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Abstract

This paper studies the stability of communication protocols that deal with transmis-
sion errors. We consider a coordination game between an informed sender and an
uninformed decision maker, the receiver, who communicate over a noisy channel.
The sender’s strategy, called a code, maps states of nature to signals. The receiver’s
best response is to decode the received channel output as the state with highest ex-
pected receiver payoff. Given this decoding, an equilibrium or “Nash code” results
if the sender encodes every state as prescribed. We show two theorems that give suf-
ficient conditions for Nash codes. First, a receiver-optimal code defines a Nash code.
A second, more surprising observation holds for communication over a binary chan-
nel which is used independently a number of times, a basic model of information
transmission: Under a minimal “monotonicity” requirement for breaking ties when
decoding, which holds generically, any code is a Nash code.
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1 Introduction

Information transmission is central to economic interactions and to the operation of orga-
nizations. This paper is concerned with communication errors, which we call noise, and
the stability of related communication protocols, as expressed by the condition of Nash
equilibrium in a game-theoretic setting.

Information transmission is often modeled as a sender-receiver game between an in-
formed expert and an uninformed decision maker. We also study a sender-receiver game,
but should say at the outset that our goal and assumptions differ from the common eco-
nomic models, most notably signalling games (Spence, 1973) and the seminal work of
Crawford and Sobel (1982) and its extensions. These models typically assume perfect
communication, but find that information is not transmitted faithfully for strategic rea-
sons because of conflicting incentives of sender and receiver (see the surveys by Kreps
and Sobel, 1994, and Sobel, 2010). In contrast, we assume communication errors as given,
due to distorted signals or imprecisely worded or misunderstood messages. This kind of
noise is considered in information theory (Shannon, 1948) and in studies of language and
ambiguity (Nowak and Krakauer, 1999).

Communication errors are common and usually have negative consequences for both par-
ties (to different degrees), as illustrated by the following examples: A pilot misunder-
stands the command of an air traffic controller, with a resulting aviation accident (Cush-
ing, 1994). A map on a webpage displays a holiday home close to the beach when it is
not, and the holiday maker sues the landlord for misrepresentation afterwards. A landing
card is filled in wrongly and immigration is delayed. A student does not understand a
lecture and scores poorly in the exam. These errors may be attributable in various ways to
the sender (sometimes for strategic reasons), the transmission, or the receiver. We think
that a basic model that assumes these errors as given deserves a game-theoretic analysis.

The model

We consider the classic model of the discrete noisy channel. The channel has a finite set
of input and output symbols and known transition probabilities that represent the possible
communication successes and errors. The channel may also be used repeatedly, with
independent errors, which we study for the important case of the binary channel that has
only two symbols.

The model of the noisy channel is due to Shannon (1948), who pioneered information
theory, which has been crucial for the design of reliable data communication with devices
that range from space probes to disk drives. These engineering efforts typically aim for
“codes” that have a good reliability and rate of information transmission (see Cover and
Thomas, 1991; Callager, 1968; MacKay, 2003). We ask a different question: Given a
communication protocol defined by a code, do sender and receiver have an incentive to
follow this protocol?



Using game theory, we study this question with a sender-receiver game where the interests
of sender and receiver are aligned. One of finitely many states of nature is chosen at
random. The sender is informed the state and transmits a signal via a discrete noisy
channel to an uninformed receiver who makes a decision. The sender’s strategy or code
assigns to each state of nature a specific signal or “codeword” that is the input to the
channel. The receiver’s strategy decodes the distorted signal that is the channel output as
one of the possible states. Both players receive a (possibly different) positive payoff only
if the state is decoded correctly, otherwise payoff zero.

In equilibrium, the receiver decodes the channel output as the state with highest expected
payoff. This receiver condition is the well-known “maximum likelihood” decoding in the
special case of uniform priors and equal utilities. The equilibrium condition for the sender
means that she chooses for each state the prescribed codeword as her best response, that
is, no other channel input has a higher probability of being decoded correctly with the
given receiver strategy.

A Nash code is a code together with a best-response decoding that defines a Nash equilib-
rium. So we assume the straightforward equilibrium condition for the receiver and require
that the code fulfills the more involved sender condition. (Of course, both conditions are
necessary for equilibrium.)

Our results

We present two main results about Nash codes. Our first result concerns discrete channels
with arbitrary finite sets of input and output symbols. We show that already for three
symbols, not every code defines a Nash equilibrium. However, a Nash code results if the
expected payoff to the receiver cannot be increased by replacing a single codeword with
another one (Theorem 5). So these receiver-optimal codes are Nash codes. This is closely
related to potential games and provides a method to construct Nash codes (Proposition 6):
Essentially, if the sender can change a codeword to improve the probability that a state is
decoded correctly (which violates Nash equilibrium), then this defines a better code for
the receiver.

In short, without any constraints on the channel, and for any best-response decoding,
“good codes” (that is, receiver-optimal codes) are Nash codes. The method to show this
result is not deep; its purpose is to analyze our model. The key assumption is that an
improvement in decoding probability benefits both sender and receiver (see condition
(10) below). However, a sender-optimal code is not necessarily a Nash code if sender and
receiver give different utilities to a correct decoding of the state of nature. This happens
if the sender can use an unused message to transmit the information about the state more
reliably (see the discussion following the example in (13) below).

Our second, more surprising and technically challenging result concerns the binary chan-
nel where codewords are strings of bits with independent error probabilities for each bit,
a fundamental model of information transmission. Then any code is a Nash code (The-
orem 8). The only requirement for the decoding is that the receiver breaks ties between



states monotonically, that is, in a consistent manner; this holds for natural tie-breaking
rules, and ties do not even occur if states of nature have different generic prior proba-
bilities or utilities. (In a side result, Proposition 9, we also characterize deterministic
monotonic tie-breaking rules as those that select among the tied states in a fixed given
order.) So binary codes, as Nash codes, are very suitable for information transmission
because the agents never have an incentive to deviate from them.

