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Abstract. We provide explicit examples which show that mean convexity
(i.e. positivity of the mean curvature) and positivity of the scalar curvature are
non-preserved curvature conditions for hypersurfaces of the Euclidean space
evolving under either the volume- or the area preserving mean curvature flow.
The relevance of our examples is that they disprove some statements of the
previous literature, overshadow a widespread folklore conjecture about the be-
haviour of these flows and bring out the discouraging news that a traditional
singularity analysis is not possible for constrained versions of the mean cur-
vature flow.

Mathematics Subject Classification (2010) 53C44

Key words and phrases: volume preserving mean curvature flow, area pre-
serving mean curvature flow, mean convex hypersurface, scalar curvature

1. Introduction and Main Results

We consider a closed n-dimensional manifold M smoothly embedded as a hy-
persurface of the Euclidean space ℝn+1 by means of the parametrization F0 :
M → ℝn+1. We deform M0 := F0(M) according to a constrained Mean Cur-
vature Flow (mcf), that is, we consider a family of isometric immersions F :
M × [0, T )→ ℝn+1 solving the initial value problem:⎧⎨⎩

∂F

∂t
(p, t) =

(
ℎ(t)−H(p, t)

)
N(p, t), p ∈M, t ∈ (0, T )

F (⋅, 0) = F0

, (1.1)

where N is the unit normal vector field pointing outward (if each evolving hyper-
surface Mt = F (M, t) encloses a domain Ωt) and H the mean curvature of Mt.
More precisely, hereafter we study two types of constrained flows depending on
the choice of the global term ℎ(t):

∙ The Volume Preserving Mean Curvature Flow (vp-mcf) is obtained by defin-
ing ℎ(t) as the average mean curvature:

ℎ(t) = H =

∫
M Hd�t

∣Mt∣
, (1.2)

where d�t is the induced Riemannian volume element of Mt, and ∣Mt∣ =
∫
M d�t

denotes the corresponding n-volume (which we shall call area).
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∙ The Area Preserving Mean Curvature Flow (ap-mcf) is defined by choosing

ℎ(t) =

∫
M H2 d�t∫
M H d�t

. (1.3)

The presence of the global term ℎ(t) in the flow equation (1.1) has two major
consequences:

(1) for ℎ(t) defined as in (1.2) the flow keeps the enclosed volume constant
while the area decreases as time evolves. On the other hand, if we choose
ℎ(t) as in (1.3), any closed hypersurface moves preserving its area and
increasing the volume enclosed by the hypersurface.

(2) makes the usual techniques in geometric flows (e.g. the application of
maximum principles) either fail or become more subtle.

The resultant evolution problem (see Section 2 for a brief account of the previ-
ous literature) is particularly appealing -since from (1) it is specially well suited
for applications to the isoperimetric problem- and challenging because (2) causes
numerous extra complications; for instance, a basic property for the ordinary mcf
(the comparison principle) fails in general for (1.1), e.g., an initially embedded
curve may develop self-intersections (cf. [18]) under vp-mcf. Hence the present
knowledge of (1.1) is considerably poorer than that of the unconstrained evolu-
tion. This is even more evident when we talk about the analysis of singularities.

For the unconstrained mcf a systematic study was started by G. Huisken
in [12]; in the latter and subsequent papers (e.g. [13]) the preservation of the
mean convexity (H > 0) played a key role. So a natural first step towards a
similar analysis of singularities for the non-local flows would be to wonder if
mean convexity is preserved or not under (1.1). There is (even written) evidence
that the community of experts was quite inclined towards believing in a positive
answer:

(a) The preservation of H > 0 under vp-mcf was claimed and proved in [22,
Lemma 3.11].

(b) The corresponding statement and proof for the ap-mcf is indeed pub-
lished in [21, Lemma 10].

(c) It is a folklore conjecture that if the average mean curvature is bounded,
we expect that the behaviour of singularities for the vp-mcf after parabolic
rescaling is the same as by mcf (quote adapted from [3]).

Roughly speaking in this note we give counterexamples to the statements in (a)
and (b), that is, we find mean convex surfaces in ℝ3 which evolve under ap- or
vp-mcf to surfaces with negative mean curvature at some points. Let us remark
that, despite (a) and (b) study (1.1) in a certain non-euclidean ambient space,
the ambient curvature plays no role in their proof of preservation of H > 0.

