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Abstract

In an ambient space with rotational symmetry around an axis (which include the
Hyperbolic and Euclidean spaces), we study the evolution under the volume-preserving
mean curvature flow of a revolution hypersurface M generated by a graph over the
axis of revolution and with boundary in two totally geodesic hypersurfaces (tgh for
short). Requiring that, for each time t ≥ 0, the evolving hypersurface Mt meets such
tgh ortogonally, we prove that: a) the flow exists while Mt does not touch the axis of
rotation; b) throughout the time interval of existence, b1) the generating curve of Mt

remains a graph, and b2) the averaged mean curvature is double side bounded by positive
constants; c) the singularity set (if non-empty) is finite and lies on the axis; d) under a
suitable hypothesis relating the enclosed volume to the n-volume of M , we achieve long
time existence and convergence to a revolution hypersurface of constant mean curvature.

1 Introduction and definition of the ambient space

Let {Xt : M −→M}t∈[0,T [, be a smooth family of immersions of a compact n-dimensional
manifold (may be with boundary) M into a (n+1)-dimensional Riemannian manifold M . By
“smooth family” we understand that the mapX : M×[0, T [−→M defined byX(p, t) = Xt(p)
is smooth. Let Nt be the outward unit normal vector of the immersion Xt and Ht the trace
of the Weingarten map LNt of Xt associated to Nt (with the convention that Ht is n times
the usual mean curvature with the sign which makes positive the mean curvature of a round
sphere in Rn+1). By Mt we shall denote both the immersion Xt : M −→ M and the
image Xt(M), as well as the Riemannian manifold (M, gt) with the metric gt induced by the
immersion. Analogous notation will be used when we have a single immersion X : M −→M .
We are working with embeddings, then there is no confusion about considering objects on
M or on Xt(M).

The volume preserving mean curvature flow is defined as a solution of the equation

∂Xt

∂t
= (Ht −Ht) Nt, (1.1)

where Ht is the averaged mean curvature Ht =

∫
Mt
Htdvgt∫

Mt
dvgt

, being dvgt the volume element

on Mt. This flow decreases the area of Mt, but preserves the volume of the domain Ωt

enclosed by Mt (when such Ωt exists).
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A nearest relative of (1.1) is the mean curvature flow ∂Xt
∂t = −Ht Nt, which has been

extensively studied in Euclidean and non Euclidean ambient spaces. The work for the flow
(1.1) is much shorter and mainly devoted to the evolution of hypersurfaces in the Euclidean
space. Special attention has been paid, in the Euclidean or Minkowski ambient spaces, to
the evolution of convex hypersurfaces ([15] and [3]) and hypersurfaces in the neighborhood
of a round sphere ([12]). The results for the last situation were extended in [2] to general
Riemannian manifolds whose scalar curvature has nondegenerate critical points. Results
both for the evolution of h-convex hypersurfaces and hypersurfaces which are near a geodesic
sphere were obtained in [7] for the Hyperbolic space.

As far as we know, few other evolutions under (1.1) have been studied. This makes the
works [5] and [6] by M. Athanassenas specially interesting and valuable. Indeed, she deals
with two extra difficulties: lack of convexity or sphere closeness assumptions and boundary
conditions. In particular, she considers the following

Setting Euc ([5] and [6]). Let M be a smoothly embedded hypersurface in Rn+1 con-
tained in the domain G = {x ∈ Rn+1 : 0 ≤ xn+1 ≤ d; d > 0}, and with boundary ∂M ⊂ ∂G.
Assume that M is a revolution hypersurface around the axis z := xn+1 generated by the
graph of a function r(z), that it intersects ∂G orthogonally at ∂M and encloses (inside G)
a (n+ 1)-volume V .

Athanassenas’ papers study the behavior of the flow defined by (1.1) with M in the
setting Euc as initial condition and the boundary condition that the boundary ∂Mt of the
evolving surface Mt remains in ∂G and meets it orthogonally. Next we recall her main
results:

A1. The flow exists for all time t > 0 and converges to the cylinder C ⊂ G enclosing a

volume V under the assumption n-volume(M) ≤ V

d
(cf. [5]).

A2. The singular set (if not empty) is finite and is located along the axis of rotation (cf.
[6]).

In the present paper, we face the challenge of extending the above statements to hyper-
surfaces living in a larger universe; in other words, our goal is to export the Euclidean results
to more general ambient spaces. But not every Riemannian manifold is well suited to deal
with the situation analogous to the setting Euc. Indeed, in order the concept of revolution
hypersurface makes sense, we need that the ambient space also has some kind of rotational
symmetry. This motivates the introduction of the spaces defined below.