There are several interpretations of this second result. One is “good news for the engi-
neer”: Binary codes, which are fundamental to the practice and theory of information the-
ory, are “incentive compatible”. The fact that they are Nash codes (assuming monotonic
decoding) means that engineering issues such as high reliability and rate or algorithmic
ease of coding and decoding are “orthogonal” to the stability of the code in terms of in-
centives. On the other hand, this can also be seen as a negative result: Nash equilibrium is
not related to transmission quality. This last observation is not restricted to binary chan-
nels; for example, the sender-receiver game has always a “babbling equilibrium” where
the sender’s action is independent of the state and the receiver’s action is independent of
the channel output, with no information transmitted. The equilibrium property of codes
with low payoffs may explain why inefficient (say, very bureaucratic) communication
protocols persist in practice because no single participant has an incentive to deviate from
them.

Related literature

Sender-receiver games studied in the economic literature typically assume communica-
tion without transmission errors. In their seminal paper, Crawford and Sobel (1982) study
such a game where the set of possible states, messages, and receiver’s actions is an inter-
val. Payoffs depend continuously on the difference between state and action, and differ
for sender and receiver. In equilibrium, the interval is partitioned into finitely many inter-
vals, and the sender sends as her message only the partition class that contains the state.
Thus, the sender only reveals partial information about the state, which can be seen as
noise being introduced strategically.

Even in rather simple sender-receiver games, players can get higher equilibrium payoffs
when communicating over a channel with noise than with perfect communication (Myer-
son, 1994, Section 4). Blume, Board, and Kawamura (2007) extend the model by Craw-
ford and Sobel (1982) by assuming communication errors. The noise allows for equilibria
that improve welfare compared to the Crawford-Sobel model. The construction partly de-
pends on the specific form of the errors so that erroneous transmissions can be identified;
this does not apply in our discrete model. In addition, in our model players only get posi-
tive payoff when the receiver decodes the state correctly, unlike in the continuous models
by Crawford and Sobel (1982) and Blume et al. (2007). On the other hand, compared to
perfect communication, noise may prevent players from achieving common knowledge
about the state of nature (Koessler, 2001).

Game-theoretic models of communication have been used in the study of language. Lewis
(1969) describes language as a “convention” with mappings between states and signals,



and argues that these should be bijections. Nowak and Krakauer (1999) use evolution-
ary game theory to show how languages may evolve from “noisy” mappings; Wirneryd
(2003) shows that only bijections are evolutionary stable. However, even ambiguous
sender mappings (where one signal is used for more than one state) together with a mixed
receiver population may be “neutrally stable” (Pawlowitsch, 2008); the randomized re-
ceiver strategy can be seen as noise. Blume and Board (2009) use the noisy channel to
model vagueness in communication. Lipman (2009) discusses how vagueness can arise
even for coinciding interests of sender and receiver. Ambiguous signals arise when the set
of messages is smaller than the set of states, which may reflect communication costs for
the sender (Jager, Koch-Metzger, and Riedel, 2011). For the sender-receiver game with a
noisy binary channel, Hernandez, Urbano, and Vila (2010a) describe the equilibria for a
specific code that can serve as a “universal grammar’’; the explicit receiver strategy allows
to characterize the equilibrium payoff.

Noise in communication is relevant to models of persuasion, where the sender wants to
induce the receiver to take an action. Glazer and Rubinstein (2004; 2006) study binary
receiver actions; the sender may reveal limited information about the state of nature as
“evidence”. The optimal way to do so is a receiver-optimal mechanism. In a more general
setting, Kamenica and Gentzkow (2011) allow the sender to commit to a strategy that
selects a message for each state, assuming the receiver’s best response using Bayesian
updating; the sender may generate noise by selecting the message at random. Subject to
a certain Bayesian consistency requirement, the sender can commit to her best possible
strategy.

Outline of the paper

Section 2 describes our model and characterizes the Nash equilibrium condition. For
channels with any number of symbols, Section 3 gives an example that some codes may
not be Nash codes, shows that receiver-optimal codes are, and discusses the relation to
potential functions. In Section 4, we consider binary codes, and state the main Theorem 8,
which is proved in the Appendix. It requires the condition of “monotonic” decoding when
ties occur, for example in a fixed order among the states as when they have generic priors.
In Section 5 it is shown that this is in fact the only general deterministic monotonic tie-
breaking rule.

2 Nash codes

We consider a game of two players, a sender (she) and a receiver (he). First, nature
chooses a state i from a set Q@ = {0, 1,...,M — 1} with positive prior probability g;. Then
the sender is fully informed about i, and sends a message to the receiver via a noisy
channel. After receiving the message as output by the channel, the receiver takes an
action that affects the payoff of both players.



The channel has finite sets X and Y of input and output symbols, with noise given by
transition probabilities p(y|x) for each x € X, y € Y. The channel is used n times inde-
pendently without feedback. When an input x = (xy,...,x,) is transmitted through the

channel, it is altered to an output y = (yy,...,y,) according to the probability p(y|x) given
by
n
pO) =TTr0lx))- (1)
j=1

This is the standard model of a memoryless noisy channel as considered in information
theory (Cover and Thomas, 1991; MacKay, 2003).

The sender’s strategy is to encode state i by means of a coding function or code ¢ : Q — X",
which we write as c(i) = x'. We call x' the codeword or message for state i in Q, which
the sender transmits as input to the channel. The code ¢ is completely specified by the list
of M codewords x°,x!,....x*~1 which is called the codebook.

The receiver’s strategy is to decode the channel output y, given by a probabilistic decoding

function
d:Y"xQ—R, 2)

where d(y,i) is the probability that y is decoded as i.

Sender and receiver have the common interest that the message is decoded correctly. That
is, if the receiver decodes the channel output as the state i chosen by nature, then sender
and receiver get positive payoff U; and V;, respectively, otherwise both get payoff zero.
The channel transition probabilities, the transmission length n, and the prior probabilities
gi and utilities U; and V; for i in  are commonly known to the players.

We are interested in conditions so that the pair (c¢,d) defines a Nash equilibrium. In that
case, we call ¢, under the assumption that decoding takes place according to d, a Nash
code. We denote the expected payoffs to sender and receiver by U(c,d) and V(c,d),
respectively.

