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Abstract

We introduce the notion of Canonical Expanding Ricci Soliton, and use it to
derive new Harnack inequalities for Ricci flow. This viewpoint also gives geometric
insight into the existing Harnack inequalities of Hamilton and Brendle.

1 Introduction

Recently, in [4], we introduced the notion of Canonical Soliton. Roughly speaking, given
any Ricci flow on a manifoldℳ over a time interval I ⊂ (−∞, 0), we imagined the time
direction as an additional space direction and constructed a shrinking Ricci soliton on
ℳ× I with respect to a completely new time direction.

Considering these solitons in the context of known notions and theorems in Riemannian
geometry then induced interesting concepts and results concerning the original Ricci flow,
many of which were first discovered by Perelman [17]. For example, considering geodesic
distance in our soliton metrics gives rise to Perelman’s ℒ-length.

It is also fruitful to consider existing Ricci flow theory applied to the Canonical Soliton
flows. For example, applying theory of McCann and the second author and Ilmanen [15]
is one way of leading to the results of [19] which ultimately recovers essentially all of
the monotonic quantities for Ricci flow used by Perelman [17]. See [20] for a broader
description.

In this paper we describe a slight variation of the Canonical Shrinking Solitons – namely
the Canonical Expanding Solitons – which have completely different applications. These
new solitons are adapted to explaining and proving Harnack inequalities in the spirit of
the original result of Hamilton [10] and the more recent result of Brendle [2]. Our work
recovers both of these known Harnack inequalities, and gives new ones too. (See Theorem
2.7.) In addition, our method explains clearly what is behind a Harnack inequality: it
is simply the assertion that a given curvature condition is preserved on the Canonical
Expanding Soliton.

As a by-product of our work we give an answer to the question of Wallach and Hamilton
[11] which asks for a geometric construction whose curvature is represented by the matrix
Harnack quantity of Hamilton [10]. This question prompted the pioneering works of
Chow-Chu [5] (see also the relevant modification in [7, chapter 11, §1.3]) and Chow-
Knopf [6] which led in turn to the constructions of [17, §6] and [4]. Each of these papers
constructed an object whose curvatures were similar to the Hamilton Harnack quantities,
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sometimes modulo either missing terms or valid for a different range of values of time as
in Perelman’s work [17, §6, §7].

It turns out that the Riemannian curvatures of the Canonical Expanding Solitons give
rise to the exact Hamilton matrix Harnack quantities, with the closest parallels in the
existing literature to be found within the approximation approach in [5, §4] and, more
recently, the calculations of Brendle [2]. In our case, for example, the full Hamilton
Harnack inequality is equivalent to the Canonical Expanding Soliton having weakly pos-
itive curvature operator (in an appropriate limit). Our new Harnack inequalities can be
phrased in terms of this soliton satisfying other natural curvature conditions.

The paper is organised as follows. In Section 2 we introduce the Canonical Expanding
Solitons and the flow they induce, describe their asymptotics and explain how they lead
to Harnack inequalities. Our new Harnack inequalities are stated in Section 2.4. In
Section 3 we give the rigorous proof of the Harnack inequalities stated in Theorem 2.7.
To do that we use the Canonical Expanding Solitons to derive the equations satisfied by
their (limiting) curvature ℛ∞, and then piece together an argument which borrows much
from the work of Hamilton [10] and Brendle [2]. The computations for the curvature of
the Canonical Expanding Solitons are given in Appendix A, and in Appendix B we
describe a recent insight of Burkhard Wilking [21] which allows one to construct some
new invariant curvature cones.

For an introduction to Ricci flow, we refer to [18]; for further background on Canonical
Solitons and an overview of the use of Harnack inequalities in Ricci flow, see [20].

Acknowledgements: We thank Burkhard Wilking, Simon Brendle and Mario Micallef for
useful conversations. Both authors are supported by The Leverhulme Trust. The first
author was also partially supported by the DGI (Spain) and FEDER Project MTM2007-
65852, and by the net REAG MTM2008-01013-E.

2 The Canonical Expanding Solitons

2.1 Definitions and basic properties

Theorem 2.1. Suppose g(t) is a Ricci flow, i.e. a solution of

∂g

∂t
= −2 Ric(g(t)) (2.1)

defined on a manifold ℳ of dimension n ∈ ℕ, for t within a time interval [0, T ], with
uniformly bounded curvature. Suppose N > 0, and define a metric ǧN (which we normally
write simply as ǧ) on ℳ̌ :=ℳ× (0, T ] by

ǧij =
gij
t

; ǧ00 =
N

2t3
+
R

t
+

n

2t2
; ǧ0i = 0,

where i, j are coordinate indices on the ℳ factor, 0 represents the index of the time
coordinate t ∈ (0, T ], and the scalar curvature of g is written as R.

Then up to errors of order 1
N , the metric ǧ is a gradient expanding Ricci soliton on the

higher dimensional space ℳ̌:

EN := Ric(ǧ) + Hessǧ

(
−N

2t

)
+

1

2
ǧ ≃ 0, (2.2)
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by which we mean that for any k ∈ {0, 1, 2, . . .} the quantity

N
[
∇̌kEN

]
(2.3)

is bounded uniformly locally on ℳ̌ (independently of N) where ∇̌ is the Levi-Civita
connection corresponding to ǧ.

Remark 2.2. Implicit in this theorem is that ǧN is a Riemannian metric, i.e. positive
definite, for any N > 0. This is because the maximum principle applied to R implies
that R ≥ − n

2t . The same argument on closed manifolds can be found in [18, Corollary
3.2.5]; the maximum principle is valid for our possibly noncompact Ricci flows since we
are assuming uniformly bounded curvature (see, for example [7, Corollary 7.43]). One
further consequence of the fact that R + n

2t ≥ 0 is that the mean curvature of any

submanifoldℳ×{t} of (ℳ̌, ǧ) has a sign (cf. [4, Section 6]) although we do not pursue
that here.

This construction should be compared to the Canonical Shrinking Solitons of [4]. Various
signs have changed, and every � has been replaced with a t. We have also strengthened
the sense in which (2.2) is to hold in order to make it more useful in rigorous proofs, and
considered Ricci flows defined all the way down to t = 0 as is relevant in the study of
Harnack estimates.

The proof reduces to computing all relevant quantities explicitly. We give the results
of these computations, including exact expressions for the full curvature tensor of ǧ in
Appendix A.

We now introduce a new time parameter s ∈ (0, 1] and consider the flow of metrics

G(s) := s ∗s (ǧ)

where  s : ℳ̌ → ℳ̌ is the family of maps, diffeomorphic onto their images, generated
by integrating the collection of vector fields

Xs :=
1

s
∇̌
(
−N

2t

)
=
t

s

∂

∂t
− ǧ00

(
R+

n

2t

) 1

s

∂

∂t

(2.4)

starting with  1 = identity. If we imagine N to be large, then Xs is approximately the
vector field t

s
∂
∂t , which could be integrated on the whole of ℳ× (0,∞) to give the map

 ∞s :ℳ× (0,∞)→ℳ× (0,∞) defined by

 ∞s (x, t) = (x, st).

(For arbitrary N > 0, we can compare Xs and t
s
∂
∂t using (2.4) because R+ n

2t ≥ 0 as in
Remark 2.2, and thus one can check that the maps  s are well-defined.) A slightly closer
inspection yields:

Proposition 2.3. The map  s converges smoothly in its arguments x ∈ ℳ, t ∈ (0, T ]
and s ∈ (0, 1] to (an appropriate restriction of)  ∞s as N →∞.