Definition 1 A rotationally symmetric space with respect to an axis z is a manifold M =
J ×Bn

R, with J an interval in R and Bn
R the Euclidean open ball of radius R in Rn, endowed

with a C∞ metric of the form

g := dr2 + f2(r) dz2 + h2(r) gS , (1.2)

in the cylindrical coordinates r = |x|, z = z, u = x/|x| of (z, x) ∈ M , where gS is the
standard metric of sectional curvature 1 on the sphere Sn−1.



Volume-preserving M.C.F. in Rotationally Symmetric Spaces 3

On such a manifold there is a natural action of SO(n) in the following way. Given a point
q = (z, x) and R ∈ SO(n), we define Rq := (z,Rx) ≡ exppR exp−1

p q, where let p = (z, 0)
and expp is the exponential map in (M, g). The axis z is invariant under such action, and
this is the reason for the name of these spaces. From now on, we shall call the axis z the
axis of rotation.

Notice that the previous definition includes the three model spaces with constant sectional
curvature. In fact,

• When R = ∞, J = R, λ < 0, f(r) = cosh(
√
|λ| r), h(r) =

1√
|λ|

sinh(
√
|λ| r), (M, g)

is the Hyperbolic space of sectional curvature λ.

• When λ > 0, R = π
2
√
λ

, J =] − π
2
√
λ
, π

2
√
λ

[, f(r) = cos(
√
λ r), h(r) =

1√
λ

sin(
√
λ r),

(M, g) is the open half sphere of sectional curvature λ.

• When R =∞, J = R, f(r) = 1, h(r) = r, (M, g) is the Euclidean Space.

According to the previous definition, a natural setting for the extension of the results A1
and A2 mentioned above is:

Setting RSS. Let M be a smoothly embedded hypersurface of revolution around the axis
of rotation in M , generated by the graph of a function r(z) and contained in the domain
G = {(r, z, u) ∈M : a ≤ z ≤ b}, with boundary ∂M , which intersects ∂G orthogonally at the
boundary and encloses a (n+ 1)-volume V inside G.

However, as we pointed out in [7], the negative ambient curvature seems to be a friendlier
setting for the flow (1.1), so here we still need suitable hypotheses on the negativity of some
sectional curvatures. In particular, our main results are valid for the following

Setting RSS2. Let M be in the setting RSS and assume that either

(a) the curvatures of M satisfy Szi < 0 and Sri ≤ 0, or

(b) M is the Euclidean space.

Here (cf. notation of section 2), for each i, Szi means the sectional curvature of the plane
generated by the axis of rotation and a direction Ei orthogonal to the plane πG containing
the generating curve, and Sri is the sectional curvature given by Ei and the direction in πG
orthogonal to the axis.

In this setting, flow M by (1.1) with the boundary condition that the evolving hypersurface

Mt intersects G orthogonally at the boundary for every t. (1.3)

We shall prove that

B1. The flow exists while the evolving hypersurface Mt does not touch the axis of rotation
(Theorem 6).
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B2. As long as the flow exists, the generating curve remains a graph over the axis of rotation
(Theorem 5).

B3. Throughout the same time, the averaged mean curvature H is positive and double side
bounded (Proposition 9).

B4. If the motion Mt of M has a first singularity at time T , the singular set is finite and
lies on the axis of rotation (Theorem 10).

B5. If vol(M) is small enough compared with the volume V enclosed by M inside G, then
the solution of (1.1) is defined for all t > 0 and converges to a revolution hypersurface
of constant mean curvature in M (Theorem 12).

At this moment, we think that the non positivity of the sectional curvature is an essential
hypothesis for B2, but we have no concluding counterexample. The other results may still
be true in an ambient space with positive curvature, but this would require a different kind
of argument, because our proofs rely strongly on B2.

About the techniques used to prove the above results, this paper follows the ideas intro-
duced in [1] and [19] (which study the mean curvature flow for closed rotationally symmetric
hypersurfaces) with the clever modifications proposed by M. Athanassenas to deal with the
averaged mean curvature, and some methods learned from [9].

But these ideas are not enough to work in the setting RSS2, where we actually have to deal
with an ambient space non (necessarily) flat and with sectional curvatures non (necessarily)
constant. The key to overcome this further difficulty is the mixture of some ideas from the
aforementioned works with a bunch of tricky technicalities which spread out all over our
paper.

