incompatible operating system or technology.

The situation is the opposite in games with strategic substitutes, which can be seen as anti-



coordination games. Players are better off when anti-coordinating. If each one chooses the
action they prefer in view of their type, both maximize their payoffs. As before, even if each
one chooses the disliked option, but still anti-coordinate, they will receive a higher payoff
than in the case of coordination, while coordinating in the disliked choices gives the lowest
payoff. This type of games are very common in examples such as differentiation of a product
between two companies. Say for example, they can either produce in low quantities at high
prices (high quality) focusing on a segment of the population with high income, or choose for
high levels of production at low prices (low quality) targeting a wider range of population,
that of a lower income. When each firm has a level of capital (type) that makes it prefer a
particular choice between high and low quality, and their preferences are opposite, the best
possible outcome arises when each one of them produces what they like. On the contrary,
for each one of them the worst situation arises when competing for the same segment of
customers in a quality setting that is not the firm’s preferred one.

To go from the above described 2x2 setting to a game in a social network, we assume that
there is a fixed social (or geographic, or financial) structure where each player wants to
adopt an action determined by her type, and interacts strategically with her neighbors. In
this scenario, our main results can be summarized as follows: To begin with, we obtain two
specific thresholds, one for each type of player and depending on her degree, such that her
action changes when the number of her neighbors adopting the same action as hers goes
above or below the threshold. In other words, we show that a player has incentives to adopt
the behavior she likes if the number of her neighbors choosing the same (opposite) action
exceeds a given type-dependent threshold for games with SC (SS). In this context, a relevant
feature of our model is that heterogeneity in types generates heterogeneity in thresholds. A
player who likes a specific action has a lower threshold of acceptance for such choice than
a player who dislikes it, even with the same degree. Heterogeneity in players’ degree also
provides a wider range of thresholds, because a specific player’s threshold depends on her
type and degree. We subsequently study equilibria, finding specific network configurations
that depend on the class of game being played. Thus, we obtain networks that we denote as
satisfactory, where all players choose the action they like, which is the action corresponding
to their type. We also find frustrated networks, situations when at least one player chooses
the action she dislikes. These configurations, when considering the action profiles, are in
turn subdivided into specialized, where every player chooses the same action, which is only
possible in games with SC, and hybrid where both actions coexist.

We then refine this set of six (two) network game configurations in equilibrium in SC (SS)
through a process of stochastic mutations. We follow the pioneering work of Foster and
Young (1990), who were the first to argue that in games with multiple strict Nash equilibria,
some equilibria are more likely to emerge than others in the presence of continual small
stochastic shocks. To this end, we use myopic best response as our dynamical rule and
consider a class of mutations that affects two neighbors simultaneously. In this way, we
obtain a proper subset of equilibria configurations which are stable, and show that most of
them are in the class of frustrated hybrid networks, implying that full coordination is very
problematic in SC, and that there will generally be agents that choose the action they do not
like. As a last step in the characterization of equilibria, we carry out a welfare analysis and
show that the stable equilibria are risk-dominant in the sense of Harsanyi and Selten (1989),
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and in general they have the smallest overall welfare, an interesting result that connects with
the classical one by Kandori et al. (1993).

There is an increasingly growing literature in the last decade on the different effects of
considering a network as the substrate where strategic interactions or diffusion of information
take place; for a review, see Vega-Redondo (2007), Goyal (2007), and Jackson (2008)!.
Among this research, the paper by Galeotti et al. (2010) is specially relevant as it models
network games with incomplete information, considering also both SC and SS, where the
type of a player is her degree. Bramoullé and Rogers (2010) uses the same consideration of
a player’s type to model homophily, and Bramoullé and Kranton (2007) models games with
SS. Analysis of equilibrium in network games are found in Bloch and Jackson (2006) and
Jackson and Yariv (2007). Our contribution to the aforementioned literature is the modeling
of intrinsic heterogeneity in SC and SS games played on networks by players with types who
have preferences between actions. We assume local information, so that each player knows
her degree, her type and the actions chosen by her neighbors. It is also worth mentioning the
literature on behavioral models with thresholds for changing actions. Indeed, Granovetter
(1978) used an example of collective behavior where each person decides to get involved
in a riot or not conditioned to a given proportion of people they see doing it first. The
aforementioned paper by Galeotti et al. (2009) use thresholds to characterize the Bayesian
Nash equilibrium for network games showing that they have properties of monotonicity in
the degree of the players. Finally, Chiang (2007) is related to our findings in so far they
work with a model of threshold heterogeneity in networks.

The document is structured in four sections. In Sec. 2, we introduce the model considering
the 2 x 2 games with types of players and the heterogeneous network games, where the
relation between strategies and thresholds is exposed. We obtain and classify here the Nash
equilibria networks of the model. Subsequently, in Sec. 3 we present the dynamic model,
define stability for networks in equilibrium in terms of simultaneous mutations of two agents,
and find the networks that are stable under this process. Section 4 presents a welfare analysis
of the equilibrium networks, and finally Sec. 5 collects the discussion of our main results as
well as additional concluding remarks, and closes the paper.

2 The Model

2.1 The 2x2 Games

Strategic Complements (Coordination): Let SC be a 2-person game where every player
has two types ©; = {0, 1} and the finite set of actions A; = {0,1}. The payoff matriz depends
on each player’s choices and type as follows:

We consider? a > b > ¢ > d.Each 2 x 2 coordination game, fixed the types of players, has two

!The interest on this kind of problems has gone well beyond the economics tradition, see e.g. Szabé and
Fath (2007).
2Generally, the relation of payoffs presented in coordination games is that a > d and b > ¢, but for the



1 0 1 0 1 0

1 1| ab c,c 1 1] aa c,d 0 1] bb d,c

d,d b,a 0] de b,b 0| cd a,a
91:1,02:0 91:1,9221 01:0,9220

Table 1: Payoff matrices for strategic complements games.

Nash equilibria in pure strategies (1,1),(0,0) and one in mixed strategies. The game can
be played between two players of equal or opposite types. The case of a game of 2 players
with opposite types, where each one likes a different action and both prefer to coordinate,
presents conflicting preferences and it is not possible to Pareto rank equilibria. In games
between equally-typed players there is no conflict in preferences because each one likes the
same action, and the equilibrium when both choose the action corresponding to their type
is Pareto dominant in payoffs: (1,1) Pareto dominates (0,0) if two players of type 1 are
playing, and the opposite for two players of type 0.

Strategic Substitutes (Anti-Coordination): Let SS be a 2-person game where every
player has two types ©; = {0, 1} and the finite set of actions A; = {0,1}. The payoff matriz
depends on each player’s choices and type as follows:

0 1 0
1 0 1 0 1 0
1 1] cd a,a 1 1 c,c a,b 0 1] dd b,a
0| bb d,c 0| ba d,d 0| ab c,c
91:1,0220 91:1,92:1 9120,0220

Table 2: Payoff matrices for strategic substitutes games.