Furthermore, our examples of loss of mean convexity are all rotationally sym-
metric closed surfaces for which the average mean curvature is known to be
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bounded (cf. [4, Lemma 8.4]). Accordingly our examples also throw cold water
on (c): it could still be true that the singularity behaviour is similar after a long
while but for short times we prove that the evolution of mean convex hypersur-
faces under (1.1) is quite different to that under ordinary mcf already at the very
beginning (that is, for short times).

In any case, our examples evidence that a singularity analysis following the
traditional approaches ([14], [23] and references therein) is not possible for the
constrained versions of mcf. The only remaining hope is to produce completely
different techniques to face the study of singularities or to find another curvature
condition (stronger than mean convexity but weaker than convexity) which is
preserved under (1.1). In the second direction, the next natural attempt is to
wonder about preservation of the positivity of the scalar curvature (R > 0). We
also address such a question in this paper (see the beginning of Section 5 for
reasons to justify why this is the next natural step) and show that this is again
a condition that is not preserved under (1.1).

With more precision, throughout this paper we will construct:

(1) Surfaces Σi (i = 1, 2) smoothly embedded in ℝ3 satisfying

(i) Σ1 is a topological sphere with H ≡ 0 on an open set U ⊂ Σ1 (and
H∣Σ1∖U > 0) (see Theorem 3.1)

(ii) Σ2 has genus 1 and its mean curvature is strictly positive almost
everywhere (see Theorem 3.2)

which under (1.1) have points with negative mean curvature.

(2) A hypersurface M smoothly embedded in ℝ4 which has non-negative
scalar curvature R ≥ 0, but under (1.1) develops points with R < 0 (see
Theorem 5.1).

We use a perturbation argument to modify the above examples and obtain a
one-parameter family of initial conditions, which are mean convex (have strictly
positive mean curvature, respectively) but so that these positivity conditions are
lost after evolution under (1.1) with ℎ(t) defined either as in (1.2) or in (1.3) (see
Theorem 4.1).

The proofs to construct all the aforementioned examples include quite easy
computations. Hence the relevance of the paper resides in the discovery itself of
the counterexamples, and the consequences of their existence in the field: refu-
tation of theorems, widely held beliefs that are no longer true and the evidence
of the need of new (at least different from those in mcf) methods to face the
singularity analysis of constrained flows.

The paper is organized as follows: Section 2 contains a miscellanea of pre-
liminary material. In section 3, we shall give the examples (1)(i) and (ii). The
perturbation argument is carried out in section 4. In the last section we prove
the analogous result for the scalar curvature.
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2. Preliminaries

2.1. Notation and evolution equations. Let us first clarify our main nota-
tions and sign conventions: for an smooth embedding F : M → ℝn+1 of an
n-dimensional manifold as a hypersurface of ℝn+1, we consider the principal cur-
vatures �1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �n which are defined as the eigenvalues of the shape
operator A = (Aij), where Aij = gikℎkj , where g is the metric induced on M by

the standard Euclidean metric, and ℎ(X,Y ) = ⟨∇XN,Y ⟩ for X,Y vector fields
on F (M), and ∇ is the Levi-Civita connection of ℝn+1. Then we define the mean
curvature and squared-norm of the second fundamental form as:

H = �1 + ⋅ ⋅ ⋅+ �n and ∣A∣2 = �2
1 + ⋅ ⋅ ⋅+ �2

n.

The sign conventions here and in the definition of (1.1) are chosen so that mean
convex hypersurfaces (that is, with H > 0 everywhere) always move inwards
under (unconstrained) mcf.

Under (1.1) the above quantities satisfy the following evolution equations
(cf. [11])

∂H

∂t
= ΔH + ∣A∣2(H − ℎ) (2.1)

∂∣A∣2

∂t
= Δ∣A∣2 − 2∣∇A∣2 + 2∣A∣4 − 2ℎC, (2.2)

where C := tr(A3).

To avoid confusions, we say that a hypersurface is mean convex if it has positive
mean curvature H > 0, and we refer to the curvature condition H ≥ 0 as non-
strict mean convexity.

2.2. A bit of previous literature. The vp-mcf was introduced by Gage in [9]
(for n = 1) and Huisken in [11] for n ≥ 2. The ap-mcf was first studied by Pihan
[20] (for n = 1) and McCoy ([15, 16] for n ≥ 2. These papers show that convexity
is preserved under the corresponding constrained flow and solutions starting at
a convex hypersurface exist for all time and converge to a round sphere. For the
evolution of convex hypersurfaces under (1.1) in non-euclidean ambient spaces,
see [6] and for an anisotropic version, see [1].

A long sought goal is the analysis of singularities for these non-local flows.
There are only a few results in this direction [3, 5, 7, 8] and all of them need to
work under the extra assumption of rotational symmetry because in this scenario
we have some control on the global term.

