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Abstract

New systems can be designed, developed, and managed as societies of agents
that interact with each other by offering and providing services. These sys-
tems can be viewed as complex networks where nodes are bounded rational
agents. In order to deal with complex goals, they require the cooperation
of the other agents to be able to locate the required services. In this pa-
per, we present a theoretical model that formalizes the interactions among
agents in a search process. We present a repeated game model where the
actions that are involved in the search process have an associated cost. Also,
if the task arrives to an agent that can perform it, there is a reward for
agents that collaborated by forwarding queries. We propose a strategy that
is based on random-walks, and we study under what conditions the strategy
is a Nash Equilibrium. We performed several experiments in order to val-
idate the model and the strategy and to analyze which network structures
are more appropriate to promote cooperation.
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1. Introduction

Social computing has emerged as a discipline in different fields such as
Economics, Psychology, and Computer Science. Computing can be seen as a
social activity rather than as an individual one. New systems are designed,
developed, and managed as societies of independent entities or agents that
offer services and interact with each other by providing and consuming these
services [18]. These systems and applications can be formally represented
through formal models from the field of Complex Networks [22]. This area
provides a sound theoretical basis for the development of models that help
us to reason about how distributed systems are organized [14]. Complex
Network models have been used in different contexts such as social net-
works (collaboration, music, religious networks), economic networks (trade,
tourism, employment networks), Internet (structure and traffic networks),
bio-molecular networks, and computer science networks among others [5, 21].

In systems of this kind, one of the challenges is the design of efficient
search strategies to be able to locate the resources or services required by
entities in order to deal with complex goals [2, 21, 7]. Taking into account
the autonomy of the entities that participate in the search process, three
levels of search decentralization can be considered. We consider that at the
first level the search process is centralized when there is a common protocol
that is adopted by all the entities of the system and this protocol dictates the
actions that must be followed (i.e., the protocol specifies the entity that starts
the process, the sequence of participation of entities, and the target). At the
second level this protocol can be relaxed. The entities adopt that protocol,
and, therefore, they carry out the same set of actions, but the search path
(i.e., the sequence of entities that participate in the search process) is not
specified. At the third level, a decentralized search can be considered when
there is a protocol adopted by all the entities that specifies the set of available
actions. However, these entities can decide whether or not they are going
to follow the protocol. It would not be desirable that to impose the same
behavior on all the nodes if it takes away their individual choice, (i.e., it
would be desirable that all the nodes would follow the protocol willingly).
Therefore, we have looked for a concept of stability within the strategies of
the entities of the system. This concept, which comes from Game Theory, is
known as Nash Equilibrium.

As an application scenario, we consider a P2P system that is modeled
as a multi-agent system. Agents act on behalf of users playing the role of
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a service provider or service consumer. Agents that play the role of service
consumers should be able to locate services, make contracts agreements, and
receive and present results [28]. Agents that play the role of service providers
should be able to manage the access to services and ensure that contracts
are fulfilled. By considering the system as a network, it is assumed that all
the information is distributed among the agents. Since agents only have a
local view of the network, the collaboration of other agents is required in
order to reach the target. During a search process, agents can carry out a
set of actions: create a task that must be performed by a qualified agent,
forward the task to one or several neighbors if they do not know how to solve
the task, or perform the task if they can provide the required service. The
cooperation of agents forwarding queries plays a critical role in the success of
the search process [6]. This action facilitates the location of a resource based
on local knowledge. However, in our scenario, this action has an associated
cost and agents are free to decide whether or not the forwarding action is
profitable to them based on its cost and the expected reward.

In this paper, we propose a model to formally describe the distributed
search for services in a network as a game. Specifically, we use the repeated
games framework to model both the process that a task follows through the
network and the global task-solving process. In the former, each period is a
decision stage for the agent who is in possession of the task. In the latter,
a project is generated in each period and randomly assigned to an agent in
the network.