If ǧ were an exact Ricci soliton metric, then G(s) would be an exact Ricci flow on
ℳ× (0, T ] for s ∈ (0, 1] (see [18, §1.2.2]). A minor adjustment of the standard theory
reveals:
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Proposition 2.4. The flow G(s) satisfies

∂G

∂s
= −2Ric(G(s)) +  ∗s (EN ),

where EN is defined in Theorem 2.1.

Since G(s) is essentially a Ricci flow, we can imagine that curvature conditions such
as positive curvature operator which are preserved for Ricci flows might be essentially
preserved for G(s). If we can argue that G(s) satisfies such a condition in the limit
s ↓ 0, then we should deduce the same condition for G(1) = ǧ, and the idea is that a
curvature condition for ǧ is the geometric way of expressing a Harnack inequality. We
will see precise assertions along these lines later, but for now, this reasoning justifies the
following section.

2.2 Asymptotics of the Canonical Expanding Soliton

We will argue that in the limit t ↓ 0, the Canonical Solitons are conical. Near t = 0, the
dominant term in the definition of ǧ00 is emphatically N

2t3 . If we neglect the other terms

for the moment, and change variables from t to r := t−
1
2 , then for large r (small t) ǧ can

be written approximately as

ǧN ∼
g(t)

t
+

N

2t3
dt2

= r2g(r−2) + 2Ndr2
(2.5)

and this suggests that asymptotically the Canonical Soliton opens like the cone

ΣN := (ℳ× (0,∞),
g(0)

t
+

N

2t3
dt2) = (ℳ× (0,∞), r2g(0) + 2Ndr2)

(using coordinates (x, t) or (x, r) respectively on ℳ× (0,∞)) with shallow cone angle
for large N . This motivates:

Lemma 2.5. If we define Ḡ(s) := s( ∞s )∗(ǧN ) on ℳ× (0, T/s], then

Ḡ(s)→ g(0)

t
+

N

2t3
dt2

smoothly locally on ℳ× (0,∞) as s ↓ 0.

Proof. It may be clearest to make a third change of coordinates, writing � = ln t. Then

g(0)

t
+

N

2t3
dt2 = e−�

(
g(0) +

N

2
d�2

)
and the map  ∞s , viewed in (x, �) coordinates as a map ℳ× ℝ→ℳ× ℝ, corresponds
to

 ∞s (x, �) = (x, �+ ln s).

Moreover,

ǧN = e−�
(
g(e�) +

N

2
d�2

)
+
(
Re� +

n

2

)
d�2,

and so

Ḡ(s) = e−�
(
g(e�+ln s) +

N

2
d�2

)
+
(
Rs2e� + s

n

2

)
d�2,
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One consequence of this is that for any x ∈ℳ and sequence ti ↓ 0, we have convergence
of pointed rescalings of the Canonical Expanding Soliton:

(ℳ̌, tiǧN , (x, ti))→ (ΣN , (x, � = 0))

as i→∞ in the sense of Cheeger-Gromov convergence [18, §7]. It is also relevant to note
that

(ΣN , (x, � = 0))→ (Σ∞, (x, 0))

as N →∞, where
Σ∞ := (ℳ, g(0))× ℝ,

i.e. the cone straightens out to a cylinder. In practice, we will be most interested in
taking limits of geometric quantities as N → ∞ (despite the fact that the metric itself
will degnerate) and then as s ↓ 0 rather than the other way round.

2.3 Using Canonical Expanding Solitons to give Harnack in-
equalities

We are now in a position to elaborate on the use of Theorem 2.1 to obtain Harnack
estimates. It is well known that certain curvature conditions are preserved under Ricci
flow. For example, a Ricci flow on a closed manifold which starts with weakly positive
curvature operator will also satisfy this property at later times.

Given a Ricci flow for which we would like a Harnack inequality, the trick, effectively,
is to apply this preservation principle not to the Ricci flow itself, but to its Canonical
Expanding Soliton. Given the asymptotics discussed in the previous section, we should
study Ricci flows g(t) on an n-manifoldℳ, for which the curvature of (ℳ, g(0))×ℝ lies
in a subspace of the space of all possible curvatures which is preserved under (n + 1)-
dimensional Ricci flow. If we were to make the leap of faith that such a curvature
condition should also be preserved under the approximate Ricci flow generated by the
(approximate, incomplete) Canonical Soliton, then we would deduce thatG(1) = ǧ should
satisfy this condition, and this statement can be considered to be a Harnack inequality.

In order to make a precise statement of the Harnack inequalities, we will pass to the limit
N →∞. The Canonical Soliton metrics ǧN degenerate in this limit, although if we view
them as metrics on T ∗ℳ̌ rather than on Tℳ̌, then they converge to a weakly positive
definite tensor ǧ∞ ∈ Sym2(Tℳ̌) whose only nonzero components are (ǧ∞)ij = tgij .
More importantly, some of the geometric quantities such as curvature associated with
ǧN behave well in the same limit, and the actual Harnack estimates will be statements
about them.

Let V be a (real) vector space of dimension m. We call ℛ ∈ ⊗4V ∗ an algebraic curvature
tensor if it satisfies the symmetries of the curvature tensor of a Riemannian metric,
including the first Bianchi identity (cf. Chapter V of [13]). Given a manifold Nm, we
use the same terminology to describe a section of ⊗4T ∗N which is an algebraic curvature
tensor in each fibre.

Proposition 2.6. In the setting of Theorem 2.1, the full curvature tensor ℛ(ǧN ) of
ǧN , viewed as a section of ⊗4T ∗ℳ̌, converges smoothly as N → ∞ to a limit algebraic
curvature tensor ℛ∞. At a point (x, t) in ℳ̌, the coefficients of the tensor ℛ∞ are given
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in terms of the coefficients of the curvature of g(t) at the point x by

∞
Rijkl =

1

t
Rijkl

∞
Ri0j0 =

1

t

(
ΔRij + 2RikjlR

kl −RkiRjk +
Rij
2t
− 1

2
∇i∇jR

)
∞
Rij0k =

1

t
(∇iRjk −∇jRik)

Moreover, the Ricci curvature Ric(ǧN ) ∈ Γ(Sym2T ∗ℳ̌) converges to a limit Ric∞ de-
termined by

Ric∞

(
X +

∂

∂t
,X +

∂

∂t

)
= Ricg(t)(X,X) + ⟨X,∇R⟩g(t) +

1

2

(
∂R

∂t
+
R

t

)
,

for each X ∈ Tℳ.

The proposition follows immediately from Appendix A.

An algebraic curvature tensor with the same coefficients as ℛ∞ arises as the limit (as
"→∞ and � → 0) of the Riemannian curvature associated to the two-parameter family
of Riemannian metrics g̃",� introduced in [5, §4]. Compare also with the definition of the
(0, 4)-tensor S in [2].

The curvature converges also when viewed as any tensor of type (p, q) with p + q = 4,
but because the metric ǧN is degenerating in the limit, the assertion above carries the
most information.