In addition, we had to face an extra and unexpected complication: as far as we are aware,
there is a couple of mistakes in [5], [6] (in the last addend of the first displayed formula of
the proof of Proposition 5 on page 63 of [5] and on the last displayed expression on page 10
of [6]); and, at least for the mistake in the computation of [6], when doing it properly, the
arguments that follow fail. This makes necessary (and not superfluous by far) the inclusion
of the Euclidean space within the setting RSS2. In short, we not only extend the desired
results to a wider setting, but we also complete the proof in the Euclidean space.

The paper is organized as follows. We begin with the study of the main features of the
spaces introduced in Definition 1 (section 2). After some remarks on short time existence
and basic computations (section 3), we find bounds for the distance to the axis of rotation
and for H (section 4) which will be the key to prove B2 (section 5). Section 6 is devoted to
the proof of B1, and in section 7 we obtain B3 together with finer bounds for H. We shall
use these finer bounds to prove B4 (section 8). Finally, B5 is proved in section 9.
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rado Universitario ref: AP2003-3344. Both authors were partially supported by DGI(Spain) and
FEDER Project MTM2007-65852, by the project ACOMP07/088 of Generalitat Valenciana and by
the network: MTM2006-27480-E.



Volume-preserving M.C.F. in Rotationally Symmetric Spaces 5

2 Rotationally symmetric spaces around an axis

To compute the covariant derivatives and curvatures corresponding to the metric (1.2),
we shall use the orthonormal frame

E0 := Er =
∂

∂r
, E1 := Ez =

1
f(r)

∂

∂z
, Ei =

1
h(r)

ei, i = 2, ..., n (2.1)

where {ei} is an orthonormal frame of Sn−1 with its standard metric, and the dual orthonor-
mal frame

θr = dr, θz = f(r) dz, θi = h(r)δi, (2.2)

being {δi} the dual frame of {ei} in Sn−1 with its standard metric. In these frames, the
Cartan connection forms ωba (defined by dθb = −

∑n
a=0 ω

b
a ∧ θa) are

ωzr =
f ′(r)
f(r)

θz, ωir =
h′(r)
h(r)

θi, ωiz = 0, ωij = Sωij , (2.3)

where Sωij are the connection 1-forms of Sn−1 with its standard metric and ′ denotes the
derivative respect to r.

From the above expressions, the covariant derivatives of the orthonormal frame (given
by (∇XEa =

∑n
b=0 ω

b
a(X)Eb) are

∇ErEr = 0, ∇EzEr =
f ′(r)
f(r)

Ez, ∇EiEr =
h′(r)
h(r)

Ei,

∇ErEz = 0, ∇EzEz = −f
′(r)
f(r)

Er, ∇EiEz = 0, (2.4)

∇ErEi = 0, ∇EzEi = 0, ∇EiEj = −h
′(r)
h(r)

δijEr + Sωkj (Ei)Ek.

Also from (2.3) we can compute the curvature forms Ωb
a (which satisfy Ωb

a = dωba −∑n
c=0 ω

c
a ∧ ωbc):

Ωz
r =

f ′′

f
dr ∧ θz, Ωi

r =
h′′

h
dr ∧ θi,

Ωi
z = −h

′f ′

hf
θi ∧ θz, Ωi

j = SΩi
j −

(
h′

h

)2

θi ∧ θj , (2.5)

where SΩi
j are the curvature 2-forms of Sn−1 with its standard metric.

Let us remark a fact which is necessary to have in mind when doing computations:

Sωij(Ek) =
1
h
Sωij(ek)

SΩi
j(Ek, E`) =

1
h2

SΩi
j(ek, e`).

This is interesting to recall because Sωij(ek) and SΩi
j(ek, e`) give the standard values in Sn−1

with its standard metric.
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Remark 1 In any Riemannian manifold M, given a point p ∈M and a geodesic Γ through
p, the eigenvalues of the Weingarten map of the geodesic tube of radius r around Γ approach
∞ as 1/r when r → 0 in the directions tangent to geodesic discs orthogonal to Γ (cf. [17]).
Notice that in the metric (1.2) the Weingarten map of such a tube in the directions tangent

to geodesic discs is given by ∇EiEr. Then, by formulae (2.4), limr→0

h′(r)
h(r)

1
r

= 1.

On the other hand, h(r) is the norm of the vector ei tangent to the geodesic sphere in the
hyperplane z =constant with radius r, then h(0) := limr→0 h(r) = 0 with limr→0

h(r)
r = 1,

which combined with the above limit gives h′(0) = 1. Moreover, f(r) is the norm of the vector
tangent to the curve z 7→ (r0, z, u0), which is a geodesic when r0 = 0. Therefore, f(0) > 0
and constant, and we can take, without loss of generality, f(0) = 1.