Our intention is to analyze the relationship between the cost of forwarding
the task and the reward that agents obtain later when the task is solved in
order to guarantee that cooperation is a stable behavior in the game. We
called this reward α. We establish a bound for the total length of the search
process total length using Mean First Passage Time (MFPT), which is the
average number of steps necessary to go from an agent i to another agent j in
the same network. Therefore, the structure of the network also characterizes
α through the MFPT, and, consequently, the network structure influences
the agents’ behavior. In order to verify this, we ran simulations to contrast
the possible differences among network structures. The results show that
the structure of the network has a significant influence on the emergence
of cooperation. The structure that offers the best results is the Scale-Free
structure since its diameter is closer to the limit of steps in the search process
than the other network structures.

The paper is organized as follows. Section 2 presents a repeated game
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model to formalize the search process of services in agent networks. In Section
3, some strategies that agents can follow in the repeated game are analyzed
in order to determine whether or not they are at a Nash Equilibrium. Sec-
tion 4 describes several experiments we performed to empirically validate the
theoretical results in different network structures as well as to analyze the
influence of the network structure and to determine which structure facili-
tates the emergence of cooperation in the proposed repeated game. Section
5 presents other works related to cooperation emergence in distributed envi-
ronments. Finally, Section 6 presents the conclusions.

2. The Model

Consider a finite set of agents N = {1, 2, . . . , n} that are connected by
undirected links in a fixed network represented by the adjacency matrix g.
A link between two agents i and j, such that i, j ∈ N , is represented by
gij = gji = 1, where gij = 0 means that i and j are not connected. The set
of neighbors of agent i is

Ni = {j|gij = 1}
For simplicity we assume that gii = 0 so all neighbors inNi(g) are different

from i. The number of neighbors that agent i has (its degree of connection)
is denoted by ki = |Ni(g)|, which is the cardinality of the set Ni(g). Al-
ternatively, we use the adjacency matrix to represent the network, which is
denoted by A. A link between agents i and j is represented by Aij = 1, and
by Aij = 0 if there is no link.

We consider that each agent has a type (service) θi ∈ [0, 1] that represents
the degree of ability of agent i. Let ρ ∈ [0, 1] be a task that must be carried
out by one of the agents in the network. We assume that there is at least one
agent i ∈ N such that i is suitable to perform the task, which means that,
for a fixed ε, its type θi is ‘similar’ to the task ρ, i.e., |θi − ρ| ≤ ε.

We define an N -person network game Γ∞ρ that takes place in g. Each
agent has a set of actions Ai = {∅, 1, 2, . . . , Ni,∞}, where:

• ∞ means the agent itself does the task

• {1, 2, . . . , Ni} means forwarding the task to one of the agent’s Ni neigh-
bors

• ∅ means doing nothing
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In the first period of the game, a task ρ is uniformly assigned to a ran-
domly selected agent. Beginning at stage 1, the task passes through the
network stage by stage. At stage t > 0 each agent chooses one of the above
actions depending on whether or not the task is in the agent’s node. The
action perform by an agent where the task is not in the agent’s node is con-
sidered to be ∅ or “doing nothing”. We associate a null payoff to this action.
At stage 1, agent i(1) chooses one action from its action set.

At the initial stage, if the first agent, j ∈ {1, . . . , N} chooses to do the
task itself because its type is ε close to the task ρ, then the game ends. Agent
j gets a payoff of 1 − |ρ − θj|, which depends on its type θj and the task ρ.
The more similar the type and the task are, the greater the payoff is. The
rest of the agents can do any action in their action sets. More specifically,
let c > 0 be the cost of forwarding the task. If an agent forwards the task, at
some point it, the agent may earn a payoff α > c if the task ends successfully.
If an agent chooses the action ∅, the payoff is 0 if the agent did not forward
any task in a previous period or the agent did forward the task but the task
ended unsuccessfully (i.e.,nobody chose ∞).