The symmetries of an algebraic curvature tensor on a vector space V , say, allow one to
see it as a symmetric bilinear form on Λ2V , constrained further by the Bianchi iden-
tity. We sometimes emphasise this viewpoint by calling such a constrained element of
Sym2(Λ2V ∗) an (algebraic) curvature (bilinear) form, and write the entire space of such
forms Sym2

B(Λ2V ∗). We will occasionally use the same notation for the space of alge-
braic curvature tensors, that is, we will switch between these two viewpoints implicitly,
often without changing notation.

Viewing ℛ∞ as a section of Sym2
B(Λ2T ∗ℳ̌) (using the obvious extension of the notation

above) the full matrix Harnack inequality of Hamilton [10] is precisely equivalent to ℛ∞
being (weakly) positive definite. (This would normally be referred to as weakly positive
curvature operator, but as mentioned above, because the limit metric ǧ∞ is degenerate,
that would be a weaker assertion.) Hamilton’s trace Harnack inequality is precisely
equivalent to Ric∞ being weakly positive definite. Brendle’s Harnack inequality [2] is
precisely equivalent to ℛ∞ lying in a certain cone introduced by Brendle and Schoen [1]
(see Appendix B).

Finally, if one were to assume that all Harnack inequalities arose in this way, one would
conclude that the long-sought Harnack inequality for Ricci flows g(t) on 3-manifolds
with weakly positive Ricci curvature would be unreasonable. One would deduce that
(ℳ, g(0))×ℝ has weakly positive Ricci curvature, but the framework of this paper would
then require weakly positive Ricci curvature to be preserved for 4-dimensional Ricci flows,
which is false (cf. [14] and [12] for the compact and non-compact case, respectively).

In the next section we find some other preserved curvature conditions which yield new
Harnack inequalities, and in Section 2.5 we explain to what extent one might expect to
generalise further.
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2.4 New Harnack inequalities

As we have indicated, our Harnack inequalities will be phrased in terms of the limit-
ing curvature form ℛ∞ lying in appropriate subsets of Sym2

B(Λ2T ∗ℳ̌). We now work
towards defining some examples of such subsets.

Following [16] and [21] we consider the complexified tangent bundle TℂN of a manifold
N , and implicitly extend each curvature form complex linearly to act on complexified
2-vectors – i.e. elements of Λ2TℂN . To such a 2-vector !, one can associate a rank
defined to be the least number k ∈ {0, 1, 2, . . . } such that in each fibre we can write ! as
a complex linear combination of at most k simple elements u ∧ v with u, v ∈ TℂN .

With this viewpoint, we can define the following convex cones within Sym2
B(Λ2T ∗N ),

which arise from ‘Wilking’ cones as discussed in Appendix B:

Ck(N ) := {ℛ ∈ Sym2
B(Λ2T ∗N ) ∣ ℛ(!, !̄) ≥ 0 for all ! ∈ Λ2TℂN of rank no more than k}.

We will see that these cones are invariant under Ricci flow in the sense that if g(t) is a Ricci
flow on a closed manifoldℳ for t ∈ [0, T ] and ℛ(g(0)) ∈ Ck(ℳ), then ℛ(g(t)) ∈ Ck(ℳ)
for all t ∈ [0, T ]. Note that the following theorem does not require ℳ to be closed.

Theorem 2.7. (Main Harnack Theorem.) Suppose g(t) is a complete Ricci flow on a
manifold ℳ for t ∈ (0, T ] with scalar curvature uniformly bounded from above, and for
some k ∈ ℕ, ℛ(g(t)) ∈ Ck(ℳ) for all t ∈ (0, T ]. Then ℛ∞ ∈ Ck(ℳ̌).

Remark 2.8. Note that the cones Ck are nested in the sense that if k1 ≤ k2 then
Ck1(N ) ⊃ Ck2(N ). Moreover, if ℛ∞ ∈ Ck(ℳ̌) for some k (even k = 1) then Ric∞ is
positive definite, so we deduce Hamilton’s trace Harnack inequality. By definition, a
metric whose curvature tensor lies in C1(N ) has weakly positive sectional curvature, so
the hypothesised upper bound for the scalar curvature implies a uniform upper and lower
bound on the full curvature tensor.

The highest possible rank of an element ! ∈ Λ2TN is [dim(N )
2 ], and therefore if k = [n+1

2 ],

the cone Ck(ℳ̌) is precisely the weakly positive definite elements of Sym2
B(Λ2T ∗ℳ̌), and

we recover the main result of [10] stated in a geometric form:

Corollary 2.9. (Equivalent to Hamilton [10, Main Theorem].) Suppose g(t) is a com-
plete Ricci flow on a manifold ℳ for t ∈ (0, T ] with uniformly bounded curvature. If
ℛ(g(t)) is weakly positive definite for all t ∈ (0, T ] then ℛ∞ is weakly positive definite.

The fact that the cone of weakly positive definite curvature forms is preserved under
Ricci flow is also, separately, due to Hamilton [9].

The special case k = 1 is the main result of [2]:

Corollary 2.10. (Equivalent to Brendle [2, Proposition 9].) Suppose g(t) is a complete
Ricci flow on a manifold ℳ for t ∈ (0, T ] with scalar curvature uniformly bounded from
above. If ℛ(g(t)) ∈ C1(ℳ) for all t ∈ (0, T ] then ℛ∞ ∈ C1(ℳ̌).

Note that the main result [2, Theorem 1] as stated is a little weaker than this corollary,
but it is deduced from [2, Proposition 9] which is just as strong. The preserved cone C1
was discovered by Brendle and Schoen [1] and originally described as the cone of curvature
forms of manifolds (N , g) for which (N , g)×ℝ2 has weakly positive isotropic curvature.
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The C1 formulation has the advantage emphasising that the cone is independent of the
background metric (a fact appreciated by Brendle in [2]).

For intermediate k, Theorem 2.7 can be considered to be some sort of interpolation be-
tween these two corollaries. One has weaker hypotheses than Hamilton’s result, and
stronger conclusions than Brendle’s result (but weaker conclusions than Hamilton’s re-
sult, and stronger hypotheses than Brendle’s result).

In the bigger scheme of things, Hamilton’s result has been crucial in the study of 3-
manifolds using Ricci flow. There, the blow-ups of singularities do satisfy the generally
rather restrictive hypothesis of weakly positive curvature form, although the most useful
conclusion is the trace Harnack result (Remark 2.8). Brendle’s result, having the weakest
hypothesis, currently holds most promise for applications to the study of manifolds of
positive isotropic curvature [16] via Ricci flow.

Remark 2.11. Although we have stated Theorem 2.7 for the cones Ck, the same proof
works for more general Wilking cones (see Appendix B) with the additional assumption
that they can be defined independently of a background metric. Moreover, the heuristics
suggest that the result holds for more general convex cones which are invariant under
the Ricci flow, as we describe in the next section, although we do not currently know of
any suitable cones K other than those already dealt with directly in this paper.

2.5 More general cones

We want to imagine more general convex cones K within Sym2
B(Λ2V ∗), with dimV =

n + 1, so that the assertion of a Harnack inequality will be that ℛ∞ ∈ K. (Recall that
a convex cone K in a vector space is a subset such that if � ≥ 0 and a, b ∈ K, then
�a ∈ K and a + b ∈ K.) Given the explanations of previous sections, we would like K
to be an invariant cone under Ricci flow, and since the metric ǧ∞ is degenerate, it will
be appropriate to ask that the cone is GL(V )-invariant. To clarify both notions:

Definition 2.12. A cone K within the vector space Sym2
B(Λ2V ∗) of algebraic curvature

tensors on an m-dimensional real vector space V is called GL(V )-invariant if for each
T ∈ K and linear map A ∈ GL(V ), the tensor TA ∈ Sym2

B(Λ2V ∗) defined by

TA(v1, v2, v3, v4) := T (Av1, Av2, Av3, Av4)

also lies in K.