As in SC, payoffs follow the condition a > b > ¢ > d. The pure Nash equilibria of the
game are in the anti-coordination combinations (1,0),(0,1). When two players of opposite
type interact there are no conflicting preferences because both players are better-off when
choosing the action corresponding to each of their types, which is the Pareto dominant
Nash equilibrium of the game. For our example: (1,0) Pareto dominates (0, 1). Conflicting
preferences arise when two players of the same type interact, because both of them like the
same action and would want to anti-coordinate.

case of players with types it is relevant to specify the combinations of actions that are not an equilibrium.
In the case of anti-coordination in SC a player receives a lower payoff when being alone in the action she
dislikes than being alone in the favorite action. If payoffs in anti-coordination where equal, ¢ = d, a player
would be indifferent between being alone in either action, and the specification of types would allow for some
ambiguity.



2.2 The Network Game

Our next step is to proceed from the 2 x 2 games to the network game. To that end, we
need to define a network structure to model the manner in which agents interact. This social
network is denoted as I" and represented by (N, g), where N = {1,..., N} is a finite set of
players, and g is the set of undirected links in the network, given by the adjacency matrix
of the corresponding graph. The relationship between two players ¢ and j in the network
(N,g) is expressed by ¢;; € {0,1}. When there is a link between them g;; = 1, and we
say (7,7) are neighbors. In case they are not connected g;; = 0. The set of i’s neighbors is
Ni(g) =1{j € {1,...,N}gi; = 1}. A player’s degree is k;(g) = |N;(g)| = n; the cardinality
of the set N;(g).

On top of this social network, we introduce the network game in the following way: Players
can choose actions in a binary set A; = {0,1} and have a type that belongs to a set of
types ©; = {0,1}. A player ¢ of type 0; = 1 likes action a; = 1 and dislikes a; = 0, which
symmetrically holds for a player of type #; = 0. We use linear payoff functions dependent
on a player’s type and choice, where each receives benefit from own and neighbor’s actions.
We denote ay, (') as the vector of actions taken by ¢’s neighbors. The class of game played
is either SC or SS, and correspondingly the payoff function of player ¢ is:

Ui(eiv Qg aNi(F>> = )‘21[1 + 6m Z [{aj:ai} + (1 - 5m) Z I{ajfai}h (1)
j=1

Jj=1

where I(,,—q,} is the indicator function of those neighbors choosing the same action as player
i, and Ig4,24,y indicates neighbors choosing the opposite; the parameter )\Zii =« if a; = 0;,
and )\22 = [ if a; # ;. The type of game played is specified through the multiplier 4,,, that
takes value 1 in SC games and 0 in SS games. In all cases, we will assume that payofts verify
the condition 0 < 8 < a < 23, which as we will see below, has different implications for the
actions of the players in the two games. Thus, the network game is represented by

I'= <{1a s 7N}7 {gij}i,jE{l,...,N}a Uy, @i7 Az) (2)

In what follows, we will assume local partial information. By this, we mean that a player
in the network knows her degree k;, her type 6;, and the set of actions associated to her
neighbors ay,, but not their types. In this informational context, player i’s strategy can
then be described as the following map:

0Z91—>A“ Ze{l,,N} (3)

As can be seen from Eq. (3) the payoff functions depend on the player’s degree k; and
identity, that is, on her type 6;. Hence, it is not sufficient for two players of the same degree
k; = k; to make the same choice a; = a@; in order to have the same payoff function nor to
receive equal payoffs. There is a different payoff function for a player when choosing the
action she likes than when not doing so.



Given the local 3 information context we are considering, the equilibrium concept to focus
on in the next step is Nash equilibrium.

*

Definition 1 Nash Equilibrium: An action profile (o3,...,0%) is a Nash equilibrium in
the network game T, if and only if

vi(0;, 07, ... on) 2 vi(b,07,...,05,...,0y), Voi#06;, i€N, and 6,€0. (4)

We now study separately the equilibria for the two classes of games we are considering.

2.2.1 Strategic Complements

For games with strategic complements, the four payoff functions depending on the player’s
type and choice can be written as

vi(1,1, (ajy, ‘7a’]ni>> = a(l+xi),

Ui(LO’(a]N 7ajni)) = ﬁ<1+nz_X1)a

0i(0,0, (aj,, - a5,)) = a(l+n —xi),

vi0,1, (a5, -5 a5,)) = B+ x), (5)

where ; = > iy Ita;=1y is the number of i's neighbors choosing 1, and (n; — x;) =
> i1 1{a;=0y those choosing action 0.

To find the Nash equilibria of the network game in SC, notice that a player is better off
choosing the action she likes than not doing so with the same number of neighbors choosing
her same and opposite action. In particular, the condition on the values of o and [ introduced
above implies that being alone in the choice one likes gives lower payoffs than choosing the
disliked action and having neighbors making the same choice, i.e., 5(1 + n;) > a.

In order to formalize the Nash equilibria, let us define two thresholds, 7(n;) and 7(n;), that
will be functions of player i’s degree for each type of player in a network game. We define
these thresholds independently of the class of game being played as they will be useful in
both cases. The thresholds are

BB
a+B " a+p
o n»—l—a_ﬁ
a+8" a+p’

(ni) = |
T(ni) = |

| (6)
] (7)

where [...| and |...] denote respectively the maximum lower integer or the minimum higher
integer of the real number considered. It can be shown from the payoff functions that
7(n;) > 7(n;); in fact,

F(ni) — 7(n;) = z 1 gn n 2(%

)—2>0. (8)
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Figure 1: SC Thresholds

Figure 1 illustrates the thresholds for the two types of players §; = 1 and 6; = 0, and the
choices each makes in a Nash equilibrium depending on the size of ;.

With the thresholds we have introduced, we can now go to the Nash equilibria:

Proposition 1 An action profile (o}, ...,0%) is a Nash equilibrium in I" for network games
with strategic complements if:

oy =1, if0; =1 and x; > 7(n,),
of =0, if6;=1and x; < z(n:), 9)
of =0, if0; =0 and x; <7(n),
of =1, if0;, =0 and x; > 7(n;)

Proof: A player ¢ € N of type 8; = 1 chooses her favorite action a; = 1 instead of the action
she dislikes a; = 0ifv; (1,1, ((07, ..., 071,07 4,...,08)) = vi(1,0, (07, ..., 01,05 1,...,0x))-
Hence,

*

vi(1,1,(0},...,00 1,0 1,--.,0n)) = a(l4+xi) > B(1+n;—x;) = v;(1,0,(07, ..., 0] 1,07 1,---,0N)),

(10)
from which we deduce that
15} a—f 15} a— [
Xl_oz—l—ﬁnz a+p Xi = [oz—i-ﬁnl 04—1—61 z(m) (11)

On the other hand, a player i € N of type 6; = 0 chooses her favorite action a; = 0 instead of
the action she dislikes a; = 1if v;(0,0, (07,...,0/ 1,05 1,...,08)) > 0:(0,1, (0%, ..., 0/ 1,0 1,...,0N)),
which leads to