Formally:

uti(ai, a−i; j) =


1− |ρ− θi| if ati =∞
−c if ati ∈ {1, . . . , Ni}
0 if ati = ∅ ∧ @t′ < t : at

′
i ∈ {1, . . . , Ni}

α if ati = ∅ ∧ ∃t′ < t : at
′
i ∈ {1, . . . , Ni} ∧ ∃j ∈ N : atj =∞

By choosing actions at stage t, agents are informed of actions that are
chosen in previous stages of the game. Therefore, let us consider a complete
information set-up. Formally, letHt, t = 1, . . ., be the cartesian product A×A
t−1 times, i.e., Ht = At−1, with the common set-theoretic identification A0 =
�, and let H = ∪t≥0H∞t . A pure strategy σi for agent i is a mapping from
H to Ai, σi : H → Ai. Obviously, H is a disjoint union of Ht, t = 1, . . . , T
and σit:Ht → Ai as the restriction of σi to Ht.

The payoff function of each agent when the game is repeated a certain
number of times and when the task starts at any agent is formalized as:

ui(σi, σ−i) =
∑
t>0

uti(ai, a−i; j) =
1

N

N∑
j=1

∞∑
t=1

uti(ai, a−i; j)

This induces an order in the payoffs for each strategy σi that each agent
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i chooses given the action profiles σ−i, which allows us to rank them and
calculate the Nash Equilibriums of the game.

In order to characterize the set of feasible and individual rational level to
define the set of equilibria payoffs of the repeated game (i.e., the equilibrium
payoff attained as a consequence of the well-known Folk Theorem) [9], we
have to establish the min-max level in pure actions. The min-max strategy
for agent i is the one that guarantees the highest possible payoff in the action
profile that is the worst case scenario for agent i. This is sometimes called
the reservation payoff. Formally,

ūi = min
a−i

max
ai

ui(ai, a−i), ai ∈ Ai, a−i ∈ A−i (1)

In our set-up for the one-shot payoff function, the min-max strategy is
∅ and, therefore, the min-max level is 0. An action profile (σ∗1, . . . , σ

∗
n) is a

Nash equilibrium in the network game Γ, if and only if

ui(θi, σ
∗
1, . . . , σ

∗
n) ≥ ui(θi, σ

∗
1, . . . , σ̂i, . . . , σ

∗
n), ∀ σ∗i 6= σ̂i, i ∈ N, and θi ∈ Θ.

We define the set of feasible payoff vectors as

F := conv{u(a), a ∈ A}.
The set of strictly individually rational payoff vectors (relative to the min-

max value in pure strategies) is

V := {x = (x1, . . . , xn) ∈ F : xi > ūi ∀i ∈ N} .
Folk theorems in the context of game theory establish feasible payoffs for

repeated games. Each Folk Theorem considers a subclass of games and iden-
tifies a set of payoffs that are feasible under an equilibrium strategy profile.
Since there are many possible subclasses of games and several concepts of
equilibrium, there are many Folk Theorems.

The Folk Theorem states any payoff profile in V can be implemented as
a Nash equilibrium payoff if δ is large enough. The intuition behind the Folk
Theorem is that any combination of payoffs such that each agent gets at least
its min-max payoff is sustainable in a repeated game, provided each agent
believes the game will be repeated with high probability. For instance, the
punishment imposed on an agent who deviates is that the agent will be held
to its min-max payoff for all subsequent rounds of the game. Therefore, the
short-term gain obtained by deviating is offset by the loss of payoff in future
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rounds. Of course, there may be other, less radical (less grim) strategies
that also lead to the feasibility of some of those payoffs. The good news
from the Folk Theorem is that a wide range of payoffs may be sustainable
in equilibrium. The bad news is that, there may exist a multiple number of
equilibria.

3. Equilibrium strategies

In this section, we study which strategy profiles are a Nash Equilibrium
in the game Γ∞ρ . Namely, we start defining the Nobody works strategy, which
basically consists of doing nothing, even in the case that an agent can perform
the task. We prove that the Nobody works strategy is not a Nash Equilibrium
in the game. Then we consider the so-called random-walk strategy. In this
strategy, an agent is not able to solve the project, it uniformly and randomly
chooses one of its neighbors to forward the task to. We establish the con-
ditions under which the strategy profile every agent plays the random-walk
strategy is a Nash Equilibrium. We enrich the model by adding a threshold
for the number of times that a task can be forwarded and we also study
under which conditions is a Nash Equilibrium.