2.3. Generalities about hypersurfaces of revolution. Let M be an embed-
ded hypersurface of revolution in ℝn+1 obtained by rotation of a curve c(u) =
(r(u), z(u)) in the plane x1xn+1 around the axis xn+1. LetN = (ż(u),−ṙ(u))/∣ċ(u)∣
the unit vector normal to the curve, and let �1(u) be the curvature of c associated
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to this orientation

�1(u) =
−1

∣ċ(u)∣3
⟨(r̈(u), z̈(u)), (ż(u),−ṙ(u))⟩ =

z̈ṙ − r̈ż
(ṙ2 + ż2)3/2

. (2.3)

The unit normal vector to the hypersurface is obtained by rotation on N and it
will be denoted also by N . We shall take the orientation of the curve in such a
way that N points to the halfspace which do not contains the axis xn+1. ċ(u)
is a principal direction of M , with principal curvature �1. All the directions
orthogonal to c′(u) (then tangent to the Sn spheres which are the parallels of the
revolution hypersurface) are also principal, with principal curvature

�2(u) =
1

r(u)
⟨N, (1, 0)⟩ =

ż(u)

r(u)
√
ṙ2 + ż2

(2.4)

along c in the plane x1xn+1, and similar formula for the points obtained by
rotation of these ones.

3. Loss of non-strict mean convexity

Let us first highlight that all the examples constructed throughout this paper
satisfy H > 0 and therefore for ℎ(t) defined as in (1.3), we have

ℎ(t) =

∫
M H2 d�t∫
M H d�t

=
−
∫
M H2 d�t

H
, where −

∫
M
f :=

∫
M f

∣M ∣
,

meaning that ℎ(t) is well defined in all cases, even if our hypersurfaces have some
regions where the mean curvature vanishes. Furthermore, we can use Jensen’s
inequality to estimate

ℎ(t) =
−
∫
M H2 d�t

H
≥
(
−
∫
M H d�t

)2
H

= H. (3.1)

Theorem 3.1. There exists a surface Σ smoothly embedded in ℝ3 satisfying the
following conditions:

(1) Σ is a surface of revolution homeomorphic to a sphere.
(2) There exists an open subset U ⊂ Σ such that the mean curvature H

vanishes on the closure U and H∣Σ∖Ū > 0.

(3) The solution Σt of the constrained mcf (1.1) (for ℎ(t) defined either as in
(1.2) or in (1.3)) starting at Σ develops negative mean curvature at least
for a short time, that is, there exists some " > 0 so that infΣH(⋅, t) < 0
for all t ∈ (0, ").

Proof. The idea is to construct an embedding F : S2 ↪→ ℝ3 by considering a
catenoidal neck to which we paste smoothly two convex caps. We need to perform
such a procedure in a way that the resulting sphere has H ≥ 0; clearly we do not
need to worry about the open set U of the catenoidal neck which is not affected
by the smooth pasting, since we have H∣U ≡ 0
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The catenoid is obtained by rotating a catenary curve (r(z) = cosh z, z) in ℝ3.
Using the previous formulas (2.3) and (2.4) to compute the mean curvature, the
minimality of the catenoid implies, in terms of r, that

ṙ2 + 1− r̈r = 0, (3.2)

where ṙ denotes dr
dz .

Let a, b ∈ ℝ+ with a < b and we choose a piece of the catenoid corresponding
to z ∈ [−b, b]. To bend the catenoid in the region z ∈ [−b,−a)∪(a, b] we introduce
a decreasing concave function ' : [a, b] −→ ℝ satisfying:⎡⎢⎢⎢⎢⎢⎣
∙ '(a) = 1, '(b) = 0,

∙ ' has all right derivatives vanishing at z = a,

∙ '̇, '̈ are negative on (a, b),

∙ '−1 is concave and ds'−1

drs

∣∣∣
r=0+

= 0 with s = 2k − 1 for all k ∈ ℕ.

⎤⎥⎥⎥⎥⎥⎦ (3.3)

Now we consider the embedding F : S2 ↪→ ℝ3 defined by the revolution of the
curve (�(z), z), where � is defined by:

�(z) :=

⎧⎨⎩
r(z) for −a ≤ z ≤ a

r(z)'(z) for a < z ≤ b
r(z)'(−z) for −b ≤ z < −a

. (3.4)

It is clear that Σ := F (S2) coincides with the catenoid on the open set U cor-
responding to z ∈ (−a, a). We shall obtain H for the other points of Σ. By
symmetry and continuity, it is enough to do the computation for the points
where a < z < b:

H =
1 + �̇2 − �̈�
�(1 + �̇2)3/2

.