Ui(0,0, (Ufa s 70-:—170-;-17 s 7O-;KV)) = a(1+nz_X1) Z B(1+Xz) = Ui(oa 17 (UL s 70-:—170-;-1-1’ s 707V))
(12)
and 5 5
[0 o — (0 o —
a+p a+ 0 X LOH—B 0z+5J (n:) (13)

Xi <
O

Remark 1 For a player of type 6; = 1 to play her preferred action, 1, she needs to be
connected to at least x; neighbors choosing action 1, that is, x; > 7(n;). In case x; < 7(n;)

3We note that local and global information give the same Nash equilibrium strategies in each class of
games. There exists global information when all players know the whole configuration of types.



player i adopts her disliked behavior. On the contrary, a player i of type 8; = 0 needs to be
connected to at most x; neighbors choosing action 1, that is, x; < T(n;). In case x; > T(n;)
player i adopts her disliked behavior. If the number of neighbors choosing 1 a given player
has is x; < T(n;), independently of her type, such player chooses o; = 0, and when x; > T(n;)
she chooses o; = 1. The case in between, where T(n;) < x; < T(n;) grants any player to
choose the action corresponding to her type.

2.2.2 Strategic Substitutes

Let us now turn to games with SS, in which as before there are four payoff functions de-
pending on a player’s type and choice:

vi(L,1, (a1, a5,,)) a(l+n; — x;)

vi(1,0, (a1,...,a5,)) = B(1+x:)

v;(0,0, (a1,...,a;3,)) = a(l+x;)

vi(0,1,(ay,...,a;.)) = B(l+mn —xi). (14)

Reasoning along the same lines as in the previous case, we see that in the case of games
with SS, a player is better off choosing the action she likes than not doing so with the same
number of neighbors choosing her same and opposite action. The extreme case of being alone
in the choice one likes having all the neighbors coordinating in the same action gives lower
payoffs than making the disliked choice and having neighbors making the opposite decision,
B(1+n;) > a.

The threshold functions for both classes of games, strategic substitutes and strategic com-
plements are the same as in SC, but the relation between thresholds and players’ strategies
are not. Figure 2 illustrates the thresholds for the two types of players §; = 1 and 6; = 0,
and the choices each makes depending on the size of ;.

0, =1 1 1 7(ni)
o | | — > mo=0
O e — ¢ Lo =1
0;=0 ¢ 1 7(n;) 0 0 n,
Figure 2: SS Thresholds
Proposition 2 An action profile (o}, ...,0%) is a Nash equilibrium in I" for network games

with strategic substitutes if:

=1, if0; =1and y; < 7(n;),
=0, iff; =1and x; > 7(n;),
=0, iff; =0and x; > 7(n;),
=1, if0; =0 and y; < 7(n;).

(15)
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Proof: As in the previous case: Player ¢ € N of type #; = 1 chooses her favorite action

a; = 1 instead of the action she dislikes a; = 0 if v;(1,1, (07, ..., 0/ 1,0/ ,...,0x)) >
v;i(1,0,(0F,...,00 1,07 1,...,0x)), and therefore
Ui(lv 17 (Urv s 70-;717 O-;k+17 ce 70-7\7)) = a(1+ni_xi) > 6(1+Xi> = Ui(L 07 (Uiﬁ? s 70-:717 O':Jrla s
(16)
leading to
<% 120 <) OO ) (17)
i U i g = T1).
X a+ 3 a+ B X a+f3 a+

In the opposite case, player ¢ € N of type 8; = 0 chooses her favorite action a; = 0 instead of

the action she dislikes a; = 1if v;(0,0, (07,...,0/ 1,07 1,...,08)) 2 v:(0,1, (0}, ..., 0/ 1,074, ...

and we have

v;(0,0,(07,...,00 1,004 1,-..,0n)) = a(l4+xi) > B(1+n;—x;) = v;(0,1, (0}, ..., 001,001, ..
(18)
and hence 5 5 5 5
o — o —
i = n; — = Xi > n; — =T1(n,;). 19
X_a—l—ﬁ a+ X [OH—B a—l—[ﬂ (m:) (19)

O

Remark 2 For a player of type 6; = 1 to play her preferred action 1, she needs to be
connected to at most x; neighbors choosing action 1, that is, x; < T(n;). In case x; > T(n;)
player i adopts her disliked behavior. A player i of type 8; = 0 needs to be connected to
at least x; neighbors choosing action 1, that is, x; > 7(n;). In case x; < T(n;) player i
adopts her disliked behavior. If the number of neighbors a given player has, choosing 1 is
Xi < 7(n;), independently of her type, a player chooses o; = 1, and when x; > T(n;) she
chooses o; = 0. The case in between, where T(n;) < x; < 7(n;) grants any player to choose
the action corresponding to her type.

Remark 3 For the network games discussed in Galeotti et al. (2010), under incomplete
information the authors show that the Bayesian Nash equilibrium payoff is non-decreasing
(non-increasing) in the degree of the players for the case of SC (SS). While, due to the exis-
tence of types in the population, a similar result cannot be proven here, we find it noticeable
that the Nash equilibria we obtain are reminiscent of that structure in the sense that the
payoff is non-increasing or non-decreasing on the number of neighbors playing 1, x;. In fact,
the result of Galeotti et al. is recovered when there is only one type of players in the network.

2.3 Equilibrium Configurations

In the previous subsection we have seen what are the conditions for players of each type
to choose an action. These conditions, when applied to the network game as a whole,
lead to a variety of equilibrium configurations associated to the choices each player makes
and to the distribution of types. In order to classify all these equilibrium networks, in what
follows we introduce some notation. Beginning with the actions, a network can be specialized

11
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(S) or hybrid (H). A specialized action profile is one in which all players make the same
choice. Therefore, there are configurations specialized in action one, S1, or in action zero,
S0. In a hybrid action profile, both actions are present. Second, regarding players’ types, a
network can be frustrated (F') or satisfactory (S). In a satisfactory configuration, each player
chooses her favorite action corresponding to her type, and in the frustrated one at least one
player adopts the disliked choice. As a result, we may observe six (two) different network
configurations in SC (SS) depending on the distribution of types and the action profile:
Ss1,Ss0, Fis1, Fso, Suy, Frr (Su, Fg) (subindices refer to the category in terms of actions).
Note that we are claiming that specialized networks only exist in SC games. This is due to the
fact that the anti-coordination condition on the payoffs for SS does not allow an equilibrium
where all players make the same choice. Finally, satisfactory specialized configurations are
only possible under a very strong restriction to the type of the players: Indeed, Sg; and Fg;
require that the set {6; = 0} = (), whereas Sgo and Fg require {6; = 1} = 0.