3.1. Nobody works

One possible strategy is the strategy we call Nobody works, in which every
agent always chooses the action ∅ and consequently gets a payoff of 0. One of
our model’s assumptions is that for all possible task ρ there exists an agent
that is able to perform it. Let that agent be i, and let its type be θi. From
our payoff criterion, we can state that in some period t the project will start
at agent i and agent i will be able to solve it. In that case, if agent i chooses
the ∞ action (doing the project), agent i gets a payoff of 1 − |ρ − θi| > 0;
therefore, the Nobody works strategy is not an equilibrium strategy.

3.2. Random Walk

In this subsection, we study the case where all agents play a behavioral
strategy σ∞i : H t−1 → ∆(Ai), which leads to the well-known dynamics of
“random-walk”. We call this behavioral strategy the random-walk strategy.

Let us formally define the random-walk strategy. At each stage t, agent
i performs one of the three actions that are possible:

• the ∅ action if no task arrives.
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• the ∞ action if agent i’s type θi is close to the task ρt.

• the forwarding action when the task arrives and agent i cannot solve it,
agent i uniformly and randomly chooses one of its neighbors to forward
the task to.

This strategy is a “myopic” strategy since agents do not update the ex-
pected payoff. Each agent i will uniformly and randomly choose one of its
neighbors to continue searching for the agent that can solve the task ρ. Re-
call that in our game for all task ρ, there exists an agent k∗ such that agent
i can do the task ρ (i.e., |θk∗ − ρ| > ε). As a consequence of the random-
walk strategy we can assert the existence of a finite time 0 ≤ t̃ < ∞ and
k∗ ∈ {1, . . . , N} such that at̃K∗ =∞. Therefore, given a task ρ, the achieved
payoff for each agent first depends on whether or not agent i was part of the
path of searching for the agent that did the task. If agent i did not in the
procedure, then agent i gets 0, which is the min−max value.

Now, suppose that i is part of the path. Let us define some parameters
that take part in the utility function. We refer to the probability of an agent
being capable of performing the task as γi, and since it is the same for all
agents , we simply call it simply γ. P∞x is the probability that the task reaches
a specific agent x in the long run, and the previously defined parameters α
and c are the reward and the cost of forwarding the task, respectively.

Hence, the utility function of the game Γ∞ρ for agent i is:

ui(θi, σi, σ−i) = P∞i (γ(1− |ρ− θi|) + (1− γ)(P∞k∗ (α− c) + (1− P∞k∗ )(−c)))
(2)

The following proposition states that the strategy profile in which every
agent plays a random-walk strategy is a Nash equilibrium in the game Γ∞ρ .

Proposition 1. The strategy profile (σ∞1 , . . . , σ
∞
n ) is a Nash Equilibrium in

the game Γ∞ρ .

Proof. Let i be an agent such that agent i selects a strategy σ∅i 6= σ∞i ; let t be
a time period such that the task ρ arrives to i; let t′ be another time period
such that t′ 6= t and let |θi − ρ| < ε. The strategy σ∅i is formally defined as
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(σ∅i )
t : H t → Ai

{
(σ∅i )

t =∞
∀t 6= t′, (σ∅i )

t = ∅
(3)

When selecting that strategy, if i is able to afford the task agent i does
it, and that is the only profit that agent i eventually gets because it never
forwards the task. Consequently, agent i’s utility function is

ui(θi, σ
∅
i , σ

∞
−i) = P∞i (γ(1− (ρ− θi))) (4)

In order to prove that the strategy profile (σ∞1 , . . . , σ
∞
n ) is a Nash Equi-

librium the utility function described in 2 must be greater or equal to the
utility function specified in 4

P∞i (γ(1− (ρ− θi)) + (1− γ)(P∞k∗ (α− c) + (1− P∞k∗ )(−c)) ≥ P∞i (γ(1− (ρ− θi)))
(1− γ)(P∞k∗ (α− c) + (1− P∞k∗ )(−c)) ≥ 0

Since 0 < γ < 1, (1− γ) is always positive. Then

P∞k∗ (α− c) + (1− P∞k∗ )(−c) ≥ 0

α ≥ c

P∞k∗

By the definition of random-walk dynamics, in the long term, a task ρ will
always find the agent k∗ that is capable of solving it, so P∞k∗ = 1. Since α > c
by assumption, the strategy profile (σ∞1 , . . . , σ

∞
n ) is a Nash Equilibrium in

the game Γ∞ρ .