Therefore to figure out the sign of H in the region corresponding to z ∈ (a, b) we
need to compute

1 + �̇2 − �̈� = 1 + (ṙ'+ r'̇)2 − (r̈'+ 2ṙ'̇+ r'̈)r'

= 1 + ṙ2'2 + r2'̇2 − rr̈'2 − r2''̈

> '2(1 + ṙ2 − rr̈)− r2''̈ > 0,

where for the first inequality we have used that the image of '∣(a,b) lies in (0, 1).
The desired positivity follows by using (3.2) and the concavity of '.

In short, H = 0 and ∣A∣2 > 0 on U and H > 0 outside U . This also implies
ΔH = 0 on U and ℎ > 0. Substituting all this information in the evolution
equation (2.1), for t = 0 we reach

∂H

∂t

∣∣∣∣
U

= −∣A∣2ℎ < 0.
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In conclusion, if we flow the embedding F under the ap- or vp-mcf for each
p ∈ U we can find a small time "(p) > 0 such that H(p, t) < 0 for all t ∈ (0, "(p)).
⊔⊓

The above theorem gives an example of an embedded sphere with H ≥ 0 which
does not remain with the property H ≥ 0 after evolving under a constrained mcf.
But perhaps this phenomenon is not surprising if we take into account that the
starting surface had a big chunk of vanishing mean curvature. For this reason,
we also include the following example, where the starting surface has strictly
positive mean curvature almost everywhere (more precisely, the initial datum is
a torus with elliptic section whose mean curvature vanishes only along the inner
equatorial curve) but still develops negative mean curvature after evolution under
(1.1).

Theorem 3.2. We can find a surface Σ smoothly embedded in ℝ3 satisfying the
following properties:

(1) Σ is a torus of revolution with elliptic section.
(2) There exists a curve Γ on Σ such that H∣Γ ≡ 0 but on Σ ∖ Γ the mean

curvature is strictly positive.
(3) Let Σt be the solution of (1.1) (for ℎ(t) defined either as in (1.2) or in

(1.3)) with Σ0 = Σ. Then Σt contains points of negative mean curva-
ture at least for small times: that is, there exists some " > 0 so that
infΣH(⋅, t) < 0 for all t ∈ (0, ").

Proof. First we consider the embedding F : S1 × S1 ↪→ ℝ3 defined by

F (u, v) =
(
(3 + 2 cosu) cos v, (3 + 2 cosu) sin v,

√
2 sinu

)
. (3.5)

Using the standard formulas from the classical theory of surfaces, we obtain
the following expressions for the metric, the outward unit normal vector and the
coefficients of the second fundamental form:

guu = 2(1 + sin2 u), guv = 0, gvv = (3 + 2 cosu)2,

N =
1√

1 + sin2 u

(
cosu cos v, cosu sin v,

√
2 sinu

)
,

ℎuu =
2√

1 + sin2 u
, ℎuv = 0, ℎvv =

cosu(3 + 2 cosu)√
1 + sin2 u

.

We are now in a position to compute the mean curvature:

H = guuℎuu + gvvℎvv =
1

(1 + sin2 u)3/2
+

cosu√
1 + sin2 u(3 + 2 cosu)

=
cos2(u/2)(5 + 2 cosu− cos(2u))

(3 + 2 cosu)(1 + sin2 u)3/2
.
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From here we notice that the mean curvature H of Σ := F (S1 × S1) is a non-
negative function of u, which only vanishes at u = �. In other words, H is strictly
positive except for the points along the curve Γ given by t 7→ F (�, t).

Unlike the situation in the proof of Theorem 3.1, here H does not vanish in a
neighborhood U of a point, thus we cannot conclude that ΔH∣U vanish. Rather
the contrary, as any point on Γ is indeed a minimum for the mean curvature of
Σ, it holds ΔH ≥ 0 in a neighborhood of Γ (indeed, we will see that ΔH > 0).
Looking again at the evolution equation (2.1) and using that H(�) = 0, we have

∂H

∂t

∣∣∣∣
t=0

(�, ⋅) = ΔH − ℎ ∣A∣2
∣∣∣
t=0,u=�

; (3.6)

hence there is a competition between a positive and a negative term on the right
hand side. Here we remark that a careful choice of the coefficients defining F in

(3.5) plays a key role to ensure that ∂H
∂t

∣∣∣
t=0

(�, ⋅) < 0. The computations to check

the latter are carried out in the remaining of the proof (hereafter t = 0).