We now discuss the condition under which the different equilibrium configurations arise. As
indicated above, the first proposition below refers only to SC games:

Proposition 3 The configuration of a network I'(N,g) in equilibrium is frustrated spe-
ctalized when all players choose one same action, so that a; = aj, V i,5 € {1,...,N}. A
network is specialized in action 1(0) if and only if the following three conditions are jointly
satisfied:

1. Players of type 0; = 1 have x; > 7(n;)(x; < 7(n;)) neighbors
2. Players of type 0; = 0 have x; > T(n;)(x; < 7(ni)) neighbors
3. All players of degree ki(g) = 0 are 6; = 1(6; = 0)

Example 1 If a situation in which all players are of degree k;(g) = 2, like in a circle (see
Fig. 8, middle graph), with just one neighbor of the same type, all players can sustain the
action they like. To specialize such a network, it is necessary for a player who dislikes the
specialized choice to have both of her neighbors of the opposite type. The same idea and
opposite symmetric conditions hold for the case of a network specialized in action 0. Figure
3 dllustrates some cases.

U1 o 17 11

Figure 3: Frustrated Specialized Configurations. The first digit refers to the type, the second
digit refers to the action.
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Proposition 4 The configuration of a network I'(N, g) in equilibrium is satisfactory hy-
brid in SC (SS) when each player chooses the action corresponding to her type, so that
a; =0;,Vie{l,...,N}. A network is satisfactory hybrid if and only if the following four
conditions are jointly satisfied:

1. Players of type 0; = 1 have x; > 7(n;)(x; < T(n;)) neighbors

(xi <
2. Players of type 0; = 0 have x; < T(n;)(x; > 7(ni)) neighbors

3. Two players i and j both of degree k(g) = 1, such that g;; = 1, are of the same type:
0, =0,

4. The set of types {0 = 1} and {6 = 0} are non-empty.

Sy networks can result in games with SC or SS. This implies that there is multiplicity of
equilibria.

Example 2 The star network cannot sustain satisfactory profiles in SC unless all players
are of the same type, but it does in SS. In a circle where all players are of degree k;(g) = 2,
specialized configurations are possible if not all players have both of their neighbors of the
same type. For higher levels of connectivity, the threshold relation is the only relevant feature.
Figure 4 illustrates some cases. The first three graphs of the example correspond to SC and
the other three to SS games, although the complete graph configuration (upper row, right) is
an equilibrium configuration for both classes of games.

11 T 100 111 11

@, 11
11 1 %o |Pe,, 11 00 [
i ¥
11 D{ 11T o0 /M1 oo |00 00
(AR 00 \m 11 00 11

Figure 4: Satisfactory Hybrid Configurations. The first digit refers to the type, the second
digit refers to the action.

Proposition 5 The configuration of a network I'(N,g) in equilibrium is frustrated hy-
brid when both actions coexist, and there is at least one player who chooses the action not
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corresponding to her type, so that 31 : a; # 0;.

Example 3 Again, in SC the star cannot support a frustrated hybrid equilibrium, but in SS
it occurs when a peripheral and the central node have the same type. Complete networks can
give rise to frustrated hybrid configurations in any class of game. A circle network is Fy
in SS when a player has two neighbors of her same type, but not all the circle has the same
condition. Figure 5 illustrates some cases. The first row of graphs are examples of SC and
the second shows graphs for SS.

o1 11 T00 oo 11 (11
11 oo 100 01
o0 10 71 01 1

®. | & | 11 710 11
AT VAT ISR X 10
10 \'m 11 \11 11 10 11

Figure 5: Frustrated Hybrid Configurations

As a final illustration of the conditions for the different types of equilibria to arise, Figure 6
illustrates the distribution of network configurations in the special case in which all players
of a given type have the same range of x; neighbors, either below, between or above the
thresholds, and face a player of the opposite type. The graph on the left represents games
with SC and the one on the right games with SS. Note that in this situation satisfactory
specialized configurations, being a very specific kind of equilibrium, do not appear.
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n; n; 4
Frustrated Frustrated
Hybrid Specialized |
7(ns) Tlng)| e
z(nl) pecia 0 Sat':s;::ic:ry I(nl)
Tyoria
- >1 — — 1
T(ni)  T(ni) 7(n;)  7(n;) n;
sC SS

Figure 6: Network Equilibrium Configurations when all players of the same type have the
same range of y;.

3 The Dynamic Model

Up to this point, we have analyzed network games both in SC and SS, finding and classifying
all possible pure equilibria. As we may see, there are very many different possibilities for
equilibria, and therefore we need some criteria to refine this set and reduce the number of
possible equilibrium configurations. In this section we address this issue by introducing a
dynamical framework that allows us to define stability. To this end, we begin by considering
a discrete set of time {0, 1,2,...}. At period ¢ = 0 the initial state is a network I'(N, g) with
a distribution of types from the set ©; = {0,1} and an action profile (o7,...,0%) that is a
Nash equilibrium, which belongs to the class of either satisfactory or frustrated (hybrid or
specialized) configurations. The dynamics is defined as follows: At each period ¢ > 1 there
are two steps:

Step 1: With probability p € (0,1), two connected players i, j € N such that g;; = 1,
independently receive an opportunity to experiment and change their action. The new
actions are denoted by a; # a;(t) and a; # a;(t).

Step 2: After the mutation has taken place, ¢ and j receive a revision opportunity and each
player uses a myopic best response to the mutated action profile. In a myopic best response,
as introduced by Ellison (1993), the player that is updating her strategy assumes that the
actions of her neighbors in the next time step will be the same they have presently done,
and computes what is the best response to those actions. In our specific framework, player
1 assumes that the mutated action of j and the actions of the rest of her neighbors are fixed
and then chooses a;(t + 1) = a;(t), returning to the initial choice, or maintains the mutated
choice so that a;(t + 1) # a;(t) (such conditions are symmetric for player j), depending
on which one is the best response. Both players revise simultaneously. In case any of the
mutated actions is retained, the resulting network configuration is let to evolve under myopic
best response, choosing a new player at random to update her strategy.

Remark 4 In the case when either ¢ or j have degree k = 0 the deviation always holds if
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x;(t + 1) = 0;. Therefore, the case of an isolated component can be treated as a network on
its own, and a network of only one node lacks of any interest. If g;; = 0, so that ¢ and j
are not neighbors, the mutation corresponds to an equivalent case of a unilateral deviation,
which is never a Nash equilibrium; myopic best response dynamics would immediately revert
the action to the original choice. The same argument holds if only one player mutates, either
1 or j, even if they are connected. It is important to note that the resulting network after the
dynamics does not need to be a Nash equilibrium configuration, although it can subsequently
converge to one.

Stable Equilibrium: A Nash-network E(T) is stable if in time t + 1, for any pair of
mutated neighbors 1,7 € N their myopic best response coincides with the previous action:
a;(t+1) = a;(t) and a;(t+1) = a;(t), i.e., the network configuration returns to its initial state.
We will denote by SSC(T') the set of stable networks in games with strategic complements,
and SSS(T') the set of stable networks in games with strategic substitutes.

3.1 Stable Equilibria in SC

As before, we discuss separately the two cases of SS and SC games, beginning with the
former.