Now we enrich the model by introducing a “time” condition to solve the
task. It makes sense to limit the rewards for efforts to solve or forward the
task to a time limit within which the task must be solved (i.e., efforts are
only rewarded if the task is solved in a certain number of time periods).

3.3. Random-walk strategy with a finite number of steps

An interesting measure for establishing the limit of steps that a task ρ
can take to be solved is the Mean First Passage Time (hereafter MFPT).
The MFPT between two nodes i and j of a network is defined as the average
number of steps to go from i to j in that particular network [32]. Therefore,
we define the strategy στi for an agent i, which consists of forwarding the

9



task to a randomly selected neighbor only if it has advanced a number ti < τ
times, where τ is the average MFPT of the network (which we formally define
below).

From equation 34 of [32], we know that the MFPT from any agent to a
particular agent j in a network is defined as:

〈Tj〉 =
1

1− πj

N∑
i=1

πiTij =

=
1

1− πj

N∑
k=2

(
1

1− λk
ψ2
kj

N∑
i=1

ki
kj

)
− 1

1− πj

N∑
k=2

(
1

1− λk
ψkj

√
K

kj

N∑
i=1

ψki

√
ki
K

)

where ki and kj are the degree of agents i and j, respectively, ψk is
the kth eigenvector of S corresponding to the kth eigenvalue λk (with S =

D−
1
2AD−

1
2 , A being the adjacency matrix of the network, D being the diag-

onal degree matrix of the network, and the eigenvalues being rearranged as
1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN ≥ −1) and πj = dj/K (with K =

∑N
j=1 dj).

It follows from Eq. (6) from the same article that
∑N

i=1 ψki

√
ki
K

=∑N
i=1 ψkiψ1i = 0. Thus, the second term is equal to 0. So

〈Tj〉 =
1

1− πj

N∑
k=2

(
1

1− λk
ψ2
kj

N∑
i=1

ki
kj

)
=

1

1− πj
K

kj

N∑
k=2

1

1− λk
ψ2
kj (5)

We define the maximum number of steps that must be taken for every
task ρ to be solved as the average 〈Tj〉 for all j ∈ N , which we denote as τ .
Formally:

τ =
N∑
j=1

〈Tj〉
N

(6)

We now define a new game Γτρ. In this game, if it takes more than τ steps
to solve the task, the game ends and the collaborating agents get no reward.
In the following, we explain the equilibrium strategies for the game Γτρ.

Let us define some new parameters that play a role in the new game: the
number of steps a task has advanced until it reaches agent i is ti; Q

τ−ti
i,k∗ is

the probability that the task reaches an agent k∗ starting from agent i in

10



τ − ti or less steps and P τ
s,i is the probability that the task reaches an agent

i starting from agent s in τ or less steps.
In order to formally define P τ

s,i, we use the adjacency matrix of the network
(denoted as A) and one of its properties which states that the values (i, j) of
An indicate the number of paths of length n between i and j in that network.
P τ
s,i can be defined as the number of paths of length τ or less between s and i

divided by the total number of paths with the same length starting at s but
ending at any possible agent j of the network. Formally:

P τ
s,i =

τ∑
t=1

(At)si

N∑
j=1

(
τ∑
t=1

(At)sj

) (7)

Let us define rτ−tii , or simply ri, as the number of agents that the task
can reach starting from i in τ − ti or less steps. For this purpose, we use the
Reachability matrix, (denoted as R), which is defined as