Let us start with the squared norm of the shape operator:

∣A∣2
∣∣∣
u=�

=
1

(1 + sin2 u)3
+

cos2 u

(1 + sin2 u)(3 + 2 cosu)2

∣∣∣∣
u=�

= 2. (3.7)

On the other hand,

Ḣ(u) =
−3 sinu cosu

(1 + sin2 u)
5
2

− sinu(1 + sin2 u)−
1
2

3 + 2 cosu

(
1 +

cos2 u

1 + sin2 u
− 2 cosu

3 + 2 cosu

)
.

This gives Ḣ(�) = 0. The latter simplifies a lot the computation of the Laplacian,
which is basically reduced to the following second derivative (in the computation
below we neglect the multiples of sinu, which obviously vanish for u = �):

Ḧ(�) =
−3 cos2 u

(1 + sin2 u)
5
2

−cosu(1 + sin2 u)−
1
2

3 + 2 cosu

(
1 +

cos2 u

1 + sin2 u
− 2 cosu

3 + 2 cosu

) ∣∣∣∣
u=�

= 1

and from here we get

ΔH
∣∣∣
u=�

= guuḦ(u)
∣∣∣
u=�

=
1

2
. (3.8)

Substituting (3.7) and (3.8) on the right hand side of (3.6), we reach

∂H

∂t

∣∣∣∣
t=0

(�, v) =
1

2
− 2ℎ(0), (3.9)

whose sign cannot be determined until we compute the specific value of ℎ(0).
Here we distinguish the two cases corresponding to the different definitions (1.2)
and (1.3) of ℎ(t):

Case 1 (VP-MCF): For ℎ defined as in (1.2) we obtain

ℎ(0) = H =
�

2
√

2

(∫ �/2

0

√
1 + sin2 � d�

)−1

≥ �

2
√

2

(√
2
�

2

)−1
=

1

2
.
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From here, by substitution into (3.9), we conclude

∂H

∂t

∣∣∣∣
t=0

(�, v) ≤ −1

2
< 0.

Case 2 (AP-MCF): for ℎ(t) defined as in (1.3), thanks to the estimate (3.1)
we also get

ℎ(0) ≥ H ≥ 1

2
,

and this gives as before ∂H
∂t

∣∣
t=0

(�, v) < 0.

In conclusion, both constrained flows satisfyH
∣∣
t=0

(�, v) = 0 and ∂H
∂t

∣∣
t=0

(�, v) <
0; therefore, for small t, the points on Γ evolve to points with H < 0. ⊔⊓

The following picture illustrates the concrete rate of change of the mean cur-
vature ∂H

∂t

∣∣
t=0

as a function of u and compares its behaviour under the vp-mcf
(blue curve) and under the ap-mcf (red line):

In this section, we have shown explicit examples of surfaces of genus 0 and
1 for which both the ap- and vp-mcf do not preserve the curvature condition
H ≥ 0. We conjecture that

there exist similar examples of loss of non-strict mean convexity
for surfaces of any genus embedded in ℝ3.

The strategy we suggest for the proof follows arguments analogous to those in
Theorem 3.1. The starting point would be a minimal surface Σg of genus g ≥
0, with at most a finite number of planar points, and with boundary whose
connected components are closed convex curves, near to circles. The second step
would be to paste smoothly a convex cap to each connected component of the
boundary of Σg; finally, we would need to check that the resulting surface still
has H ≥ 0.
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The following picture illustrates this procedure by taking as Σg (in this case,
g = 4) the union of the appropriate number of basic blocks of the Schwarz P
minimal surface:

The difficulty of our proposal is the following: the lack of an explicit formula for
Σg (in particular, for the curves building its boundary) makes more obscure how
to perform the smooth pasting of the convex caps (indeed, even for the picture
we used the well-known approximation cosx + cos y + cos z = 0 instead of the
real Schwarz P surface). But to overcome such extra complications goes beyond
the scope of the present paper, since we have enough with either Theorem 3.1 or
Theorem 3.2 to construct our desired examples of loss of mean convexity under
(1.1). This is actually the content of the next section.

4. A perturbation argument giving loss of mean convexity

The goal is to produce examples of embedded spheres with H > 0 initially that
also evolve by ap- or vp-mcf giving points with H < 0. The idea is to perturb
the examples Σ constructed in the previous section by flowing them under the
(unconstrained) mcf for very small time s ∈ (0, "). This will give a family of
initial surfaces Σs with Σ0 = Σ and HΣs > 0 for s > 0. These new starting
data will still develop points of negative mean curvature under (1.1) by using the
smooth dependence of the initial condition for quasilinear parabolic equations
proved by C. Mantegazza and L. Martinazzi in [17].