Such a GL(V )-invariant cone K which is also closed and convex, is said to be invariant
under Ricci flow if when we define, for T ∈ Sym2

B(Λ2V ∗) and positive definite g ∈
Sym2V , the tensor

Q(T, g)abcd := 2g�g�� [Ta�b�Tcd� − Ta�b�Tdc� + Ta�c�Tbd� − Ta�d�Tbc�] (2.6)

then for all T ∈ ∂K and all (equivalently one) g, the tensor Q(T, g) points into the
interior of K at T . That is, for any Υ ∈ (Sym2

B(Λ2V ∗))∗ such that Υ(T̃ −T ) > 0 implies
T̃ /∈ K, we have Υ(Q(T, g)) ≤ 0. Or, alternatively phrased (see [9, Lemma 4.1] for a
proof of the equivalence) the cone K is preserved under the ODE Ṫ = Q(T, g) (for any
or all g).

Note that we can talk about a curvature form/tensor ℛ on a manifold Nm lying in a
GL(V )-invariant cone K: we ask that at each point x ∈ N , after identifying TxN with
V via an arbitrary linear bijection, we have ℛ(x) ∈ K.
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The terminology of the definition is justified because Hamilton’s ODE-PDE theorem (see
Theorem 4.3 in [9]) tells us that if g(t) is a Ricci flow on a closed manifold such that
ℛ(g(0)) lies in a cone K as in Definition 2.12, then ℛ(g(t)) ∈ K for all later times t.

Conjecture 2.13. Let V be a vector space of dimension n + 1. Suppose K is a closed
GL(V )-invariant convex cone within Sym2

B(Λ2V ∗) which contains all weakly positive
definite curvature forms, and is invariant under the Ricci flow in the sense of Definition
2.12. Suppose further than g(t) is a Ricci flow on a manifold ℳn for t ∈ (0, T ] with
uniformly bounded curvature, and ℛ((ℳ, g(t)) × ℝ) ∈ K for all (x, t) ∈ ℳ̌. Then
ℛ∞ ∈ K.

It would be particularly interesting in this context to find such a GL(V n+1)-invariant
cone containing the cone C(S1) of Appendix B, but contained in the cone of curvature
operators with weakly positive sectional curvature.

3 Proof of the Harnack estimates.

In this section we give a rigorous proof of Theorem 2.7 following the ideas of the previous
section, and the earlier papers of Hamilton [10] and Brendle [2].

3.1 Applying the Canonical Expanding Soliton to derive equa-
tions satisfied by ℛ∞

We have seen how the curvature of the metrics ǧN converges to ℛ∞ as N →∞, and in
this section we will apply what we know about the curvatures of Ricci flows to derive
information about this limit. More precisely, we want to derive a parabolic-type equation
(3.7) which it satisfies. We will also have to consider one further object which behaves
well in the same limit, namely the connection.

Proposition 3.1. In the setting of Theorem 2.1, the Levi-Civita connection ∇̌ of ǧN

converges smoothly as N →∞ to a limit
∞
∇. More precisely, after choosing local coordi-

nates {x1, . . . , x
n, t} near some point in ℳ̌, the Christoffel symbols with respect to those

coordinates will converge smoothly. At a point (x, t) in ℳ̌, the Christoffel symbols of
∞
∇

are given in terms of the coefficients of g(t) and its curvature at the point x by

∞
Γ i
jk= Γijk;

∞
Γ i
j0= −

(
Rij +

�ij
2t

)
;
∞
Γ i

00= −1

2
gij

∂R

∂xj
;

∞
Γ0
jk= 0;

∞
Γ0
i0= 0;

∞
Γ0

00= − 3

2t

The proof is immediate from Appendix A.

The above connection
∞
∇ also arises in Brendle [2]. Connections with similar Christoffel

symbols can be found in [5] (see also the modified version in [7]) and [6].

This connection also induces a limiting Laplacian

Δt := gij
∞
∇i
∞
∇j (3.1)

which can be applied to any tensor on ℳ̌. Because
∞
Γ0
ij= 0, we readily check the following

assertion.

9



Lemma 3.2. If f : ℳ̌ → ℝ then

Δtf = Δg(t) [f(⋅, t)] .

In particular, for any tensor S on ℳ̌ and F : ℝ→ ℝ, we have Δt(F (t)S) = F (t)ΔtS.

Recall now (see for example [18, Proposition 2.5.1]) that the curvature ℛ of a Ricci flow
g(t) satisfies the equation

∂ℛ
∂t

= Δℛ+ F (ℛ, g) +Q(ℛ, g) (3.2)

where Q was defined as in (2.6) and F is a map of the same type defined by

F (T, g)abcd : = −g��g� [T�bcdTa�� + Ta�cdTb�� + Tab�dTc�� + Tabc�Td��]

= −g�� [T�bcdTa� + Ta�cdTb� + Tab�dTc� + Tabc�Td� ] , (3.3)

where Tab = gcdTacbd.

As usual, we wish to apply this type of flow equation not to the Ricci flow g(t) un-
der consideration, but to the flow G(s) of its Canonical Soliton ǧN . By Theorem 2.1,
Proposition 2.3 and Proposition 2.4 we have

∂G

∂s
≃ −2Ric(G(s)),

Where ≃ is used in the precise sense of Theorem 2.1, that is, the difference of the left-
hand side and the right-hand side can be differentiated at will using ∇̌, and multiplied by
N , and will still remain locally bounded as N →∞. Therefore, a glance at the derivation
of (3.2) shows that in fact

∂ℛG(s)

∂s
≃ ΔG(s)ℛG(s) + F (ℛG(s), G(s)) +Q(ℛG(s), G(s)). (3.4)

We may now set s = 1 and take the limit N →∞. Clearly

F (ℛG(1), G(1)) = F (ℛǧN , ǧN )→ F (ℛ∞, ǧ∞)

and
Q(ℛG(1), G(1)) = Q(ℛǧN , ǧN )→ Q(ℛ∞, ǧ∞)

as N →∞. Meanwhile,

∂ℛG(s)

∂s
=

∂

∂s

[
sℛ ∗

s (ǧ)

]
=

∂

∂s
[s ∗s (ℛǧ)]

=  ∗s

[
ℛǧ + sℒ 1

s ∇̌(−N2t )ℛǧ
]

≃  ∗s
[
ℛǧ + ℒt ∂∂tℛǧ

]

by (2.4). Evaluating at s = 1 (where  1 is the identity) we find that

∂ℛG(s)

∂s

∣∣∣∣
s=1

→ ℛ∞ + ℒt ∂∂tℛ∞ (3.5)

as N →∞. Finally,

ΔG(1)ℛG(1) = Δǧℛǧ = ǧij∇̌i∇̌jℛǧ + ǧ00∇̌0∇̌0ℛǧ
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and therefore
ΔG(1)ℛG(1) → tΔtℛ∞, (3.6)

where Δt is from (3.1).