∀i, j ∈ N, (Rτ−ti)ij =


1 if there exists at least one path between i and j

of length τ − ti or less

0 otherwise

(8)
The process for obtaining R from the adjacency matrix is straightforward.
Then, we formally define ri as

ri =
N∑
j=1

(Rτ−ti)ij (9)

To define Qτ−ti
i,k∗ , we compute the probability that none of the reachable

agents for agent i is able to solve the task, which is (1− γ)ri . Then Qτ−ti
i,k∗ is

defined as

Qτ−ti
i,k∗ = 1− (1− γ)ri (10)

Hence, the utility function of the game Γτρ for an agent i when all agents
play the strategy στ is
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ui(θi, σ
τ
i , σ

τ
−i) = P τ

s,i

(
γ(1− (ρ− θi)) + (1− γ)(Qτ−ti

i,k∗ (α− c) + (1−Qτ−ti
i,k∗ )(−c)

)
(11)

Now we study a bound for α for which the strategy profile (στ1 , . . . , σ
τ
n) is

a Nash Equilibrium in the game Γτρ.

Proposition 2. If αi ≥
c

1− (1− γ)ri
, the strategy profile (στ1 , . . . , σ

τ
n) is a

Nash Equilibrium in the game Γτρ.

Proof. The proof proceeds exactly like the proof for Proposition 1 but sub-
stituting the proper probabilities P τ

s,i and Qτ−ti
i,k∗ . Finally, we have

α ≥ c

Qτ−ti
i,k∗

(12)

By substituting 10 in 12, we have

α ≥ c

1− (1− γ)ri
(13)

The fact that α depends on ri implies that each agent has its own bound
for alpha which depends on the agent’s connectivity (α becomes αi).

This means that the network structure has a deep impact on α bounds.
In high clustered networks, ri is high for each agent i, and, consequently,
αi is low. The opposite occurs in low clustered networks (e.g., Erdös-Renyi
networks) where αi is uniform among all agents. In networks with a non-
uniform degree distribution (e.g., scale-free networks), average α may be
similar to the α for Erdös-Renyi networks, but it varies a lot between hub
and terminal agents.

4. Experiments

In this section, we validate the proposed mathematical model for service
search in different network structures. Specifically, we focus on how the
structural parameters of the networks influence the required reward α in order
to promote cooperation (i.e., forwarding tasks) and improve the success of the
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topology N edges avDg std clust dens τ = Log(mfpt) d diameter/τ

Random 100.0 200.00 4.00 1.46 0.02 0.04 5.00 7.09 1.418
100.0 300.00 6.00 1.82 0.03 0.06 4.00 5.00 1.25

ScaleFree 100.0 197.00 3.94 3.94 0.02 0.04 5.00 5.09 1.09
100.0 293.00 5.86 5.08 0.04 0.06 5.00 4.27 0.854

SmallWorld 100.0 200.00 4.00 1.02 0.08 0.04 5.00 7.55 1.55
100.0 300.00 6.00 1.27 0.10 0.06 4.00 5.45 1.36

Table 1: Network structural properties: topology, number of agents, number of edges,
average degree of connection of agents, standard deviation of the degree distribution,
clustering, density, τ = Log(Mean First Passage Time),diameter, ratio diameter/τ .

search process. The structural parameters are represented by the parameter
ri (see Equation 9). For the evaluation, we compare the success rate of the
searches and the average agent utility in different network structures. The
network structures considered in the experiments are: Random, Scale-free,
and Small-World networks.