The code c defines the sender’s strategy. The best response of the receiver is the following.
Given that he receives channel output y in Y”, the probability that codeword x' has been
sent is, by Bayes’s law, g; p(y|x‘) /prob(y), where prob(y) is the overall probability that
y has been received. The factor 1/prob(y) can be disregarded in the maximization of
the receiver’s expected payoff. Hence, a best response of the receiver is to choose with
positive probability d(y,i) only states i so that g;V; p(y|x’) is maximal, that is, so that y
belongs to the set Y; defined by

Yi={yeY"|qVip(ylx) = Vi p(y|x) Vk € Q}. (3)
Hence, the best response condition for the receiver states that for any y € Y” and i € Q
d(y,i)>0 = yeyY,. 4)

Ifv; :.1 for all i € Q, then Y; in (3) is the set of channel outputs y so that the channel
input x' has maximum likelihood. (This term is sometimes used only for uniform prior
probabilities, e.g. MacKay, 2003, p. 152, which we do not assume.) If the receiver has
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different positive utilities V; for different states 7, then the receiver’s best response maxi-
mizes q;Vi p(y|x').

We say that for a given channel output y, there is a tie between two states i and k (or
the states are tied) if y € Y; N Y. If there are never any ties, then the sets ¥; for i € Q
are pairwise disjoint, and the best-response decoding function is deterministic and unique
according to (4).

We refer to the sets Y; for i € Q as a “partition” of Y, which constrains the receiver’s
best-response decoding as in (4), even though some of these sets may be empty, and they
may not always be disjoint if there are ties. In any case, Y" = J;cq Vi

Suppose that the receiver decodes the channel output with d according to (3) and (4) for
the given code ¢ with ¢(i) = x'. Then (c,d) is a Nash equilibrium if and only if, for any
state i, it is optimal for the sender to transmit x' and not any other x in X" as a message.
When sending x, the expected payoff to the sender in state i is

Ui Y, pOylx)d(y,i). )

yeyn

When maximizing (5), the utility U; to the sender does not matter as long as it is positive;
given that the state is 7, the sender only cares about the probability that the channel output y
is decoded as i. We summarize these observations as follows.

Proposition 1 The code ¢ with decoding function d is a Nash code if and only if the
receiver decodes channel outputs according to (3) and (4), and if and only if in every
state i the sender transmits codeword c(i) = x' which fulfills for any other possible channel
input x in X"

Y pOIX)d(y.i) = Y p(ylx)d(y,i). (6)

yeyn yeyn

3 Receiver-optimal codes

In this section, we first ask whether every code is a Nash code, assuming that the receiver
chooses a best response. We give a detailed example that demonstrates that this may not
be the case, and that we use throughout the section. Then we show that every code that
maximizes the receiver’s payoff is a Nash code. The proof implies that this holds also if
the receiver’s payoff is locally maximal, that is, when changing only a single codeword,
and the corresponding best response of the receiver, at a time. Finally, we discuss the
connection with potential functions.

Consider a channel with three symbols, X =Y = {0, 1,2}, which is used only once (n = 1),
with the following transition probabilities:
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Suppose that nature chooses the two states in {0, 1} with uniform priors g9 = g1 = 1/2.
The sender’s utilities are Uy = 2 when the state is 0 and U; = 8 when the state is 1, and
the receiver’s utilities are Vy =8, V; = 2.

Consider the codebook ¢ with ¢(0) =x° =0 and ¢(1) = x! = 1, so the sender codifies the
two states of nature as the two symbols 0 and 1, respectively. Given the parameters of this
game and the sender’s strategy c, the receiver’s strategy assigns to each output symbol in
{0,1,2} one state. The following table (8) gives the expected payoff ¢;V; p(y|x’) for the
receiver when the state is i and the output symbol is y.

y
0 | 2

034 04 02
1101 065 0.25

qiVip(yx')
(8)

Table (8) allows us to compute the receiver’s best response and the sets Y; in (3). For each
channel output y, the receiver chooses the state i with highest expected payoft. Hence, he
decodes the channel output 0 as state 0 because goVp p(0]x°) = 3.4 > 0.1 = q;V; p(O|x!).
In the same way, he decodes both channel outputs 1 and 2 as state 1. Notice that there are
no ties, so the two sets Yy and Y are disjoint, and the receiver’s best response is unique
and deterministic. That is, the receiver’s best response d is given by d(y,i) = 1 if and only
ify € Y;, where Yy = {0} and ¥} = {1,2}.

Is this code ¢ given by the codebook x%,x! = 0, 1 a Nash code?

Given the partition of Y into Yy and Y; by the receiver strategy d, it easy to compute
the sender payoff as in (5) when the states O and 1 are realized. For the first state 0,
her payoff is Uy Yyey p(y]0)d(y,0) = Up ¥yey, P(y|0) = 2 x p(0]0) = 1.7. For the second
state 1, her payoff is Ui ¥yey p(y[1)d(y,1) = Ur Lyey, p(¥|1) = 8 x (p(1|1) + p(2[1)) =
8 x (0.65 + 0.25) = 7.2. The sender’s (ex-ante) expected payoff is therefore U(c,d) =
qo1.74+q17.2=4.45.

In order to check the Nash equilibrium property of (c,d), there should be no code ¢’ so
that U(c’,d) > U(c,d). Consider now the new sender strategy ¢’ with codebook 0,2,
which differs from code c¢ in the codeword /(1) = 2 for state 1. The receiver’s strategy
d with Yy and Y; is fixed. State O is encoded by the same codeword ¢(0) = ¢/(0) =0, so
the sender’s payoff for that state is 1.7 as before. However, for state 1, the signal sent is
2 instead of 1. Then the sender’s payoff is U; ¥ycy, U1p(y[2) = 8 x (p(1]2) + p(2]2)) =
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8 x (0.34+0.7) = 8, which is higher than her payoff 7.2 when sending signal 1. Her
expected payoff increases to U(c’,d) = qo 1.7+ q1 8 = 4.85. Consequently, the code ¢
with codebook 0, 1 is not a Nash code.

In this example, changing the codebook c¢ to ¢’ improves the sender payoff from U (c,d)
to U(c’,d), where d is the receiver’s best-response decoding for code c. In addition, it is
easily seen that the receiver payoff also improves from V(c,d) to V(¢’,d), and his payoff
V(c',d’) for the best response d’ to ¢’ is possibly even higher. This observation leads us
to a sufficient condition for Nash codes.