Theorem 4.1. There exists a positive time t > 0 such that for some � > 0 we
can find a one-parameter family of mean convex surfaces {F s : S ↪→ ℝ3}s∈(0,�)

smoothly embedded in ℝ3 and satisfying that, under the constrained mcf (1.1)
(with ℎ(t) defined either as in (1.2) or in (1.3)), it holds:

inf
S
H(F s(⋅, t)) < 0.
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Proof. Let F : S ↪→ ℝ3 be either the embedding defined in the proof of Theorem
3.1 or the one from Theorem 3.2. Recapitulating, if we take {Ft := F (⋅, t)}t∈[0,T )

the solution of (1.1) with initial condition F0 = F , we already know that

(i) H(⋅, 0) ≥ 0, and
(ii) there is some time � > 0 such that inf

S
H(⋅, t) < 0 for every t ∈ (0, �).

The above property (ii) implies that for any interval [�1, �2] ⊂ (0, �), there is a
constant c > 0 such that

inf
S
H(⋅, t) < −c for all t ∈ [�1, �2]. (4.1)

On the other hand, let us consider X : S × [0, S) → ℝ3 a solution of the
(uncostrained) mcf:⎧⎨⎩

∂X

∂s
(p, s) = −HN(p, s), p ∈ S, s ∈ (0, S)

X(⋅, 0) = F0

. (4.2)

Taking into account the property (i) above, by application of the strong maximum
principle to the evolution equation (2.1) with ℎ = 0, we get that the mean
curvature HX of X(⋅, s) satisfies

HX(⋅, s) > 0 for any s ∈ (0, S). (4.3)

Next we look at F st := F s(⋅, t), where F s : S × [0, T∗) → ℝ3 is the solution
of (1.1) with F s0 = X(⋅, s). For some t ∈ [�1, �2] fixed, the continuity of infS H
(regarded as a map on the space of all the immersions of S into ℝ3) implies
that, given "̃ = c/2 > 0 (where c is the constant coming from (4.1)), we can find

�̃ = �̃(c, t) > 0 such that the following happens: If

dC2(Ft, F
s
t ) < �̃ for all s ∈ (0, �), (4.4)

then we conclude

inf
S
H(F s(⋅, t)) < −c/2. (4.5)

It remains to check (4.4). With this goal, we recall that by [17, Theorem 1.1],
the solution of (1.1) depends continuously (in the C∞-topology) on the smooth
initial condition. Accordingly, given k ∈ ℕ and " > 0 arbitrary, there exists a
� = �(k, ") > 0 satisfying

dCk(Ft, F
s
t ) < " for all t ∈ [0,min{T, T∗}), whenever dCk(F0, F

s
0 ) < �.

(4.6)

Hereafter we fix k = 2 and choose " = �̃ > 0. Then we can find � = �(") > 0
satisfying the property in (4.6). By the smooth dependence with respect of the
time parameter s of the map X : S × [0, S) → ℝ3 solving (4.2), we can find a
small time � = �(�) > 0 such that

dC2(F0, F
s
0 ) < � for all s ∈ [0, �).
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By application of (4.6), we obtain the inequality in (4.4), which yields the con-
clusion (4.5). From here the statement follows, since the embedded surfaces
{F s0 (S)}s∈(0,�) are mean convex (recall (4.3)) but such a property is lost under
(1.1) for some time t > 0. ⊔⊓

5. Non-preservation of positivity of scalar curvature for
hypersurfaces in ℝ4

After the failure of the preservation of the mean convexity under ap- and vp-
mcf, we wonder if the positivity of the scalar curvature (R > 0) is preserved or
not under these constrained flows. This is a natural question by e.g. the following
two reasons:

(1) Unlike mean convexity, R > 0 is preserved for n = 2. In fact, for surfaces
in ℝ3 the preservation of R = �1�2 > 0 is equivalent to the preservation of
convexity, and the latter was proved by G. Huisken in [11].

(2) R > 0 corresponds to the positivity of the second symmetric polynomial
�2 :=

∑
i<j �i�j = R

2 (notice that also H = �1). Therefore, as we should plan to

study a curvature condition which is stronger than H > 0 (since we already know
that this is a non-preserved condition under (1.1)), the next natural candidate is
�2 > 0.

As suggested by the title of the section, we provide a negative answer: we show
an example of a revolution hypersurface in ℝ4 for which the preservation of the
positivity of the scalar curvature fails again. The ideas for the construction of
this example are similar to those in the proofs of Theorem 3.1 and Theorem 4.1.