Proposition 6 The set of Stable Equilibria in SC is a proper non-empty set of the Nash
equilibrium network: SSC(I') C E(T)

Proof: In order to prove that there exist equilibrium networks that are not stable in SC,
we proceed to compute the stability conditions for each possible combination of types and
actions. We obtain conditions that depend on y;, which is the number of neighbors of
player i taking action 1. However, to those conditions one needs to add the corresponding
ones arising from the fact that the starting configuration is a Nash equilibrium. These
two sets of constraints, taken together, lead to a more restrictive condition than the Nash
equilibrium one alone, and therefore, the set of stable networks is included in the set of Nash
equilibrium.

The details of the proof go as follows: Let us fix two mutated and connected nodes i, j € N.
First, take the same type ¢; = 6; and the same associated actions a; = a; for 0 or 1. Second,
one has to consider the case of type inequality, 0; # 0;, and explore two cases: When each
agent chooses her preferred action, 0; = a;,0; = a;, and the opposite case, 0; # a; or 0; # a;.
This study of six cases covers the most relevant instances and the remaining possibilities can
be checked in the same way. We now go into the details of these cases, whereas the complete
set of conditions is provided in table 3.

I- Leti,j € N be two connected nodes, g;; = 1, such that i # j and 6; = 0; = 1. Suppose
that the choices made by the pair of players at time ¢ are a; = a; = 1. The dynamics act as
follows:

Step 1: A mutation affects (i, j) = a; = a; = 0.



Step 2: Myopic Best Response (MBR). The new actions are: Player at node i plays a;(t+1) =
1 (same condition holds for player j), iff:

Xi—1 = z(m)z[@_’iﬁni—z;?#
5} a—f B a=p B +2)
N BN TRt Py ol RYCY)

II- Let i,5 € N be two connected nodes, g;; = 1, such that i # j and 0; = 6; = 0. Suppose
that the choices made by the pair of players at time ¢ are a; = a; = 0. The dynamics act as
follows:

Step 1: A mutation affects (4,j) = a; = a; = 1.

Step 2: MBR: Player at node ¢ plays a;(t + 1) = 0 (same condition holds for player j),
iff:

Xt S ) = [t )=
aQ 05_6 « OZ_B an1—25

Xi = La+6ni+a+ﬁj_1:La+ﬁni+a+ﬁ_ I=1 a+p J ey

III- Let i,j € N be two connected nodes, g;; = 1, such that i # j and 0; = 0; = 1. Suppose
that the choices made by the pair of players at time ¢ are a; = 1 = 0;,a; = 0 # ;. The
dynamics act as follows:

Step 1: A mutation affects (i,5) = @, =0,a; = 1.
Step 2: MBR: Player at node i plays a;(t + 1) = 1 iff:

B a—f

Xitl 2 (ng) =[o——ni— 1=
w2 (= SR 1= [ - S [ @)
Player at node j plays a;(t + 1) = 0 iff:
w1 < o) = [on - S0 -
B a—p B a—p _ (B +2)

Xj < (oz+6n] a+ﬁ1+1=(a—+5"j—a+ﬁ+w—( ot B 1. (23)

IV- Leti,j € N be two connected nodes, g;; = 1, such that ¢ # j and 0; = 6; = 0. Suppose
that the choices made by the pair of players at time ¢ are a; = a; = 1 # 0; = 0;. The
dynamics act as follows:

Step 1: A mutation affects (4,j) = a;, = a; = 0.
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Step 2: MBR : Player at node ¢ plays a;(t + 1) = 1 (same condition holds for player j),
iff:

-
a+p

1,+

| =

i 1=
n+a J+ L

xi—1 > ?(ni):LaJrB

Lo=p
5 Ty

an; — 20

fmnd M

+1] =1

> | a
Xi a+p

V- Let i,5 € N be two connected nodes, g;; = 1, such that i # j and 6; = 1,0; = 0. Suppose
that the choices made by the pair of players at time ¢ are a; = 1,a; = 0. The dynamics act
as follows:

Step 1: A mutation affects (i,j) = a; =0,a; = 1.
Step 2: MBR: Player at node ¢ plays a;(t + 1) = 1 iff:

B a=B
Xi+1 = I(ni)—(oé_i_ﬂnz Oz+5]:>
8 a-8 . _. B a-B . Bn—2
Xi 2 [a+ﬁni_a+51_1_(a+ﬁnz ot B ﬂ_(a+ﬁ 1. (25)
Player at node j plays a;(t + 1) = 0 iff:
v, o o a=p
xj—1 < T(”j)-[m ]+Q+BJ:>
— 2
P e IR P I e SR e [NE)

VI- Leti,j € N be two connected nodes, g;; = 1, such that ¢ # j and 0; = 1,6; = 0. Suppose
that the choices made by the pair of players at time ¢ are a; = 0 # 0;,a; = 1 # ;. The
dynamics act as follows:

Step 1: A mutation affects (4,7) = a; =1,a;, =0
Step 2: MBR: Player at node ¢ plays a;(t + 1) = 0 iff:

Wl < o) = [om- S0 =
5 a—pf B a=p _ B +2)
i < [a+ﬁni_a+51+1_(o¢+@nl " H_[—OHrﬁ 1. (27)
Player at node j plays a;(t + 1) = 1 iff:
UL > T) = g+ S =
— 2
G o> g+ S 1= g S - = R )

18



=0, =1 =6, =0 6 =1,6,=0
aj=a;=1 Xi > 7(n;) +1 Xi >T(ng) +1 Xi > 1(n;) +1
X; >1(n)+1 | x;>7(n;)+1 | x;>7(n;)+1
aj=a;=0 Xi <1(ni) —1 Xi < 7(ng) — 1 Xi < 7(n;) —1
X;<7(nj))—1 | x;<7(n;)—1 | x; <7(ny;)—1

aa=1la=0|* "y >7(n)—1|*x;>7(n)—1 ] *x; >7(n;) —1
g <z(ng)+1 | Fx; <T(n) +1 | *x; <T(ny) +1
ai=0a=1|* y,<z(n)+1 | *xi>Tn)+1 | *x;i<z(n)+1
xjzrlng) -1 Fx;>T(ny) -1 | * x; >7(ny) — 1

Table 3: Conditions for a network configuration to be stable under every specific type of
mutation. SC case.

Table 3 below summarizes the stability conditions for the six cases we have presented as
examples and for the remaining ones.

Finally, to the above stability conditions one has to add the constraints arising from the fact
that the original configuration is a Nash equilibrium, and those constraints actually forbid
some of the possibilities included in Table 3 to take place. Recalling the conditions of Nash
equilibria discussed in the preceding section, one finds the results collected in Table 4, that
presents the necessary and sufficient conditions for the mutations to be accepted and the
initial configurations in which each case can occur. This is a more restrictive set of conditions
on the configurations, compatible of course with those for the configuration to be a Nash
equilibrium, and therefore this is a proper subset of the equilibrium configurations, as we
wanted to prove. O

Remark 5 For the cases marked with a star “*” in Table 3, one can check that when
two players are making opposite choices, independently of their type, none has incentives
to hold to the mutated choice in a Myopic Best Response, and then, on the contrary, they
return to to their initial state. That is, a mutation of a neighbor supports a player’s initial
choice, independently if that choice is an action she likes or not, when they are initially
anti-coordinating.

b =0;=1 0;=0;=0 0;=1,0;=0
aj=a;=1 Xi = 7(n;) Xi =7(n;) +1 Xi = 7(n;)
X; = 1(n;) X =7 +1 | x;=7(ny) +1
Configurations | Ss1, Fs1, Fy, Sy Fs, Fy Fsi1, Fy
a=a=0 Xi =7(ni) — 1 Xi = T(ni) Xi =1(ni) — 1
X; =71(ny) —1 X =T(ny) X =T(ny)
Configurations Fso, Hr Sso, Fso, Fry, S Fso, Sy

Table 4: Conditions for mutations on a Nash equilibrium network configuration to be ac-
cepted. SC case.