Combining all these formulae and passing to the limit in (3.4), we find the desired formula

ℒt ∂∂tℛ∞ = tΔtℛ∞ + F (ℛ∞, ǧ∞) +Q(ℛ∞, ǧ∞)−ℛ∞. (3.7)

3.2 Being on the boundary of a GL(V )-invariant cone

Suppose we have a convex cone K in the space of algebraic curvature forms which is
GL(V )-invariant in the sense of Definition 2.12. In this section we show some useful
identities which hold whenever we are on the boundary of K, which will imply that the
second term on the right-hand side of (3.7) points into the interior of K when ℛ∞ ∈ ∂K.
If we assume that K is invariant under Ricci flow (again in the sense of Definition 2.12)
then the third term on the right-hand side of (3.7) points into the interior of K when
ℛ∞ ∈ ∂K. Since K is a cone, the same is true for the fourth term on the right-hand
side of (3.7). One can speculate then that an appropriate ODE-PDE theorem (similar to
that proved by Hamilton in [9]) applied to ℛ∞ viewed as an appropriate time dependent
section of a bundle over ℳ, would tell us that the PDE (3.7) would leave K invariant,
and that would give a proof of Conjecture 2.13.

To avoid having to prove an appropriate ODE-PDE theorem (handling noncompact man-
ifolds and without a fixed underlying bundle metric) we will take a more direct route in
this paper.

Lemma 3.3. If Θ is an algebraic curvature tensor on the boundary of a GL(V )-invariant
cone K ⊂ Sym2

B(Λ2V ∗), then for any v1, . . . , v4 ∈ V and endomorphism A ∈ V ⊗ V ∗,
the tensor

(v1, v2, v3, v4) 7→ Θ(Av1, v2, v3, v4)+Θ(v1, Av2, v3, v4)+Θ(v1, v2, Av3, v4)+Θ(v1, v2, v3, Av4)

points into the interior of K. Moreover, it points along the boundary in the sense that
its negation also points into the interior.

Proof. If Θ ∈ ∂K, then Θ� defined for � ∈ ℝ near 0 by

Θ�(v1, v2, v3, v4) := Θ((I + �A)v1, (I + �A)v2, (I + �A)v3, (I + �A)v4)

must also lie in ∂K by virtue of the GL(V )-invariance. Differentiating with respect to �
at � = 0 gives the first assertion, and the rest follows by changing the sign of A.

As a particular case, we have that F (Θ, ǧ∞) as defined in (3.3) points along the boundary
of K. Accordingly,

Corollary 3.4. If the cone K from Lemma 3.3 is also a Wilking Cone C(S) (see Appendix
B) and dimV = n+ 1, then

F (Θ, ǧ∞)(!, !̄) = 0 whenever Θ(!, !̄) = 0 for ! ∈ Λ2(V ℂ).
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3.3 Uniform control on ℛ∞

As in Section 2.2, we make the change of coordinates � = ln t, for � ∈ (−∞, lnT ]. In
these coordinates,

∞
Rijkl = e−�Rijkl

∞
Ri�j� = e�

(
ΔRij + 2RikjlR

kl −RkiRjk +
Rij
2t
− 1

2
∇i∇jR

)
∞
Rij�k = ∇iRjk −∇jRik

(3.8)

Define a metric ℎ on ℳ× (−∞, lnT ] by

ℎ := g(e�) + d�2. (3.9)

Following the perturbation of the Harnack quadratic performed by Hamilton (cf. [10] p.
239) and Lemma 7 in [2] by Brendle, we will modify the algebraic curvature tensor ℛ∞
to another algebraic curvature tensor, which lies in the interior of the relevant cone.

Proposition 3.5. (cf. [2, Lemma 7].) Let V be a vector space of dimension n+ 1, and
K ⊂ Sym2

B(Λ2V ∗) a GL(V )-invariant convex cone containing all weakly positive definite
curvature forms. Suppose g(t) is a Ricci flow on a manifold ℳn for t ∈ [0, T ] with
derivatives up to order two of its curvature uniformly bounded. If ℛ((ℳ, g(t))×ℝ) ∈ K
for all t ∈ [0, T ] then there exists C0 <∞ such that

ℛ∞ + �ℎ⊙ ℎ ∈ interior(K)

throughout ℳ̌ for � ≥ C0, where ⊙ refers to the Kulkarni-Nomizu product.

Proof. By hypothesis, ℛ((ℳ, g(t)) × ℝ) ∈ K and therefore 1
tℛ((ℳ, g(t)) × ℝ) ∈ K for

t > 0. But

ℛ∞ −
1

t
ℛ((ℳ, g(t))× ℝ) = ℛ∞ − e−�ℛ((ℳ, g(t))× ℝ)

is bounded when measured with respect to ℎ (for � ≤ lnT ) by inspection of (3.8).

Therefore for large enough �, ℛ∞− 1
tℛ((ℳ, g(t))×ℝ)+�ℎ⊙ℎ is positive definite (viewed

as a bilinear form as usual) and is thus in the interior of the cone K by hypothesis. The
result follows.

The above proposition could be considered a first step to obtaining the result with � = 0
in particular cases – i.e. obtaining a Harnack inequality. Moreover, it allows us to
compare the quadratic quantities Q and F , given by (2.6) and (3.3) respectively, at ℛ∞
and at the perturbed ℛ∞+�ℎ⊙ℎ whenever the latter hits the boundary of K as follows:

Corollary 3.6. (cf. Brendle [2].) In the setting of Proposition 3.5, there exists M2 ≤ ∞
such that the following is true. If at some point in ℳ̌ we have ℛ∞ + �ℎ ⊙ ℎ ∈ ∂K for
some � > 0, then at that point we have

Q(ℛ∞ + �ℎ⊙ ℎ, ǧ∞)−Q(ℛ∞, ǧ∞) ≤M2�t ℎ⊙ ℎ

and
F (ℛ∞ + �ℎ⊙ ℎ, ǧ∞)− F (ℛ∞, ǧ∞) ≤M2�t ℎ⊙ ℎ.

The corollary follows from Proposition 3.5 because that proposition ensures that � cannot
be too large (or ℛ∞ + �ℎ⊙ ℎ could not be on the boundary of K) and we may then use
the fact that Q and F are both quadratic.
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3.4 Perturbing ℛ∞

As is typical with a maximum principle proof, we must consider the evolution of a
slightly perturbed version of ℛ∞ in order to proceed via a contradiction argument. (In
this respect we also follow [10] and [2].)

First we note that ℎ defined in (3.9) satisfies

ℒt ∂∂tℎ = ℒ ∂
∂�
ℎ = t

∂g

∂t
= −2tRic(g(t)),

and a short computation yields

∞
∇i ℎ =

(
tRij +

1

2
gij

)(
d�⊗ dxj + dxj ⊗ d�

)
, (3.10)

and using (3.1),

Δtℎ =
t

2
(dR⊗ d�+ d�⊗ dR) +

1

2
∣2tRic + g∣2d�⊗ d�.

Consequently, if we have a uniform curvature bound, and a uniform bound on the first
derivative of R (e.g. in the setting of Proposition 3.5) then

∣ℒt ∂∂tℎ∣ℎ ≤ Ct; ∣Δtℎ∣ℎ ≤ C. (3.11)

We now require a ‘defining function’ ' as in the work of Hamilton and Brendle.