Definition 2 A receiver-optimal code is a code ¢ with highest expected payoff to the re-
ceiver, that is, so that

V(e,d) >V (&,d)

for any other code ¢ where d is a best response to ¢ and d is a best response to é.

Note that in this definition, the expected payoff V (c,d) (and similarly V (&,d)) does not
depend on the particular best-reponse decoding function d in case d is not unique when
there are ties, because the receiver’s payoff is the same for all best responses d.

The following is the central theorem of this section. It is proved in three simple steps,!
which give rise to a generalization that we discuss afterwards, along with examples and
further observations.

Theorem 3 Every receiver-optimal code is a Nash code.

Proof. Let ¢ be a receiver-optimal code with codebook x°,x!, ..., x*~1 and associated
best-response decoding d according to (3) and (4). Suppose cisnota Nash code. Then
there exists a code ¢ with codebook £, %!, ..., #¥~1 so that U (¢,d) > U(c,d), that is,

Y aUi Y pGIE)d (i) > Y qiUi Y, p(ylx)d (v, ). ©)

ieQ yeyn ieQ yeyn
Step one: Clearly, (9) implies? that there exists at least one i € Q so that

Y pGIE)d(y,i)) > Y p(rlx)d(y,i). (10)

yey” yeyY”

Consider the new code ¢’ which coincides with ¢ except for the codeword for state i,
where we set ¢/(i) = . So the codebook for ¢’ is x0,... x'~1 & xT1 ... ¥~ By (10),
we also have

ud,dy=Y, qiU; Y, pOl)d(y, j)+qU; Y, p(yl£)d(y,i)
JEQ, j#i yeY” yeyn
(11)
> Y qiU; Y pOlx)d U(c,d).
JjeQ yeyY”n

'We are indebted to Drew Fudenberg who suggested steps two and three.
2This claim follows also directly from Proposition 1, but we want to refer later to (9) as well.
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Step two: In the same manner, (10) implies an improvement of the receiver function, that
is,
V(c,d)>V(cd). (12)

Step three: Let d’ be the best response to ¢/, which with (12) implies
v(c,d)>V(,d)>V(cd).

Hence, code ¢’ has higher expected receiver payoff than c. This contradicts the assumption
that ¢ is a receiver-optimal code. [

The preceding theorem asserts that there is at least one Nash code. It can be found as a
code with highest receiver payoff.

x0, x! Yo 1 |phyeX|x®) piyev|x)| U 1%
0,1 {0}  {1,2} 0.85 0.90 4.45 | 4.30
0,2 | {0,1} {2} 0.95 0.70 375 | 4.50
1,0 | {1,2} {0} 0.90 0.85 430 | 4.45 (13)
1,2 |{0,1,2} {} 1.00 0.00 1.00 | 4.00
2,0 | {1,2} {0} 1.00 0.85 440 | 4.85
2,1 | {1,2} {0} 1.00 0.10 1.40 | 4.10

For our example, the table in (13) lists the six possible codebooks x”,x!, shown in the
first column, that have distinct codewords (x° #* x1). For each code, the receiver’s best
response is unique. The best-response partition Yy, Y; is shown in the second column.
Using this partition, the third column gives the probabilities p(y € ¥; | x') = ¥ ey, p(y[x')
that the codeword x is decoded correctly. The overall expected payoffs to sender and
receiver are shown as U and V.

According to the rightmost column in (13), the unique receiver-optimal codebook is 2,0,
which is a Nash code by Theorem 3. We have already shown that 0, 1 is not a Nash code.
Note, however, that this is the code with highest sender payoff. Hence, a “sender-optimal”
code is not necessarily a Nash code. The reason is that, because sender and receiver have
different payoffs for the two states, the sender prefers the code with large partition class
Y for state 1, but then can deviate to a better, unused message within Y;.

It also easily seen from (13) that 1,0 and 2, 1 are not Nash codes, either: Both codebooks
have the same best-response partition Yy = {1,2} and ¥; = {0} as the codebook 2,0, but
have lower payoff to the sender, so the sender can profitably deviate from 1,0 or 2,1
to 2,0.

In (13), the codebook 1,2 has the interesting property that the receiver decodes any chan-
nel output y as state 0; this holds because even the unaltered codeword x!' =2, when
received as y = 2, fulfills ¢1V; p(2x') = 1 x 0.7 < 4 x 0.25 = gV p(2|x?), so the re-
ceiver prefers to decode it as state 0. So here Yy = Y” and Y; is the empty set. Given
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that the receiver’s action is the same for any received channel output, the sender cannot
improve her payoff by transmitting anything else. So the codebook 1,2 is a Nash code.

In fact, any sender-receiver game, irrespective of the players’ payoffs, has a trivial “pool-
ing” equilibrium where the sender’s signal does not depend on the state,? and the re-
ceiver’s best response decodes the uninformative channel output as the state i with highest
expected payoff, in our game ¢;V;. In our example, such codes have equal codewords, with
x¥ = x!, all decoded as state 0; they are not listed in (13). The codebook 1,2 is potentially

informative, but the receiver ignores the channel output due to his utility function.

Finally, the codebook ¢ with codebook 0,2 in (13) is also a Nash equilibrium, which
is seen as follows. Let d be the best response to ¢, with ¥y = {0,1}, Y1 = {2}. As
shown in the proof of Theorem 3, if the sender could profitably deviate from c to ¢, then
she could also profitably deviate to a code ¢’ that differs from ¢ in one codeword only.
The possible codes ¢’ have codebooks 1,2, where ¢(0) is changed to ¢/(0) =1, and 0, 1,
where ¢(1) is changed to ¢/(1) = 1. In the first case, by (7), changing ¢(0) from O to 1
changes qoUp ¥ yey, P(¥[0) = 0.85+0.1 =0.95 to qoUp ¥.ycy, p(¥[1) = 0.1 +0.65 = 0.75,
which is not an improvement. In the second case, changing c¢(1) from 2 to 1 changes
QU1 Lyey, P(y[2) = 4 x0.70 = 2.8 to q1U1 Lyey, p(y|1) = 4 x 0.25 = 1, which is not an
improvement either. So ¢ is indeed a Nash code.