Roughly speaking, here we consider a paraboloidal (instead of catenoidal) neck
defined by rotation of the curve

(r(z), z) with r(z) = 2 + z2/8 (5.1)

around the x4 axis in ℝ4 and the central cross section is in this case a 2-sphere
of radius 2. In other words, we depart from a revolution hypersurface M in
ℝ4 generated by the curve defined in (5.1) or, in parametric coordinates, by
c(u) = (r(u), z(u)) with

r(u) = 2 cosh2 u and z(u) = 4 sinhu. (5.2)

Applying (2.3) and (2.4), the principal curvatures of M are given by

�1 = −�(u) and �2 = �3 = 2�(u), with �(u) =
1

4 cosh3 u
. (5.3)

From here, the scalar curvature of M is

R = 2(2�1�2 + �2
2) = 2�2(2�1 + �2) = 0. (5.4)

Using again (2.3), (2.4) and that �2 > 0, we can rephrase (5.4) by saying that

S(r) := 2r(ṙz̈ − r̈ż) + ż(ṙ2 + ż2) = 0. (5.5)
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By adding two caps to M , we will construct in the next theorem a closed 3-
manifold M∗ with R ≥ 0 but that under (1.1) develops points of negative scalar
curvature.

Theorem 5.1. There exist t′ > 0, � > 0 and a 1-parameter family of smooth
embeddings F s : S3 ↪→ ℝ4, with s ∈ [0, �) such that:

∘ For all s > 0 the hypersurfaces M s := F s(S3) have strictly positive scalar
curvature.

∘ The solution M s
t of (1.1) (with ℎ(t) defined either as in (1.2) or in (1.3))

starting at M s satisfies infMs R(⋅, t′) < 0.

Proof. Our starting point is a revolution hypersurface M in ℝ4 whose generat-
ing curve c(u) = (r(u), z(u)) is defined as in (5.2). We choose a piece of M
corresponding to z(u) ∈ [−b, b], for some b ∈ ℝ+.

Now we modify M in the following way: we take a ∈ ℝ+ with a < b and con-
sider the embedding F : S3 ↪→ ℝ4 defined by the revolution of a curve (�(u), z(u)),
with

�(u) :=

⎧⎨⎩
r(u)'(−z(u)), if z(u) ∈ [−b,−a)

r(u) if z(u) ∈ [−a, a]

r(u)'(z(u)) if z(u) ∈ (a, b]

and ' : [a, b] → ℝ is the bending function satisfying the properties in (3.3).
Clearly, M∗ := F (S3) coincides with M on the open set U where −a < z(u) < a.

The scalar curvature R for the points of M∗ corresponding to z(u) ∈ (a, b) is
then

R = 2�2(2�1 + �2) = 2�2
S(�)

�(�̇2 + ż2)3/2
,

where S(�) is given by formula (5.5) (writing �, �̇, �̈ instead of r, ṙ, r̈). As �2 > 0,
we need to study the sign of

S(�) = 2z̈('̇ ż r + ' ṙ) r '− 2ż r '('̈ ż2r + '̇z̈ r + 2'̇ ṙ ż + ' r̈) + ż('̇ ż r + ' ṙ)2 + ż3

> '2S(r)− 2' '̈ r2ż3 + r2'̇2ż3 − 2' '̇ ż2 r ṙ ≥ 0,

where the first inequality follows by using 0 < '∣(a,b) < 1 and for the non-
negativity we have applied (5.5), the concavity of ' and that '̇ < 0.

In summary, we have constructed M∗ a closed hypersurface of ℝ4 with non-
negative scalar curvature and such that it has an open subset U where R vanishes
identically.

Next, we are interested in the rate of change of R under (1.1). With the goal
of computing the corresponding evolution formula, notice that, by the Gauss
equation, the scalar curvature of a hypersurface in ℝn+1 is given by

R = 2
∑
i<j

�i �j = H2 − ∣A∣2.
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Taking into account the evolution equations (2.1) and (2.2), we obtain

∂R

∂t
= ΔR+ 2(∣∇A∣2 − ∣∇H∣2) + 2 ∣A∣2R− 2ℎ(H∣A∣2 − C). (5.6)

Hereafter we compute the terms of the right hand side of the above formula
for z(u) ∈ (−a, a). Using (5.3), we can easily compute the last term:

H∣A∣2 − C = (−�+ 4�)(�2 + 2(2�)2)− (2(2�)3 − �3) = 12�3. (5.7)