Lemma 3.7. (Hamilton [10] and Brendle [2].) Let (ℳn, g(t)), t ∈ [0, T ], with T <∞, be
a complete solution of the Ricci flow such that ∣ℛ(g(t))∣ and ∣∇Ric(g(t))∣ are bounded on
ℳ× [0, T ] by C0 ≥ 0. Then there exists a function ' ∈ C∞(ℳ) and C = C(n,C0, T ) <
∞ with the properties:

1. '(x)→∞ as x→∞.
2. '(x) ≥ 1 for all x ∈ℳ.
3. supℳ×[0,T ] ∣∇'∣g(t) ≤ C.
4. supℳ×[0,T ] ∣Δg(t)'∣ ≤ C.

Using ', we define
Υ := 'ℎ⊙ ℎ, (3.12)

and by (3.11) and (3.10),

∣ℒt ∂∂tΥ∣ℎ ≤ Ct; ∣ΔtΥ∣ℎ ≤ C.

Therefore there exists M1 > 0 such that

ℒt ∂∂tΥ− tΔtΥ + tM1Υ ≥ 0. (3.13)

Lemma 3.8. In the setting of Proposition 3.5, there exists � ∈ (0,∞) such that for all
" > 0, if we define a tensor Θ on ℳ̌ by

Θ := tℛ∞ + "e�tΥ

then at any point (x, t) ∈ ℳ̌ where Θ is on the boundary of K, we have

ℒt ∂∂tΘ− tΔtΘ >
1

t
Q(Θ, ǧ∞) +

1

t
F (Θ, ǧ∞). (3.14)

Moreover, there exist � > 0 and Ω ⊂⊂ ℳ so that at any point (x, t) ∈ ℳ̌ with t ≤ � or
x /∈ Ω, we have Θ(x, t) ∈ interior(K).
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Note that for a bilinear form B on a vector space V , we write B > 0 if B(v, v) > 0 for
all nonzero v ∈ V .

Proof. For initially arbitrary � > 0 and " > 0, take the corresponding Θ and suppose
that Θ(x, t) ∈ ∂K. By Corollary 3.6, we have

1

t
Q(Θ, ǧ∞)− tQ(ℛ∞, ǧ∞) ≤M2"te

�tΥ, (3.15)

and the same for F . By computing

ℒt ∂∂tΘ = tℛ∞ + tℒt ∂∂tℛ∞ + �t"e�tΥ + "e�tℒt ∂∂tΥ,

and (using Lemma 3.2)
ΔtΘ = tΔtℛ∞ + "e�tΔtΥ

we find, using (3.7), (3.13) and (3.15), that

ℒt ∂∂tΘ− tΔtΘ = �t"e�tΥ + "e�t
(
ℒt ∂∂tΥ− tΔtΥ

)
+ tF (ℛ∞, ǧ∞) + tQ(ℛ∞, ǧ∞)

≥ "te�tΥ (�−M1 − 2M2) +
1

t
Q(Θ, ǧ∞) +

1

t
F (Θ, ǧ∞)

Therefore, if � is chosen large enough, we have (3.14) as desired.

Finally, since

Θ = t

(
ℛ∞ +

"e�t'

t
ℎ⊙ ℎ

)
,

by Proposition 3.5 (taking C0 from that proposition) if t ≤ "
C0

=: � or '(x) ≥ C0T
" (i.e.

x /∈ '−1
(
[1, C0T

" )
)

=: Ω) then Θ(x, t) ∈ interior(K), and we deduce the final part of the
lemma.

Notice that the last claim of the previous lemma effectively gives us the initial condition
for the maximum principle argument we will use to prove Theorem 2.7; in fact, it ensures
that Θ (which should be regarded as a slight perturbation of ℛ∞) is in the cone for small
enough t. Furthermore, it says nothing bad can happen at spatial infinity, i.e. if we were
to fall out of the cone, it would happen within some compact region.

3.5 Proof of Theorem 2.7

The Ricci flow of the theorem has uniformly bounded curvature by Remark 2.8, and so
by Shi’s derivative estimates, for any � > 0 we may assume that all derivatives of the
curvature are bounded for t ∈ [�, T ] (with bounds depending on �). Therefore, it suffices
to prove the result assuming that the Ricci flow exists on a closed time interval [0, T ]
and that all derivatives of the curvature are bounded on [0, T ], since we could apply that
result to g(� + t) for t ∈ [0, T − �] and then let � ↓ 0.

We will apply the results we have established so far in Section 3 in the case that K is
the closed cone C(Sk) (as discussed in Appendix B) on an (n + 1)-dimensional vector
space. We begin by choosing � as in Lemma 3.8. For each " > 0, we can then define the
corresponding Θ. Since our goal is to show that ℛ∞ ∈ C(Sk), all we have to do is to
show that Θ lies in the cone C(Sk) everywhere, for this arbitrarily small ".
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By the second part of Lemma 3.8, we know that Θ lies in the interior of the cone C(Sk)
for small t and also, outside Ω for all time.

Suppose, contrary to what we wish to establish, that at some point Θ fails to lie in the
cone. Then we can pick a point (x1, t1) with t1 > 0 such that Θ(x1, t1) is on the boundary
of the cone, and without loss of generality, we may assume that t1 is the least possible
time at which we could find such a point.

Since Θ(x1, t1) is on the boundary of the cone C(Sk), we can pick a nonzero element
! ∈ Sk ⊂ Λ2(Tℂ

(x1,t1)ℳ̌) such that Θ(!, !̄) = 0. By Corollary 3.4, since the cone is

GL(n+ 1,ℝ)-invariant, we have, at (x1, t1),

F (Θ, ǧ∞)(!, !̄) = 0

and by Theorem B.1 we have
Q(Θ, ǧ∞)(!, !̄) ≥ 0,

so by Lemma 3.8 (
ℒt ∂∂tΘ− tΔtΘ

)
(!, !̄) > 0. (3.16)

We now extend ! to a neighbourhood of x in ℳ by parallel translation along radial

geodesics using
∞
∇, and then extend ! in time to make it constant in the sense that

ℒt ∂∂t! = 0. (3.17)

By construction,
Δt! = 0 (3.18)

at (x1, t1). Since parallel translation of ! preserves its rank, we have rank(!) ≤ k in a
neighbourhood of (x1, t1).

Next we define a function f in that neighbourhood of (x1, t1) by

f := Θ(!, !̄).

By definition of f , we have f ≥ 0 near x1 up to time t1, and f(x1, t1) = 0, and therefore
at (x1, t1) we have ∂f

∂t ≤ 0 and Δg(t)f ≥ 0, so that

∂f

∂t
−Δg(t)f ≤ 0. (3.19)

On the other hand, we can compute at (x1, t1)

t
∂f

∂t
= ℒt ∂∂tΘ(!, !̄) + Θ(ℒt ∂∂t!, !̄) + Θ(!,ℒt ∂∂t !̄) = ℒt ∂∂tΘ(!, !̄),

by (3.17), and

Δtf = (ΔtΘ)(!, !̄) + Θ(Δt!, !̄) + Θ(!,Δt!̄) = (ΔtΘ)(!, !̄)

by (3.18). Therefore by Lemma 3.2 and (3.16) we have at (x1, t1)

∂f

∂t
−Δg(t)f =

1

t

(
ℒt ∂∂tΘ− tΔtΘ

)
(!, !̄) > 0,

contradicting (3.19), and completing the argument.
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A Appendix - computations

In this appendix we give the formulae for the connection and curvature associated to the
metric ǧ from Theorem 2.1. We also compute the Hessian of −N2t , thus justifying the
assertions of Theorem 2.1.