The code ¢ with codebook 0,2 is also seen to be a Nash code with the help of table (13)
according to the proof of Theorem 3. Namely, it suffices to look for profitable sender de-
viations ¢’ where only one codeword is altered, which would also imply an improvement
to the receiver’s payoff from V(c,d) to V(¢/,d), and hence certainly an improvement to
his payoff V(c’,d") where d’ is the best response to ¢’. For the two possible codes ¢’ given
by 1,2 and 0, 1, the receiver payoff V does not improve according to (13), so ¢ is a Nash
code. By this reasoning, any “locally” receiver-optimal code, according the following
definition, is also a Nash code.

Definition 4 A locally receiver-optimal code is a code ¢ so that no code ' that differs
from c in only a single codeword gives higher expected payoff to the receiver. That is, for
all ¢’ with (i) # c(i) for some state i, and ' (j) = c(j) for all j # i,

Vie,d)>V(c,d")

where d is a best response to ¢ and d' is a best response to c'.
Theorem 5 Every locally receiver-optimal code is a Nash code.

Proof. Apply the proof of Theorem 3 from Step two onwards. ]

Clearly, every receiver-optimal code is also locally receiver-optimal, so Theorem 3 can be
considered as a corollary to the stronger Theorem 5.

3In Crawford and Sobel (1982), it is the uninformative equilibrium with a single partition class for the
sender.
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Local receiver-optimality is more easily verified than global receiver-optimality, because
much fewer codes ¢’ have to be considered as possible improvements for the receiver
payoff according to Definition 4. A locally receiver-optimal code can be reached by
iterating profitable changes of single codewords at a time. This simplifies the search for
Nash codes.

To conclude this section, we consider the connection to potential games which also allow
for iterative improvements in order to find a Nash equilibrium. As in Monderer and
Shapley (1996, p. 127), consider a game in strategic form with finite player set N, and
pure strategy set S; and utility function u’ for each player i. Then the game has an (ordinal)
potential function P: [];jeyS; — Rif forall i € N and s € [];;S; and s',§' € S,

W(sT 8 >ul(sTs') —=  P(s,§) >P(s7,s). (14)

The question is if in our game, the receiver’s payoff is a potential function.* The following
proposition gives an answer.

Proposition 6 Consider the game with M + 1 players where for each state i in Q, a
separate agent i transmits a codeword c(i) over the channel, which defines a function
c:Q — X", and where the receiver decodes each channel output with a decoding function
d as before. Each agent receives the same payoff U (c,d) as the original sender. Then

(a) Any Nash equilibrium (c,d) of the (M + 1)-player game is a Nash equilibrium of
the original two-player game, and vice versa.

(b) The receiver’s expected payoff is a potential function for the (M + 1)-player game.

(c) The receiver’s expected payoff is not necessarily a potential function for the original
two-player game.

Proof. Every profile ¢ of M strategies for the agents in the (M + 1)-player game can
be seen as a sender strategy in the original game, and vice versa. To see (a), let (¢,d)
be a Nash equilibrium of the (M + 1)-player game. If there was a profitable deviation ¢
from c for the sender in the two-player game as in (9), then there would also be a profitable
deviation ¢’ that changes only one codeword c¢(i) as in (11), which is a profitable deviation
for agent i, a contradiction. The “vice versa” part of (a) holds because any profitable
deviation of a single agent is also a deviation for the sender in the original game.

Assertion (b) holds because for any i in Q, (11) is, via (10), equivalent to (12).

To see (c), consider our example (7) with ¢ and ¢ given by the codebooks 0,1 and 1,2,
respectively, and d decoding channel outputs y =0, 1,2 as states 0,0, 1, respectively. Then
the payoffs to sender and receiver are

U(c,d) = qoUo(p(010) + p(1]0)) + q1U1 p(2|
V(e,d) = qoVo (p(0|0) + p(1]0)) +q1V1 p(2

U(e,d) = qoUo(p(0[1) + p(1|1)) + q1U1 p(2]2
V(¢,d) = qoVo (p(0[1) + p(1[1)) +q1V1 p(2]2

% (0.85+0.1)+4x0.25 =1.95
% (0.85+0.1)+1x0.25 =4.05
x( )
x( )

1
1

0.14+0.65)+4x0.7 =3.55

1
4
1
4x%x(0.140.65)+1x0.7 =3.7

)
)
)
)

“We thank Rann Smorodinsky for raising this question.
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which shows that (14) does not hold with u' as sender payoff and P as receiver payoff,
because these payoffs move in opposite directions when changing the sender’s strategy
from c to ¢, for this d. ]

A global maximum of the potential function gives a Nash equilibrium of the potential
game (Monderer and Shapley, 1996, Lemma 2.1). Hence, (a) and (b) of Proposition 6
imply that a maximum of the receiver payoff defines a Nash equilibrium, as stated in
Theorem 3. It is also known that a “local” maximum of the potential function defines
a Nash equilibrium (Monderer and Shapley, 1996, footnote 4). However, this does not
imply our Theorem 5. The reason is that in a local maximum of the potential function,
the function cannot be improved by unilaterally changing a single player’s strategy. In
contrast, in a locally receiver-optimal code, the receiver’s payoff cannot be improved by
changing a single codeword together with the receiver’s best response. For example, the
Nash code 1,2 in (13) with best response partition ¥y = {0,1,2} is not locally receiver-
optimal, but is a “local maximum” of the receiver payoff.

In a potential game, improvements of the potential function can be used for dynamics that
lead to Nash equilibria. For our games, the study of such dynamics may be an interesting
topic for future research.

4 Binary channels and monotonic decoding

The main result of this section concerns the important binary channel with X =Y =
{0,1}. The two possible symbols 0 and 1 for a single use of the channel are called bits.
The binary channel is the basic model for the transmission of digital data and of central
theoretical and practical importance in information theory (see, for example, Cover and
Thomas, 1991, or MacKay, 2003).

We assume that the channel errors & = p(1|0) and &, = p(0|1) fulfill
& >0, £ >0, &+€& <1, (15)
where &)+ €] < 1 is equivalent to either of the inequalities
1—¢g > g, 1—¢& > &. (16)

These assert that a received bit 0 is more likely to have been sent as 0 (with probability
1 — &) than sent as bit 1 and received with error (with probability €;), and similarly that
a received bit 1 is more likely to have been sent as 1 than received erroneously. It may
still happen that bit 0, for example, is transmitted with higher probability incorrectly than
correctly, for example if &y = 3/4 and & = 1/8.