4.1. Experimental Design

Each network in the experiments is undirected and has 100 agents. We
also tested different sizes of networks, but the conclusions were similar to
those obtained with 100 agents and we do not include them here. The struc-
tural properties of the networks are shown in Table 1. Each agent has a type
(service) θi ∈ [0, 1] that represents the degree of ability of agent. The degree
of ability is uniformly distributed among the agents. A task ρ is generated
and assigned to an agent following a uniform probability distribution. Each
agent has a set of actions to choose from when it receives a task: doing the
task if the similarity between its ability and the task ρ is under a threshold
|θi − ρ| ¡ ε, forwarding the task based on the expected reward (Formula 13),
or doing nothing. The forwarding action has an associated cost c = 5. A
task ρ is successfully solved when an agent that has an ability that is similar
enough to the task (|θi − ρ| < ε) in less than τ steps. For the experiments,
the value of the τ is the Log(MFPT). We use this concave transformation
to obtain clear results and illustrate the impact on the parameter with the
structure of the network. The value for the ε parameter is 0.1. We executed
each experiment over 10 networks of each type and we generated 1,000 tasks
ρ in each network.
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Figure 1: Influence of α values in the percentage of successful searches in different network
structures of 100 agents. (Left) Network structures with an average degree of connection
of 4. (Right) Network structures with an average degree of connection of 6.

4.2. The Influence of Structural Properties and α

In this section, we analyze the influence of network structural properties
and reward α in the search process. We consider values for α in the range
[4.99975, 5.0005] in order to see the effects on the search process (see Figure
1). In this interval, we observe the effects of considering values for α that are
lower than the cost of the forwarding action (c=5), values that are equal to
the cost of the forwarding action, and values that are greater than the cost of
the forwarding action. With values of α lower than or equal to c, the success
rate was around 20%. This percentage represents the number of tasks that
can be solved directly by the first agent that receives the task. Values of α
that are strictly superior to the cost of the forwarding action (α > c) provide
an increase in the success rate of the search process (see Figure 1 Left).
The structural properties of the network considered in the search process
have an important influence on the success rate. We observe that there are
significant differences between the results in Scale-Free, Random, and Small-
World networks. Scale-Free provided better results than the other networks
since its structural properties increased the number of agents that could be
reachable. The diameter of the network is closer to τ than the diameters
of other network models (see Table 1). Another example of the influence of
structural properties is the average degree of connection of the agents. As
the average degree of connection increases, the number of reachable agents
increases and so does the probability of finding the required agent. Therefore,
agents estimate that it is profitable to forward the task to their neighbors
(see Figure 1 Right).
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Figure 2: Influence of α values on the utility in different network structures of 100 agents.
(Left) Network structures with an average degree of connection of 4. (Right) Network
structures with an average degree of connection of 6.

The structural properties and the reward value α also influence the aver-
age utility obtained by an agent. In this experiment, we analyzed values of
α in the range [0, 60]. We considered a wider range in order to see the values
that made the average agent utility positive and how this utility evolves (see
Figure 2). Values of α lower than or equal to c provided a utility equal to 0
since agents estimate that the expected reward was not enough to compen-
sate the cost of the forwarding action. Values of α that were in the interval
(5, 10] made some agents estimate that the forwarding action was going to
be profitable. Although the value for α was enough for agents to consider
forwarding tasks, their utility was not always positive for all the agents.
Therefore, the average utility had a negative value. The interval (5, 10] for
α values could be considered risky. The average utility became positive with
α values greater than 10 (see Figure 2 Left). In this experiment, the network
structure also had a significant influence. The Scale-Free network provided
higher values of utility than the Random or Small-Word networks. This dif-
ference was also observed when we increased the average degree of connection
of agents (see Figure 2 Right).

5. Related Work

Random-walk strategies have been presented as an alternative search
strategy to flooding strategies [4, 31, 17] since they reduce the traffic in
the system and provide better results [19, 33]. A random-walk search algo-
rithm selects a neighbor randomly each time to forward the message to [10].
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There are many search proposals that navigate networks using random-walk
since they do no require specific knowledge and can be applied in several
domains. Some of these works have introduced modifications such as using
random-walk from multiples sources [34, 25] or adding information about
routes [15, 1, 3] in attempt to improve the search efficiency. The influence
of network structural properties on random-walk has also been studied. For
instance, some of the properties that have been evaluated are: the mean
first-passage time (MFPT) from one node to another [32, 27, 30], how the
structural heterogeneity affects the nature of the diffusive and relaxation dy-
namics of the random walk [23], and the biased random-walk process based
on preferential transition probability [8].