We have just studied the possible mutations that can occur when two randomly chosen
neighbors are allowed to experiment. Notice that the initial configurations depend on the
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distribution of types and choices made by the pair of randomly chosen neighbors. Hence,
for example, no case in the first row in Table 4 can arise from a Fq as the initial condition,
because at least two players (7, j) must be choosing action one.

Following these analysis, the question arises as to what is the nature of the stable configura-
tions. To gain insight into this issue, let us consider the resulting states and conditions for
each particular case of mutation in SC, and illustrate the types of networks resulting after
at least one of the two mutations holds. As we have found above and collected in Table 4,
there are six possible mutations that can occur in games with SC. Taking into account the
conditions necessary for them to be viable, the possible mutations are as follows:

(M1:0;=0,=1 and a;=a;=1=a =a; =0,
M2:0;,=0;=0 and a;,=0a;,=1=a;,=a; =0,
M3:0,=1,0;=0and a;=a;=1=a, =a; =0, (29)
M4:0;,=0;=1 and a;=a; =0=a; =a; =1,
M5:0;,=0; =0 and a;,=a;=0=a; =a; =1,
(M6:0;,=1,0;,=0and a;=0a;=0=>a;=a; = 1.

Consider now the possible resulting states after one of the six aforementioned mutations has
occurred, and let us focus on the frequency in which each specific configuration (which, once
again, needs not be a Nash equilibrium) can result after a mutation takes place. Figure 7
collects the possible transitions that can take place between types of SC upon acceptance of
mutations.

Sg1 ——p,  Sso——r,

—»FH LI .
Fs Fso——5

—)SH —>SH

Fy 1,2,3,4,5,6 P
SH ——>F50 ggo FH SH
>F51,081 2,3,4,6 H

Figure 7: Resulting configurations in SC games after mutations are accepted.

The question then arises as to what is the relative frequency of the transformation processes
of one type of network to a different one. To answer this question, let us consider the
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following set of conditions:

(C1: Pk #ieN|6, =1,
C2:Pk#jeN|O, =1,
C3: Pk #ie N =0,
C4: Pk #j € N|O, =0,
Ch:ai(t+1) =1,
C6:aj(t+1)=1,
C7:a;(t+1) =0,
C8:aj(t+1)=0.

(30)

\

With this notation, it is straightforward to see that the following transitions are possi-
ble:

o Fg; — Sy iff conditions ¢3, ¢4, ¢7, ¢8 hold for mutation 2 (M2) in Eq. (29), or iff ¢4, ¢8
in M1.

e Fgy — Fy iff ¢7 or ¢7,¢8 hold in M3.
e So — Sy iff c1,¢2,¢7,c8 hold in M4, or iff c1, ¢5, ¢8 hold in M6.
e Sy — Fy iff 1, 2,5, c6 hold in M1.
e Sy — Fg iff €3, ¢4, ¢5, ¢6 hold in M5.

e Sy — Sy iff ¢3,c4,c7,¢8 hold in M2, or iff cl,¢2,¢7,¢8 hold in M4, or iff 1,5, ¢8 in
M6.

e Sy — Fg iff ¢4, b, ¢6 hold in M6.

In the remaining cases if one or both mutations hold, the resulting configuration will nec-
essarily be frustrated hybrid. From this enumeration and the list of possible processes, it
becomes clear that, generally speaking, the result of the acceptance of a mutation will very
often be frustrated hybrid, and, on the other hand, specialized configurations are by far the
most unstable ones.

In view of the large number of conditions and possibilities we have summarized above, we
find it illuminating to discuss a few examples of the mutation process.

Example 4 Let I' be a complete frustrated specialized network Fsy (see Fig. 8). There is
a pair of neighbor players 0; = 1 and 0; = 0 whose actions mutate. Both players then
revise simultaneously and follow their myopic best response. For definiteness, let us choose
2a0 > 30, so that player © has incentives to return to the same action she had in time t in
which a;(t) = a;(t + 1) = 0;, however, player j, responding myopically to the action she has
observed in her present time, chooses a;(t+1) = 0;. The resulting state is a frustrated hybrid
configuration that is not a Nash equilibrium.

Example 5 Let I' be a complete satisfactory hybrid network Sy (see Fig. 9). There is
a pair of neighbor players 0; = 1 and 0; = 0 whose actions mutate. Both players then
revise stmultaneously and follow their myopic best response. Consider again that 2a > 33,
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11 01, M 00, 17 00
Figure 8: Discussion of an example mutation in a network that is frustrated specialized in
action 1.

so that player 1 has incentives to return to the same action she had in time t wn which
a;(t) = a;(t +1) = 0;. In a different example, if we had 3o > 23, player j, responding
myopically, returns as well to the initial choice a;(t) = a;(t + 1) = 0;. The resulting state is
the same initial satisfactory configuration.

r
10

0 1
1 00 _, 00 _, 11 00

Figure 9: Discussion of an example mutation in a network that is satisfactory hybrid.

Example 6 Let I' be a complete satisfactory hybrid network Sy (see Fig. 10). There is
a pair of neighbor players 0; = 0; = 1 whose actions mutate. Both players then revise
simultaneously and follow a myopic best response in the procedure. By the initial assumptions
of the model o < 4 so that no player has incentives to return to the same action she had
in time t and the network configuration results in a frustrated specialized configuration in
action zero, So which is a Nash equilibrium.

00 11 Qo 10

I oo 10 a0

Figure 10: Discussion of an example mutation in a network that is satisfactory hybrid. In
this example the mutation is accepted, opposite to what we had in the previous one.

Example 7 Let I' be a frustrated specialized network Fg; (see Fig. 11). There is a pair
of neighbor players 0; = 1 and 0; = 0 whose actions mutate. Both players then revise
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simultaneously and follow a myopic best response in the procedure. Consider that 2a < 43,
so that player i has incentives to return to the same action she had in time t in which
a;(t) # 6;, however, player j, responding myopically chooses a;(t+1) = 6;, and the resulting
state is a Fy configuration that is not a Nash equilibrium.

11 11 11

B 9l &
1 01 01 _, 11 00 00 _, 11 01 00

Figure 11: Discussion of an example mutation in a network that is frustrated specialized in
the action 1.

3.2 Stable Equilibria in SS

Proposition 7 The set of Stable Equilibria in SS is a proper non-empty set of the Nash
equilibrium network: SSS(I') C E(T).