Condition (15) can be assumed with very little loss of generality. If &g = €, = 0 then the
channel is error-free and every message can be decoded perfectly. If €y + & = 1 then the
channel output is independent of the input and no information can be transmitted. For
& + € > 1 the signal is more likely to be inverted than not, so that one obtains (15) by
exchanging O and 1 in Y.

13



Condition (15) does exclude the interesting case of a “Z-channel” that has only one-sided
errors, that is, & = 0 or £ = 0. We assume instead that this is modelled by vanishingly
small error probabilities, in order to avoid case distinctions about channel outputs y in
Y" that cannot occur for some inputs x when & = 0 or € = 0. With (15), every channel
output y has positive, although possibly very small, probability.

The binary channel is symmetric when €y = € = € > 0, where € < 1/2 by (15).

The binary channel is used n times independently. A code ¢ : Q — X" for X = {0,1} is
also called a binary code. The main result of this section (Theorem 8 below) states that
any binary code is a Nash code,’ provided the decoding is monotone. This monotonicity
condition concerns how the receiver resolves ties when a received channel output y can
be decoded in more than one way.

We first consider an example of a binary code that shows that the equilibrium property
may depend on how the receiver deals with ties. Assume that the channel is symmetric
with error probability £. Let M = 4, n = 3, and consider the codebook x°, x!, x?,x3 given
by 000,100,010,001. All four states i have equal prior probabilities g; = 1/4 and equal

sender and receiver utilities U; = V; = 1. The sets Y; in (3) are given by

Yo = {000}, Y> = {010,011,110,111},

Y, = {100,101,110,111}, Y3 ={001,011,101,111}. an

This shows that for any channel output y other than an original codeword x', there are
ties between at least two states. For example, 110 € Y| NY; because 110 is received with
probability £(1 — €)? for x! and x* as channel input. For y = 111, all three states 1,2,3

are tied.

@ @
® ®

Figure 1: Binary code with four codewords 000, 100, 010, 001, with non-monotonic de-
coding (left) and monotonic decoding (right). The light-grey sets indicate how a channel
output is decoded.

SHernandez, Urbano, and Vila (2010b) show that for a binary noisy channel, the decoding rule of “joint
typicality” used in a standard proof of Shannon’s channel coding theorem (Cover and Thomas, 1991, Sec-
tion 8.7) may not define a Nash equilibrium.
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Consider first the case that the receiver decodes the channel outputs 110,011, 101 as states
1,2, 3, respectively, that is, according to

d(110,1)=1, d(011,2)=1, d(101,3)=1. (18)

We claim that this cannot be a Nash code, irrespective of the decoding probabilities
d(111,i) which can be positive for any i = 1,2,3 by (17). The situation is symmetric
for i = 1,2,3, so assume that d(111,i) is positive when i = 1; the case of a determin-
istic decoding where d(111,1) = 1 is shown on the left in Figure 1. Then the receiver
decodes y as state 1 with positive probability when y equals 100, 110, or 111. When
x! =100 is sent, these channel outputs are received with probabilities (1 —&)3, (1 —¢€)?,
and €2(1 — ), respectively, so the sender payoff is

(1—e) +e(l—e)*+&%(1—¢)d(111,1)

in (5). Given this decoding, the sender can improve her payoff in state 1 by sending
x = 110 rather than x' = 100 because then the probabilities of the channel outputs 100
and 110 are just exchanged, whereas the probability that output 111 is decoded as state 1
increases to £(1 —&)2d(111,1); that is, given this decoding, sending x = 110 is more
likely to be decoded correctly as state 1 than sending x! = 100. This violates (6).

The problem with the decoding in (18) is that when the receiver is tied between states 1,
2, and 3 when the channel output is y/ = 111, he decodes y’ as state 1 with positive prob-
ability d(111,1), but when he is tied between even fewer states 1 and 3 when receiving
y = 101, that decoding probability d(101, 1) decreases to zero. This violates the following
monotonicity condition.

Definition 7 Consider a codebook with codewords x' for i € Q and a decoding function
d in (2). Then d is called monotonic if it is a best response decoding function with (3)
and (4), and if for all y,y' € Y" and states i,

T={kcQ|yeY}, T ={keQlyeY}, ieTCT = d(yi)>d(y,i. (19)

In (19), T is the set of tied states for channel output y, and T is the set of tied states for
channel output y’, and both sets include state i. The condition states that the probability
of decoding the channel output as state i can only decrease when the set of tied states
increases.

We study the monotonicity condition in Definition 7 in more detail in the next section.
We conclude with the main result of this section; its proof and some technical comments
are given in the Appendix.

Theorem 8 Every monotonically decoded binary code is a Nash code.
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5 Monotonic decoding functions

When is a decoding function monotonic? Suppose there is some fixed order on the set of
states so that always the first tied state is chosen according to that order. In this section,
we show that this is essentially the only way to break ties with a deterministic monotonic
decoding function.

The monotonicity condition in Definition 7 implies
T={keQ|yel}, T ={keQlyeY}, ieT=T = d(yi)=d(,i. (20)

That is, the decoding probability d(y,i) of state i may only depend on the set T of states
that are tied with 7, but not on the received channel output y. For that reason, we can define
a monotonic decoding function also as a function d(7,i) of the set T of best-response
states,

d(T,i):=d(y,i) fT={keQ|yeY} 21

which is well defined by (20).

A natural example of a probabilistic monotonic decoding function is to break ties uni-
formly with d(T,i) = 1/|T| for i € T. A more general monotonic decoding function is
d(T,i) = wi/Yrer wi for i € T with a fixed positive weight wy for each state k. There
are many other probabilistic monotonic decoding functions. For example, if ties between
three or more states are broken uniformly, then ties between only two states are decoded
monotonically if the decoding probabilities for both tied states are at least 1/3.

We will show that deferministic monotonic decoding functions are more restrictive. Con-
sider again the example (18) with d(111,1) = 1 as shown on the left in Figure 1. (Note
that this decoding is not monotonic but fulfills the weaker condition (20) which therefore
does not suffice to guarantee a Nash code.)