One of the common assumptions in network search is that all the agents
have homogeneous behavior and that all of them are going to cooperate by
forwarding messages. However, this does not correspond with real scenarios.
In real large-scale networks, decisions are often made by each agent inde-
pendently, based on that agent’s preferences or objectives. Game Theoretic
models are well suited to explain these scenarios [20]. Game theory studies
the interaction of autonomous agents that make their own decisions while
trying to optimize their goals. Game Theory provides a suite of tools that
may be effectively used in modeling interactions among agents with different
behaviors [29].

There are works in the area of Game Theory that focus on the rout-
ing problem in networks where there are selfish agents. Specifically, this
problem has been studied in wireless and ad-hoc networks [29, 20]. Numer-
ous approaches use reputation [13] (i.e., techniques based on monitoring the
nodes’ behavior from a cooperation perspective) or price-based techniques
[12] (i.e., a node receives a payment for its cooperation in forwarding net-
work messages and also pays other nodes which participate in forwarding its
messages) to deal with selfish agents. One of the drawbacks of reputation
systems is that nodes whose reputation values are higher than a threshold
are treated equally. Therefore, a node can maintain its reputation value just
above the threshold to obtain the same benefit as nodes with higher rep-
utation levels. One of the problems of the Price-based techniques is that
they are not fair with nodes located in region with low traffic that have few
opportunities to earn credit. Li et al. [16] integrate both techniques and
propose a game theory model for analyzing the integrated system. However,
this approach does not consider the influence of the underlying structure in
the cooperation emergence.
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To understand the social behavior of the systems it is important to con-
sider the network structure. There are several works that analyze the influ-
ence of the network structure when the agents of the networks do not follow
homogeneous behavior. These works study how structural parameters such
as clustering or degree distribution affect the emergence and maintenance
of cooperative behavior among agents [26, 24]. Hofmann et al. [11] present
a critical study about the evolution of cooperation in agent societies. The
authors conclude that there is a dependence of cooperation on parameters
such as network topology, interaction game, state update rules and initial
fraction of cooperators.

The proposal presented in this paper analyzes through a game theory
model the problem of cooperation emergence in the context of decentralized
search. It differs from previous approaches in several ways. First, we consid-
ered a game that fits better with the characteristics of decentralized search
than other games proposed in the literature that are based on the often stud-
ied Prisioner’s Dilemma. Second, agents decision about cooperation is based
on an utility function that takes into account the network topology proper-
ties. Moreover, the utility function also considers a limit in the number of
possible steps to reach the target agent. This feature is important in dis-
tributed systems in order to avoid traffic overhead. Third, the strategy that
agents follow is based on a search mechanism that is often used in network
navigation and does not require specific domain knowledge. Therefore, the
model can be easily applied in different search contexts. Finally, in order
to promote cooperation, instead of using a reputation or price-based mecha-
nisms, we use a mechanisms based on incentives provided by the system. We
formally and experimentally analyze which is the minimum required reward
in order to consider the strategy a Nash Equilibrium.

6. Conclusions

In this paper, we have analyzed the distributed search of resources in
networks that model societies of agents. These agents offer services and
interact with each other by providing and consuming these services. The
actions of these agents have an associated cost and not all of the agents
have homogeneous behavior. We have proposed the use of Game Theory
to formally model the interactions between the agents as a repeated game,
and we have described a strategy that is based on the simple well-known
random-walk strategy. We have also established the conditions under which
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the random-walk strategy is a Nash Equilibrium. The strategy proposed
has been extended by adding a constraint for contexts where the number of
times a task can be forwarded is restricted. The conditions under which this
extended strategy is a Nash Equilibrium have also been analyzed. Finally,
we validated the proposed model and the latest strategy in different types of
networks. The results show that in order to promote cooperation among the
agents of the network, the expected reward should be greater than the cost
of the forwarding action. Moreover, the network structure has an important
influence on the success of the search process and in the average utility of the
system. Scale-Free structural parameters facilitate the success of the search
process because their structural properties increase the number of agents
that can be reached. The experiments also show that even though there are
certain values of the reward that are enough to promote cooperation, these
values are not enough to obtain a positive average utility value.
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