The calculations needed to prove this result are essentially the same as we described in detail
for the case of SC, and therefore we omit them, quoting directly the stability conditions and
the table of mutations that can be accepted when the network configuration is a Nash
equilibrium:

6 =0;=1 6 =0;=0 6;=1,6;=0

a=a=1 i <Tn)+1 | *xyi<zng)+1 | *x; <7(n;) —1
G STng) + 1 g <z(ng) +1 | Fxg <7(ny) +1

a=a;=0 *xi>Tm) =1 | *xy;>1(ng) =1 | *x; >7(n;) +1
*x; >Tn;) =1 *x;>7(n;)—1|*x; >7(n;)—1

X j Xj Z T\ Xj = T\

aa=1a=0| y;,<7(n;)—1 Xi <1(n;)—1 Xi <T7(n;) —1
Xj > T(”J) +1 Xj 2> I(”]) +1 Xj 2 l(nj) +1

ai=0a=1| x;>7(n)+1 Xi > 1(n;) +1 Xi >T(n;) + 1
X; STg) +1 | x;<z(ny) =1 | x5 <7(ny)—1

Table 5: Conditions for a network configuration to be stable under every specific type of
mutation. SS case.

7

Remark 6 In the cases marked with “ 7 one can observe that when the two players are
making the same choice, none has incentives to maintain the mutated action in a MBR.
Table 4 presents the conditions necessary for the mutations to be accepted and the initial
configurations in which each case can occur.

As in the SC case, we now consider the resulting states and conditions for each particular
case of mutation in SS, and illustrate the resulting types of networks after at least one of
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0 =0;=1 6 =0;=0 6 =1,6;=0
aj=1,a;=0 Xi = T(n;) Xi =1(n;) — 1 Xi = T(n;)
Xj =7y +1 | x5 =1(ny Xj =z(n;) +1
Configurations Fy Fy Fy, Sy
ai=0a=1 | \;,=7(n;)+1 Xi = 7(n;) Xi =7(n;) +1
X;=T(ny) | xj=1(ny) -1 | x;=1(ny;) -1
Configurations Fy Fy Fy

Table 6: Conditions for mutations on a Nash equilibrium network configuration to be ac-

cepted. SS case.

the two mutations holds. We enumerate the six possible mutations as follows:

\

(M1
M2 :
M3 :
M4 -
M5 :
M6

andaizl,aj:Oédi:O,djzl,

andaizl,aj:()édizo,djzl,

:()andai:l,aj:0:>EL,;:0,ELJ-:1,

10, =0,=1
0;=0,=0
0, =1,0;
0, =0;,=1
6;=0;=0
10, =1,0;

andai:O,ajzlédizl,&j:(),

andai:O,aj:1:>di:1,&j:O,

:Oandai:O,aj:1:>&Z-:1,&j20.

(31)

The resulting network configurations for the previously enumerated mutations do not need
to be Nash equilibrium. As before, we can now analyze the frequency in which each specific
configuration can result after a mutation takes place in SS. The possible transitions are
summarized in Fig. 12.

SH

1,2,3,4,5,6
—> Iy

—>SH

1,2,4,5,6

Figure 12: Resulting States (SS)

Consider the following set of conditions

Therefore, we have

;

C1

C4

cv

C8:

Pk #i e N6, =1,
C2:
C3:
: Pk # j € N|O, =0,
Ch:
C6 :

a;(t+1) =1,
a;(t+1) =1,
cai(t+1) =0,
aj(t+1)=0.
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e Fy — Sy iff conditions cl, ¢2,¢5, ¢6 hold in M1, or iff ¢3, ¢4, c7,¢8 hold in M2, or iff
cl, c2 hold in M4, or iff ¢1, ¢5 hold in M5, or iff 1, ¢2, ¢5 hold in M6.

In the remaining cases if one or both mutations hold, the resulting configuration will be
frustrated hybrid. This result will be clearer with the following examples:

Example 8 Let I be a complete satisfactory hybrid network Sy (see Fig. 18). There is a
pair of neighbor players 8; = 1 and 0; = 0 whose actions mutate. Both players then revise
simultaneously and follow a myopic best response in the procedure. Consider for the example
that 2a0 > 33, so that player © has incentives to return to the same action she had in time t
in which a;(t) = a;(t +1) = 6,, and j as well, a;(t) = a;(t + 1) = 6;. The resulting state is
equal to the initial satisfactory network, which is a Nash equilibrium.

.11 .11 .11
1 00, 10 00 11 00

Figure 13: Discussion of an example mutation in a network that is satisfactory hybrid.

Example 9 Let ' be a complete satisfactory hybrid network Sy (see Fig. 14). There is
a pair of neighbor players 0; = 0; = 0 whose actions mutate. Both players then revise
simultaneously and follow a myopic best response in the procedure. None have incentives to
maz’ntam the new action but rather return to the action in timet in which a;(t) = a;(t+1) = 6;
and a;(t) = a;(t + 1) = 0;. The resulting state is the same initial satisfactory configuration.

Figure 14: Discussion of an example mutation in a network that is satisfactory hybrid.

Example 10 Let T' be a frustrated hybrid network Fy (see Fig. 15). There is a pair of
neighbor players 0; = 0; = 1 whose actions mutate. Both players then revise simultaneously
and follow a myopic best response in the procedure. Player ¢ has incentives to return to the
same choice she had in time t which corresponded to her type, a;(t) = a;(t + 1) = 6; while
player j prefers to hold to the new adopted behavior given her myopic best response, so that
a;(t) # a;(t + 1) = 60;. The resulting state is a satisfactory hybrid configuration that is not a
Nash equilibrium.
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00 00 00

B P i
00 11 10, Q0 10 11, 00 11 11

Figure 15: Discussion of an example mutation in a network that is frustrated hybrid. In this
case the mutation is accepted.

4 Welfare Analysis

In the above section, we were concerned on individual choices and how they may alter
the final configuration. Actually, we study refinements using a dynamic process. As we
have already said, we obtain multiple equilibria configurations, therefore a natural question
that arises is which classes of configurations give the highest utility for the whole network.
The last step in the program of our research is to study the welfare provided by the Nash
equilibrium configurations to the collective of players.

Welfare analysis is an important feature in economic studies and in particular in network
setups. There is a vast literature where different criteria to measure welfare are employed. In
this section, we analyze the set of Nash networks E(T"), through a utilitarian welfare function.
We will consider welfare in society as the addition of individual payoffs: W = Zf\il v;. In
order to assess the welfare in each configuration we separate each player i € N = {1,..., N}
in a network game I" into four classifications given their type and choice. These classifications
are associated to the four payoff functions expressed both in games with SC or SS. Let N;?
be the set of agents with type r and action s, for ;s € {0,1}. Namely, we have the four
following sets:

Ny ={ieN:0; =a; =0},
Nl ={ieN:0;,=q;, =1},
N = {ieN:1=6 #a =0},
Nl=[ieN:0=0 #a; =1}

(33)

Notice that N = Ny U N{ U NY U N;.