The following decoding function, changed from (18) so that 101 is decoded as state 1, is
monotonic,

d(110,1)=1, d(011,2)=1 d(101,1)=1, d(111,1)=1, (22)

shown in the right picture in Figure 1. This is a Nash code because all y in the set Y7, see
(17), are decoded as state 1; whichever x in Y; the sender decides to transmit instead of
x!, there is one y in ¥; for which p(y|x) = €2(1 — €), so that the payoff to the sender in (5)
does not increase by changing from x! to x.

As the right picture in Figure 1 shows, the decoding function in (22) can be defined by the
following condition: Consider a fixed linear order < on  (in this case 0 < 1 <2 < 3) so
that

dT,i)=1 <= i€T and VYkeT, k#i: i<k. (23)

A fixed-order decoding function d fulfills (23) for some <. Such a decoding function is
deterministic and clearly monotonic.

We want to show that any deterministic monotonic decoding function is a fixed-order
decoding function. We have to make the additional assumption that the decoding function
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d(T,i) is general in the sense that it is defined for any nonempty set T of states, not only
the sets T that occur as sets of tied states for some channel output y as in (21).

Without this assumption, we could add to the above example another state with codeword
x* = 111 so that the “circular” decoding function in (18) is monotonic and gives a Nash
code, but is clearly not a fixed-order decoding function. It is reasonable to require that
a decoding function is defined generally and does not just coincidentally lead to a Nash
code because certain ties do not occur (as argued above, with the decoding (18) we do not
have a Nash code when ties have to be resolved for y = 111).

For general decoding functions, (19) translates to the requirement that for any 7,7’ C Q,

ieTCT = d(T,i)>d(Ti). (24)

Proposition 9 Every general deterministic monotonic decoding function is a fixed-order
decoding function.

Proof. Because the decoding function is deterministic, d(7,i) € {0, 1} for any nonempty
set T of states. Define the following binary relation < on Q:

i<j < d{i,j},i)=1

Clearly, either i < j or j < i for any two states i, j. We claim that < is transitive, that
is,if i < jand j < k, then i < k. Otherwise, there would be a “cycle” of distinct i, j,k
withi < jand j < k and k < i. This is symmetric in i, j, k, so assume d({i, j,k},i) = 1
and therefore d({i,j,k},j) = 0 and d({i,j,k},k) = 0. However, with T = {i,k} and
T ={i,j,k} wehave d(T,i) =0 < 1 =d(T’,i), which contradicts (24).

So < defines a linear order on . We show that (23) holds, that is, for any nonempty set
of states T’ the state i so that d(7T”’,i) = 1 is the state i that fulfills i < k for all k € T".
This holds trivially and by definition if 7/ has at most two elements, otherwise, if k < i
for some k € T', then we obtain with 7 = {i,k} the same contradiction d(7T,i) =0 < 1 =
d(T',i) as before. So the decoded state is chosen according to the fixed order < on Q as
claimed. O

When the prior probabilities g; or the receiver utilities V; for the states i are generic,
then ¥; in (3) is always a singleton, so no ties occur and decoding is deterministic. One
can make any prior probabilities generic by perturbing them minimally so that ties are
broken uniquely but decoding is otherwise unaffected. That is, if i and j are tied for
some y because g;Vip(y|x') = q;V; p(y|x/), this tie is broken in favor of i by slightly
increasing ¢g;, which will then always happen whenever i and j are tied originally. This
induces a fixed-order decoding, where any linear order among the states can be chosen.
Thus, Proposition 9 asserts that general deterministic monotonic decoding functions are
those obtained by generic perturbation of the priors.

Finally, we observe that the above codebook 000, 100,010,001 with decoding as in (22)
defines a Nash code (and if priors are minimally perturbed so that g; > g» > g3 there
are no ties and decoding is unique), but this code is not locally optimal as in Theorem 5.
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Namely, by changing the codeword 100 to 110, all possible channel outputs y differ in
at most bit from one of the four codewords, which clearly improves the payoff to the
receiver. So not all binary Nash codes are locally receiver-optimal.

Appendix: Proof of Theorem 8

We first give an outline of the proof of Theorem 8. We want to show that for each state i
in Q, the sender maximizes the probability of correct decoding by sending the prescribed
codeword x, so that (6) holds for any x € X". For any channel output y, comparing
p(y|x') and p(y|x) is only affected by the bits where x* and x differ, defined by the set D
in (25) below. For these bits, the corresponding channel outputs are ordered according
to how far they agree with x' (and hence differ from x), indicated by the subset A of D
in (30). The key property is that with increasing A, such a channel output is more likely
to be decoded as state i, which is stated in (37) and the main technical challenge, proved
with the help of the monotonicity assumption (19). The payoff in (5) is a multilinear
function of the probabilities for receiving the individual output bits, see (32) and (38). By
considering this multilinear expression for each of the transmitted bits in D and using the
error inequalities (16), the monotonicity condition (37) translates to the inequality (6), as
shown in (43).

Proof of Theorem 8. Conditions (3) and (4) state that the receiver uses a best response,
so the equilibrium property holds on the receiver’s side.

Let i € Q be the state chosen by nature. Let x in X" be an arbitrary alternative message to
the codeword x’. We want to prove (6). Let S and D be the sets of bits in x and x' that are
the same and different, respectively, that is,

S={jlxj=xj,1<j<n}, D={jlxj#x), 1<j<n}. (25)

For any sets Z and A and elements z; in Z for j € A we write z4 = (2;) jea and denote the
set of these vectors z4 by Z4.

For any z € {0, 1}" we write z = (zs,zp), so that with (1)
p(ylz) = p(yslzs) - p(yplzp)- (26)
In particular, by (25),

pOIx') = p(yslxs) - p(yplxh) = p(yslxs) - p(yplxp),

27)
p(yx) = p(yslxs) - p(yplxp).
Fix yg € Y5. We will show that
Y p((s.yp)IX)d((vs,yp),)) = Y, p((ys.yp)x)d((vs,yp),i). (28)

ypeyP ypeYP

Because y = (ys,yp) for y € ¥, summation of (28) over all yg € Y5 then implies (6).
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By (3), y= (vs,yp) €Y if and only if for all k € Q,

Vi p(ys|xs) - pOip|xh) > axVi p(sixk) - p(vply). (29)

If equality holds in (29), then y € Y} and there is a tie between states i and k, which affects
d(y,i) where we will use (19).