Proposition A.1. In the setting of Theorem 2.1, if Γijk are the Christoffel symbols of
g(t) at some point x ∈ℳ, then the Christoffel symbols of ǧ at (x, t) are given by

Γ̌ijk = Γijk; Γ̌ij0 = −
(
Rij +

�ij
2t

)
; Γ̌i00 = −1

2
gij

∂R

∂xj
;

Γ̌0
jk = ǧ−1

00

(
Rjk
t

+
gjk
2t2

)
; Γ̌0

i0 =
1

2t
ǧ−1

00

∂R

∂xi
; Γ̌0

00 = − 3

2t
+
ǧ−1

00

2t

[
2R

t
+Rt +

n

2t2

]
.

This proposition follows from the definition of the Christoffel symbols

Γ̌abc :=
1

2
ǧad
(
∂ǧcd
∂xb

+
∂ǧbd
∂xc

− ∂ǧbc
∂xd

)
,

where a, b, c, d are arbitrary indices, and the equation of Ricci flow. Using the standard
formula for the coefficients of the curvature tensor

Řabc
d =

∂Γ̌dac
∂xb

− ∂Γ̌dbc
∂xa

+ Γ̌eacΓ̌
d
be − Γ̌ebcΓ̌

d
ae,

(where our sign convention is that R1212 ≥ 0 on a positively curved manifold) and the
equation for the evolution of Ric under Ricci flow

∂Rji
∂t

= ΔRji + 2RjnimR
mn,

(see for example [18]) we can then verify the formulae of the following proposition.

Proposition A.2. In the setting of Theorem 2.1, the coefficients of the curvature tensor
ℛ of ǧ at (x, t) are given by

Řijkl =
1

t
Rijkl −

ǧ00

2t2

[(
Ric +

g

2t

)
⊙
(

Ric +
g

2t

)]
ijkl

=
1

t
Rijkl −

ǧ00

t2

[
RikRjl −RilRjk +

1

2t
(Rikgjl +Rjlgik −Rilgjk −Rjkgil)

+
1

4t2
(gikgjl − gilgjk)

]
Ři0j0 =

1

t

(
ΔRij + 2RikjlR

kl −RkiRjk +
Rij
2t
− 1

2
∇i∇jR

)
+
ǧ00

2t2

[
1

2
∇iR∇jR−

(
2R

t
+ ∂tR+

n

2t2

)(
Rij +

gij
2t

)]
Řij0k =

1

t
(∇iRjk −∇jRik) +

ǧ00

2t2

{(
Rik +

gik
2t

)
∇jR−

(
Rjk +

gjk
2t

)
∇iR

}
.

By taking the appropriate trace to give Ricci curvatures, and by using the formula for
the coefficients of Hessǧ(f)

∇̌2
ab(f) =

∂2f

∂xa∂xb
− ∂f

∂xc
Γ̌cab,
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the equation for the evolution of R

Rt −ΔR− 2∣Ric∣2 = 0,

(see for example [18, Proposition 2.5.4]) and the contracted second Bianchi identity

∇iRij =
1

2
∇jR,

we find:

Proposition A.3. In the setting of Theorem 2.1, the coefficients of the Ricci tensor Ric
of ǧ at (x, t) are given by

Řij = Rij +
ǧ00

t

[
Mij −

(
Rij +

gij
2t

)(
R+

n

2t

)
+

(
Rki +

�ki
2t

)(
Rjk +

gjk
2t

)]
+

(ǧ00)2

2t2

[
1

2
∇iR∇jR−

(
2R

t
+ ∂tR+

n

2t2

)(
Rij +

gij
2t

)]
Ři0 =

∇iR
2

+
ǧ00

2t

[(
Rji +

�ji
2t

)
∇jR−

(
R+

n

2t

)
∇iR

]

Ř00 =
∂tR

2
+
R

2t
+
ǧ00

2t

[
1

2
∣∇R∣2 −

(
2R

t
+ ∂tR+

n

2t2

)(
R+

n

2t

)]
where

Mij := ΔRij + 2RikjlR
kl −RkiRjk +

Rij
2t
− 1

2
∇i∇jR.

Moreover, we have

∇̌2
ij

(
−N

2t

)
= −

(
Rij +

1

2t
gij

)
+ ǧ00

(
R

t
+

n

2t2

)(
Rij +

1

2t
gij

)
∇̌2
i0

(
−N

2t

)
= −∇iR

2
+
ǧ00

2
∇iR

(
R

t
+

n

2t2

)
∇̌2

00

(
−N

2t

)
= −1

2
ǧ00 −

∂tR

2
− R

2t
+
ǧ00

2t

(
R+

n

2t

)(
∂tR+

n

2t2
+

2R

t

)

By combining the formulae of Proposition A.3 and the definition of ǧ, we deduce:

Řij + ∇̌2
ij

(
−N

2t

)
+

1

2
ǧij =

ǧ00

t

(
ΔRij + 2RikjlR

kl +
3Rij
2t
− 1

2
∇i∇jR+

gij
4t2

)
+

(ǧ00)2

2t2

[
1

2
∇iR∇jR−

(
2R

t
+ ∂tR+

n

2t2

)(
Rij +

gij
2t

)]
Ři0 + ∇̌2

i0

(
−N

2t

)
+

1

2
ǧi0 =

ǧ00

2t

(
Rji +

�ji
2t

)
∇jR

Ř00 + ∇̌2
00

(
−N

2t

)
+

1

2
ǧ00 =

ǧ00

4t
∣∇R∣2

and from these formulae it is easy to deduce Theorem 2.1.

B Appendix - Wilking’s cones

Let V be a vector space of dimension m. Given an algebraic curvature form ℛ ∈
Sym2

B(Λ2V ∗), and an inner product g on V , we wish to consider Q(ℛ, g) defined as
in (2.6) which is a vector in Sym2

B(Λ2V ∗).
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In this section, the goal is to find closed convex cones within the space Sym2
B(Λ2V ∗)

(whose definition generally can use the inner product g) which are invariant under the
ODE

dℛ
dt

= Q(ℛ, g) (B.1)

(for fixed g) and invariant under the action of O(V ) (with respect to g). Thus we have a
slightly more general setting than in Definition 2.12, and a combination of the so-called
Uhlenbeck trick and Hamilton’s ODE-PDE theorem (cf. [9]) says that these cones are
invariant under Ricci flow on closed manifolds.

We now describe a special case of Wilking’s unpublished method [21] for finding a large
number of such cones.

First, consider V ℂ, the complexification of V , and extend each curvature operator/form
complex linearly to act on Λ2(V ℂ) as in [16]. (We will make such extensions implicitly
in what follows.)

Using the inner product g, we can pick an orthonormal basis {ei} for V , and consider
the corresponding action of SO(m,ℂ) on V ℂ. Explicitly, an element

∑
viei ∈ V ℂ (with

vi ∈ ℂ) would be mapped by A ∈ SO(m,ℂ) to the element
∑
i,j Aijvjei. This action

then extends naturally to Λ2(V ℂ).