The welfare function for games with SC or SS can be expressed as:

W:Z%:Z%—FZW—FZ?&—FZU@, (34)

i€NG ieNT ieNY i€Ng
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4.1 Strategic Complements: Welfare Functions

As it has been presented above, games with SC portray six different configurations: satis-
factory specialized in one (Sg1) or in zero (Sgo), frustrated specialized in one (Fsp) or in
zero (Fsg), satisfactory hybrid (Sg), and frustrated hybrid (Fg). In games with strategic
complements the welfare function is:

Wie = 2seng (1415 = i) + 2seny (1 +Xi) + 2ieno B+ 10 — Xi) + 2ieny B+ x3)

The following are the welfare functions for each configuration of SC network games in equi-
librium:

I- Satisfactory specialized welfare function: Let a network T' be Sgo iff {NJ # 0, N} =
0, Ny =0, N} =0} so that:

or let I' be Sy iff {Nj # 0, Ng =0, N{ = 0, Ng = 0} so that:
W(Ss1) = ZzNzl Uy = ZieNll a(l+n;)

I1- Frustrated specialized welfare function: Let a network I' be Fgq iff {NJ # 0, N} = 0, N} #
0, Ny = 0} so that:

W(Fso) = 2ieng @l + 1 = Xi) + 2seno 81+ 15 — x3)
or let I be Fgy iff {N{ # 0, N) =0, N) =0, N} # 0} so that:
W(Fs1) = Yient a1+ xi) + ey 1+ x0)

Remark 7 Since N§ # 0 in IT = N = N}UN} and an addition with a 3 condition appears.
Notice that as < «, when fizing (N, g), this gives a Nash network where W (Sg1) > W (Fs1).
The conditions hold symmetrically for the case of W(Sso) > W (Fso).

I11- Satisfactory hybrid welfare function: Let a network T' be Sy iff {N] # 0, N # 0, N =
0, N} =0} in SC so that:

W(Sh)se = 2ieng @l + 1 = Xi) + 2jens (1 +xi)

IV- Frustrated hybrid welfare function: Let a network I' be Fy iff {N} # 0, NJ # 0, N? #
0, Ng # 0} in SC so that:

W(Fu)se = Xieng @41 = xa) + 2ient all 4 Xi) + 2ieno B(1+ni = Xi) + Djeny B+
Xi)

Remark 8 Since either Ny # 0 or NY # 0 or both, in IV = N = N} UNJUNY U N} and
an addition with a B condition appears. Given that < «, when fizing (N, g), this gives a
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Nash network where W(Uy) > W (Fg). We can generate a relation between I and IIT where
W(Us) > W(Sy) given that in the specialized network each player receives benefit from all
of her links but in the hybrid each player receives only from those neighbors making her same
action. Nevertheless, we cannot condition that W (Fls) § W (Fg) nor that W (Fs) ; W(Sh).
Fach of this relations depends on the distribution of types even when fixing (N,g). This is
supported by the consideration that a specialized network allows that every player receives
benefit from each of her neighbors, and even if a player i is choosing her disliked action,
she can receive a higher payoff in a specialized configuration than in an satisfactory hybrid,
where she makes the choice she likes but is connected to the minimum neighbors necessary
to support it. Therefore we can generate the following sequence of welfare functions:

If W(Fy) = W(Fs) = W(Us) > W(Sy) > W(Fy) =2 W(Fs)
W (Sw) > W(Fs) > W(Fu) = W(Us) > W(Sy) > W(Fs) > W(Fu)
IfW(Fs) 2 W(Su) = W(Us) > W(Fs) > W(Su) > W (Fu)

4.2 Strategic Substitutes: Welfare Functions

Games with SS portray two different configurations: satisfactory hybrid (Sg), and frustrated
hybrid (F). The welfare function in SS is:

Was = 2ieng @l +x0) + 2sens (1415 = xa) + Dieno (1 +X0) + 2iens B(1 410 — xi)

In each configuration the welfare function for a network game in equilibrium is:

I- Satisfactory hybrid welfare function: Let a network T" be Sy iff {N] # 0, NJ # 0, NY =
0, N} = 0} in SS so that:

W(SH)ss = EieNg a1+ x;) + ZieNll a(l4+n; — xi)

I1- Frustrated hybrid welfare function: Let a network T be Fy iff {N] # 0, NJ # 0, NY #
0, N} # 0} in SS so that:

W(Fg)es = Zz‘eNg a(l+xi) + ZieNll a(l+n; —xi) + ZieNg B+ xi) + Zie]\% Bl +n; —
Xi)

Remark 9 Since either Ny # 0 or NY # 0 or both, in II = N = N{ UNJ U NY U N and

an addition with a B condition appears. Given that < «, when fizing (N, g), this gives a
Nash network where W (Upy) > W (Fy).

Concluding Remarks

Networks of economic, technological or social interaction are nowadays recognized as a key
structure to understand how agents behave and contribute to the general economic activity.
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However, for all their ubiquity, they have not been considered in the body of economic
literature until the beginning of this century. Work carried out so far on this subject has
focused on modeling and understanding the effects of having a (possibly complex) network
of interactions among identical actors, in a homogeneous setup, where the only source of
difference is the pattern of connections a given agent has. The main novelty of this paper is
the introduction of intrinsic diversity in this scenario by analyzing the case in which there are
two types of agents. While, admittedly, this is still a very simplified model, our results show
that allowing for heterogeneity in the economic interactions on the network leads to a wealth
of interesting results even when sufficiently detailed local information is available.

The results we have obtained by studying a heterogeneous model are a noteworthy contri-
bution to the research on games on networks. Thus, by means of a stability concept, we
advance the field in the direction of equilibrium refinements in an informationally rich (albeit
not complete) context. We have shown that the knowledge of the neighbors an agent has
as well as their actions does not prevent us from classifying the possible equilibria and from
later refining them to a proper subset dominated by frustrated hybrid configurations. For
SC games, this implies that even if the desirable outcome is that every player contributes,
it will not be possible to reach such a situation in general. For both SC and SS games, the
consequence of this result is that most of the times there will be frustrated players playing
the action they do not like. Looking in detail to the structure of the network, it can be
seen that those frustrated individuals will be those with the smallest degrees, in particular
the leaves of the network. It is also interesting to note that the equilibria we have found
when there are two types of agents on the network is not unrelated to the homogeneous case
considered by Galeotti et al. (2010), in the sense that we have been able to show a mono-
tonicity property on the number of neighbors an agent has choosing one of the two actions.
On the other hand, our welfare analysis shows that the most frequent equilibria correspond
to low benefits for the society, a result reminiscent of that of Kandori et al. (1993) about
the selection of the risk-dominant equilibrium when everybody interacts with everybody else
(complete graph). This result deserves further study because of the implications it may have
in situations such as technologies competing for different segments of the market. We note
in addition that while we have been looking mainly at a local information setup, our study
should be further extended to other informational contexts, in order to check what can be
said about the equilibria under other hypotheses.
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