In order to compute the gradient terms of (5.6), we introduce the coordinates
(u, �) ∈ ℝ× S2 to parametrize M so that the induced metric of M is given by

gM = 4 cosh4 u(4 du2 + g
S2

) = r2(u)(4 du2 + g
S2

),

where gS2 is the standard metric on the unit sphere S2. This allows us to use
the well-known formula (see e.g. [19, page 90]) for the covariant derivatives of a
metric conformal to the product metric 4 du2 + gS2 of ℝ× S2. Indeed, using that
∇∂u∂u is proportional to ∂u and A∂u = −�∂u we get

(∇∂uA)∂u = ∇∂u(A∂u)−A(∇∂u∂u) = −�̇ ∂u − �∇∂u∂u + �∇∂u∂u = −�̇ ∂u.
(5.8)

For any vector field w tangent to S2, after realizing that ∇∂uw = ∇w∂u ṙrw and
Aw = 2�w, we deduce

(∇∂uA)w = ∂u(2�)w + 2�∇∂uw − 2�∇∂uw = 2�̇ w; (5.9)

(∇wA)∂u = −�∇w∂u − 2�∇w∂u = −3�∇w∂u = −3�
ṙ

r
w. (5.10)

If we notice that for any local frame {v, w} of the unit sphere S2 we get

∇vw = ∇S
vw −

ṙ

4r
g
S2

(v, w) ∂u,

where ∇S denotes the Levi-Civita connection of S2 with its standard metric, then
we have

(∇vA)w = 2�∇vw −A(∇S
vw) +

ṙ

4r
g
S2

(v, w)A(∂u)

= 2�∇S
vw −

� ṙ

2r
g
S2

(v, w) ∂u − 2�∇S
vw −

� ṙ

4r
g
S2

(v, w)∂u

= −3� ṙ

4r
g
S2

(v, w) ∂u. (5.11)

Next we choose a local frame {e1 = ∂u, e2, e3}, where {e2, e3} is a local or-
thonormal frame of the unit sphere S2. Using the computations (5.8), (5.9),
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(5.10), (5.11), the symmetries of ∇A and that g22 = g33 = 4guu, we can write

∣∇A∣2 = gijgkℓ
〈
(∇eiA)ek, (∇ejA)eℓ

〉
= (guu)2∣(∇∂uA)∂u∣2 + 2guug22

(
∣(∇∂uA)e2∣2 + ∣(∇e2A)∂u∣2

)
+ 2(g22)2∣(∇e2A)e2∣2

= guu�̇2 + 2guu
[
(2�̇)2 + (3�ṙ/r)2

]
+ 2(g22)2

(3� ṙ

4r

)2
guu

= 18guu
(

2�2 ṙ
2

r2
+
�̇2

2

)
. (5.12)

After checking that ∣∇H∣2 = guu(3�̇)2, we conclude

∣∇A∣2 − ∣∇H∣2 = 9guu
(

4�2 ṙ
2

r2
+ �̇2 − �̇2

)
= 36guu

�2ṙ2

r2
=
(

3
� ṙ

r2

)2
. (5.13)

Now we substitute (5.4), (5.7) and (5.13) on the right hand side of (5.6); this
yields

∂R

∂t
= 2
(

3
� ṙ

r2

)2
− 24ℎ(t)�3. (5.14)

Here we have used that ΔR vanishes on the open set U where z(u) ∈ (−a, a)
(since R∣U ≡ 0). Notice that the first term also vanishes for u = 0 because it is a
multiple of ṙ(u) and, therefore, includes powers of sinhu. On the other hand, by
(5.3) we also have H∣U > 0 and (as one can easily check that H ≥ 0 on M∗) hence

H > 0. The latter implies ℎ(t) > 0 (for ℎ as in (1.2) this follows by definition
and, if we take ℎ as in (1.3), because of the estimate (3.1)).

Taking into account the above considerations, we substitute (5.3) into (5.14)
to deduce

∂R

∂t

∣∣∣∣
u=0

= −3

8
ℎ(t)

1

cosh9 u

∣∣∣∣
u=0

= −3

8
ℎ(t) < 0. (5.15)

This indicates that under (1.1) we can find points of M∗ in a neighborhood of
u = 0 which develop negative scalar curvature for small positive times.

Finally, the statement follows by using the same perturbation argument as in
the proof of Theorem 4.1. The only modification is that here we need to use that
the solution of (unconstrained) mcf starting at a hypersurface with R ≥ 0 has
positive scalar curvature for any t > 0 (cf. [10, Theorem 3]).

⊔⊓
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