Theorem B.1. (Special case of Wilking [21].) Suppose S ⊂ Λ2(V ℂ) is a subset (not
necessarily a linear subspace) which is invariant under the action of SO(m,ℂ). Then the
convex cone

C(S) := {ℛ ∈ Sym2
B(Λ2V ∗) ∣ ℛ(!, !̄) ≥ 0 for all ! ∈ S}

is invariant under the ODE (B.1). Equivalently, if ℛ ∈ ∂C(S) and we pick a nonzero
! ∈ S such that ℛ(!, !̄) = 0, then Q(ℛ, g)(!, !̄) ≥ 0.

By taking different choices of S, Wilking recovered all the famous invariant curvature
cones such as weakly positive isotropic curvature (WPIC) and its variants.

Note that the invariance of S under the action of SO(m,ℂ) will depend on the inner
product g, but not on the specific orthonormal basis we chose. For the purposes of this
paper, we are interested to find cones in Sym2

B(Λ2V ∗) which do not depend on g, and
are therefore interested to find sets S which are invariant under the natural action of
GL(m,ℝ) in addition to SO(m,ℂ).

Given an element ! ∈ Λ2(V ℂ), we define rank(!) ∈ {0, 1, 2, . . . , [m2 ]} to be the least
number of simple elements u ∧ v we need sum to obtain !. We then define

Sk = {! ∈ Λ2(V ℂ) ∣ rank(!) ≤ k},

and notice that it is both GL(m,ℝ) and SO(m,ℂ) invariant. By Theorem B.1, the cur-
vature cones C(Sk), which are invariant under the action of GL(m,ℝ), are also invariant
under the ODE (B.1) for one, and thus all g (even degenerate weakly positive definite
g ∈ Sym2V , by approximation).

As discussed in Section 2.4, one can check that C(S1) is equal to a cone of curvature
forms introduced by Brendle and Schoen [1]. Meanwhile, since Λ2V ⊂ S[m2 ], the cone
C(S[m2 ]) consists of all weakly positive definite curvature forms, i.e. the cone of curvatures
of manifolds of weakly positive curvature operator.
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B.1 Proof of Wilking’s result

For completeness, we give Wilking’s proof of Theorem B.1. (Any inefficiencies or inaccu-
racies are due to us.) Using the basis {ei} for V , we have a (linear) isomorphism between
Λ2V and so(m,ℝ) – and hence between Λ2(V ℂ) and so(m,ℂ) – determined by

ei ∧ ej ↔ [ei ∧ ej ]kl := �ik�jl − �il�jk.

We will thus see curvature operators as bilinear forms, or operators, on so(m,ℝ) or
so(m,ℂ) without change of notation. The action of A ∈ SO(m,ℂ) on Λ2(V ℂ) then
corresponds to the adjoint representation of SO(m,ℂ), AdA : so(m,ℂ) → so(m,ℂ)
which can be written in terms of matrix multiplication as AdA(v) = AvA−1, so we may
view S as a subset of so(m,ℂ) invariant under Ad.

We will also need the adjoint representation adX : so(m,ℝ)→ so(m,ℝ) of so(m,ℝ) (and
the same for so(m,ℂ)):

adXY =
d

dt
Adexp(tX)Y

∣∣∣∣
t=0

= [X,Y ], (B.2)

and the formula
d2

dt2
Adexp(tX)Y

∣∣∣∣
t=0

= adXadXY. (B.3)

The natural inner product on so(m,ℝ) is invariant under the adjoint representation of
SO(m,ℝ): for every A ∈ SO(m,ℝ),

⟨X,Y ⟩ = ⟨AdAX,AdAY ⟩, (B.4)

for all X,Y ∈ so(m,ℝ). By setting A = exp(tZ) in (B.4), for Z ∈ so(m,ℝ), and
differentiating with respect to t at t = 0 using (B.2), we know that

0 = ⟨adZX,Y ⟩+ ⟨X, adZY ⟩. (B.5)

The formula then extends to X,Y, Z ∈ so(m,ℂ) with ad the adjoint representation of
so(n,ℂ).

Recall (Hamilton [9], Böhm-Wilking [3]) that one can write

Q(ℛ, g) = 2
(
ℛ2 +ℛ#

)
,

where

ℛ#(X,Y ) := −1

2
tr (adX ∘ ℛ ∘ adY ∘ ℛ) ,

the trace taking place over any orthonormal basis for so(m,ℝ), or indeed over any unitary
basis for so(m,ℂ). Note that we are using the convention −tr(AB)/2 for the inner
product on so(n,ℝ) and the curvature operator which gives the identity for the unit
round sphere. Therefore, since ℛ2 is weakly positive definite, it suffices to prove that

ℛ#(v, v̄) ≥ 0

(extending bilinear forms complex linearly as usual) whenever v ∈ S ⊂ so(m,ℂ) satisfies
ℛ(v, v̄) = 0, or equivalently

−tr (adv̄ ∘ ℛ ∘ adv ∘ ℛ) ≥ 0.
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Because ℛ(v, v̄) = 0 and ℛ(w, w̄) ≥ 0 for all w ∈ S (and S is invariant under Ad) we
have

0 ≤ ℛ(Adexp(tx)v,Adexp(tx̄)v̄)

for all x ∈ so(m,ℂ), and differentiating twice with respect to t using (B.2) and (B.3) we
find that

0 ≤ ℛ(adxadxv, v̄) +ℛ(v, adx̄adx̄v̄) + 2ℛ(adxv, adx̄v̄).

If we change x to ix to get a new inequality and then add the two inequalities, we get
0 ≤ ℛ(adxv, adx̄v̄), and hence

ℛ(advx, adv̄x̄) ≥ 0, (B.6)

for all x ∈ so(m,ℂ). Note we have shown that by virtue of being on the boundary of
C(S), ℛ is positive not only on S, but also on the entire image of adv.

Moreover, (B.6) and (B.5) imply

0 ≤ ⟨ℛ(advx), adv̄x̄⟩ = −⟨adv̄ ∘ ℛ ∘ advx, x̄⟩,

for all x ∈ so(m,ℂ) and we find that −adv̄ ∘ ℛ ∘ adv ≥ 0, or equivalently

−adv ∘ ℛ ∘ adv̄ ≥ 0,

i.e. a positive definite Hermitian operator on so(m,ℂ).

Thus we can diagonalise −adv ∘ ℛ ∘ adv̄ on so(m,ℂ), finding a unitary basis {!i} (i.e.
⟨!i, !̄i⟩ = �ij) such that −adv ∘ ℛ ∘ adv̄(!i) = �i!i, with �i ≥ 0. For any i such that
�i > 0, we therefore find that !i is in the image of adv, and thus ℛ(!i, !̄i) ≥ 0 by (B.6).
Consequently,

−tr (adv̄ ∘ ℛ ∘ adv ∘ ℛ) = −tr (ℛ ∘ adv ∘ ℛ ∘ adv̄)

=
∑
i

⟨ℛ ∘ adv ∘ ℛ ∘ adv̄(!i), !̄i⟩

=
∑
i

�i⟨ℛ(!i), !̄i⟩

=
∑
i

�iℛ(!i, !̄i)

≥ 0.

(B.7)

Remark B.2. Viewing S as a subset of so(m,ℂ) makes it easier to describe some
further interesting examples (as observed by Wilking). The cone C(S) corresponding to
S = {X ∣ rank(X) = 2; X2 = 0}, for example, is the cone of weakly positive isotropic
curvature (WPIC) operators.
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