It is useful to consider the channel outputs yp (for the bits in D) according to how they
agree with xj,. For A C D, let

i

A [ ifjea
b= 07 jen, Y?—{l_xtj if je D—A. G0

Clearly, any yp in Y? can be written as yp = y‘g for a unique subset A of D.

Let A C D and yp = y4 € YP. For | € Q, consider the sets

Dy={jeD|xi=0}, Aj={jeD|y=x, =0}, an
)

Di={jeD|xi=1}, Al={jeD|y=x =1},

so that A = A} UA}. Then according to (1),

1| |DL—Al 11 |Dt—Al
pOyplah) = (1 — &)l 70740l (1 — )41l g 17411, (32)
For k € Q, let
' @i p(ys |2k
0c(A) = p(spliy) — Re- poplty), R = BVePLSIXS) (33)
qiVi p(ys|xs)

Then (29) is equivalent to Oy (A) > 0 for all k € Q.
Let sign[t] for ¢ € R be the usual sign function defined by
—1 ifr <0,
sign[t] = { 0 iftr=0,
1 ifr > 0.
Let j € D— A, where we write AU j instead of AU {j}. We will show

sign[Qk (AU j)] = sign[Qr(A)]. (34)
Because j ¢ A = A) UA!, either j € D} — Al or j € D} —A!.
Consider the case j € Df) —Af), that is, x; = 0 and yj‘ =1 by (31). The change from A to

AU j means that yguj is obtained from y’?) by changing y; from 1 to 0, so that the input
bit x’j is now correctly transmitted (which happens with probability 1 — &) rather than
incorrectly (probability &j). By (32), this means

1_
&

PO ) = =2 p(yhIxdy). (35)
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Note that i_t is possible that &y > 1 — &, which means that the “more correct” channel
output yguj (relative to the input bits in xp) is less likely than yg; this is why we consider
signs in (34) because Oy (AU j) > Qk(A) is not generally true.

When comparing the output bit y‘;‘ = 1 with the input bit x’;- from the codeword xX, either
JjE Dé —A’é, in which case (35) holds with & instead of i, and, by (33), Ox(AU j) =
(1 —¢&p)/€ - Ok(A), so that (34) holds Wlth equahty, or, alternatlvely, j € A%, that is,

x4 = 1. Changing y; from 1 to 0 to obtain y “/ implies that the input xk £ is now transmitted
Wlth error, so that

P xh) = POplxD).
Using (33) and (35), this means
N _1-& iy_p & €1 1— &
Ok(AUj) = o p(Yplxp) — R a _80)(1_81>P(Y?)|xlf)) >~ Ok(A)

by (16). Again, (34) holds, where here the sign of Q(A U j) relative to that of Oy (A) may
strictly increase.

The case j € D} — A} where x; = 1 and y} = 0 is entirely analogous, by exchanging 0
and 1 (and thus & and &;) in the preceding reasoning. This shows (34).
For A C D, let

ha = d((ys5,3p),1)- (36)

We show that for j € D —A,
hauj > ha. (37)

With y = (ys, yD ) and y = (ys,yp), let T and T’ be defined as in (19). We are going to
show that T C T'. As observed after (33), y' € ¥; if and only if Q(A) > 0 for all k € Q,
and y € Y; if and only if Qx(AU j) > 0 for all k € Q. If Qx(A) < 0 for some k € Q, then
ha =0 by (4), and (37) holds trivially. So we can assume that Q;(A) > 0 for all k € Q and
therefore Oy (AU j) > 0 for all k € Q by (34), that is, i € T, and the sets of all states k that
are tied with i are given by

T'={kcQ|0(A)=0}, T={keQ|Q(AUj)) =0},

which implies that T C T’ by (34). Using the assumption (19) then implies (37) as
claimed.

Consider now the function f : [0, 1]” — R which for z € [0, 1]” is defined by

f)=Y m]Jz [] (-2, (38)

ACD leA leD-A

which is the unique multilinear interpolation of the values /4 defined on the vertices
(14,0p—4) of the unit cube [0, 112, where (14,0p_4); is 1 for j € A and 0 otherwise, with

f(14,0p—a) = ha by (38).
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The monotonicity (37) extends to the monotonicity of f(z;,zp—;) in each variable z;,
where we write D — j for D — {j} and zp = (zj,zp—j), because by (38),

f(ZpZD j Z hAHZl H 1—Z1)+Zj- Z (hAUj—hA)HZl H (1—zl).

ACD—j IcA IleD—A—j ACD—j IeA leD—A—j

That is, because h4,; —ha > 0 by (37) and all products are nonnegative,
1>2;>2;>0 = f(zj,2p-j) > f(&zp—j)  (j€D). (39)
Using (31), let
Do = D, D, =D, Ao = A}, A=Al (40)

and define z, and zp in [0, 1] by

zi~:1—£0, 7; =€ for j € Dy,
! = / (41)
le:1—€1, Zj =& fOl‘jGD].
Then zﬂ) > zp in each component by (16). Using (39) inductively shows
(&) = flz). (42)

The grand finale is to expand (38), using (31) and (40), to

f(zp) = Yo s [Tz IT -2 [l= [T (-2)

AoCDy, A CD, leAy leDy—Ag leA; leDi—A;
and to observe that by (41), (31), (32) for [ =i, (36), (42), (25) and again (41) and (32)

for xﬁj =xp,

Y pOBIx) d((vs.vh),i) = f(zh) > f(zp) = Y pOplxp)d((vs,yh),i).  (43)

ACD ACD

Multiplying this inequality by p(ys|xs) on both sides and using (27) then gives (28) (with
yp written as yg), which was to be shown. ]

We conclude with two small remarks:

First, the equilibrium condition for the sender does not necessarily hold strictly; if all
codewords have the same bit in one particular position, then that bit is ignored by the
receiver and correspondingly can be altered by the sender in any codeword.

Second, the preceding proof works also if for each of the n times that the channel is used
independently, different error probabilities apply, as long as these are common knowledge.
We have not made this assumption to avoid further notational complications.
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