If we do not have any singularity in our manifold M = J × Bn
R at the points (z, 0), the

limit of ∇EzEz must be independent on the direction we approach the point (z, 0). But from
(2.4) we have opposite vectors ∇EzEz of norms |f

′(0)
f(0) | when we approach (z, 0) by opposite

directions, then we must have f ′(0) = 0.
From all these remarks we have that, if the metric g given by (1.2) is a Riemannian

metric, then
f(0) = 1, f ′(0) = 0, h(0) = 0, h′(0) = 1. (2.6)

Now we use the expression Rabcd = Ωa
b (Ec, Ed) of the curvature components and (2.5) to

obtain the sectional curvatures:

Srz = Rrzrz = −f
′′

f
, Sri = Rriri = −h

′′

h
,

Szi = Rzizi = −h
′f ′

hf
, Sij = Rijij =

1− h′2

h2
. (2.7)

In the next two remarks, we translate the curvature conditions of the setting RSS2 in
terms of the functions f and h defining g.

Remark 2 If Sri ≤ 0 the second formula in (2.7) implies h′′ ≥ 0, then h′ is non-decreasing
and, since h′(0) = 1, h′ > 0. Thus h is increasing.

Henceforth, we shall denote by z(φ) the first positive zero of a function φ : R −→ R.

Remark 3 If Szi ≤ 0 (resp. Szi < 0) the third formula in (2.7) implies f ′h′(r) ≥ 0 (resp.
f ′h′(r) > 0) for every r and, since h′(r) > 0 for r ∈ [0, z(h′)[, f ′(r) ≥ 0 (resp. f ′(r) > 0) for
r in this interval. So f is non-decreasing, (resp. increasing) in particular, f(r) ≥ f(0) = 1
(resp. f(r) > f(0) = 1). The property f ′(r) ≥ 0, together with f ′(0) = 0, implies f ′′(r) ≥ 0
(resp. f ′′(r) > 0) at some points of [0, z(h′)[, and Srz ≤ 0 (resp. Srz < 0) at those points.

If, moreover, Sri ≤ 0, Remark 2 implies z(h′) = ∞, then the inequalities stated in the
last paragraph for an interval now hold for every r > 0.
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3 Short time existence and some formulae

Let us begin with a remark on the notation. Along all the paper we use many quantities
(functions, vector and tensor fields, ...) depending on the evolved hypersurface Mt of M
under the flow (1.1). When they are introduced for the first time, we write the subindex t

to denote their dependence on t, but later we shall omit it unless it is not clear from the
context that we are making reference to the function depending on t. Sometimes we also
denote the dependence on t by ( . , t).

Observe that, since M is invariant by the action of SO(n) as a group of isometries of
M , also Mt will be. Then the unit normal vector Nt to Mt will be contained in the plane
generated by Er and Ez and can be written as

N = 〈N,Er〉Er + 〈N,Ez〉Ez, (3.1)

in turn, the unit vector tt tangent to the generating curve will be

t = −〈N,Ez〉Er + 〈N,Er〉Ez. (3.2)

We shall use the coordinates (rt, zt, ut) for Mt. Since M is generated by the graph of a
function r(z), for small t a solution of (1.1) will still be generated by the graph of a function
rt(zt). Using this function, the vectors t and N can be written as

t =
1√

ṙ2 + f2
(ṙEr + fEz), N =

1√
ṙ2 + f2

(fEr − ṙEz), (3.3)

where ṙ denotes the derivative of rt with respect to zt .
A convenient orthonormal frame of Mt is given by t, E2, ..., En. If we compute the mean

curvature of Mt using this frame, and denote t̃ =
√
ṙ2 + f2 t, Ñ =

√
ṙ2 + f2 N , we get

H = k1 + (n− 1)k2, (3.4)

where

k1 = − 1

(
√
ṙ2 + f2)3

〈
∇t̃t̃, Ñ

〉
=

1√
ṙ2 + f2

(
−r̈f + ṙ2f ′

ṙ2 + f2
+ f ′

)
(3.5)

=
1√

ṙ2 + f2

(
− d

dz
arctan

(
ṙ

f

)
+ f ′

)
(3.6)

is the normal curvature of Mt in the direction of t, and

k2 =
1√

ṙ2 + f2

〈
∇E2Ñ , E2

〉
=

f√
ṙ2 + f2

h′

h
(3.7)

is the nomal curvature of Mt in the direction of Ei, i = 2, ..., n.
It is well known (cf. [11]) that, up to tangential diffeomorphisms, equation (1.1) is

equivalent to 〈
∂Xt

∂t
,Nt

〉
= H −H. (3.8)



Volume-preserving M.C.F. in Rotationally Symmetric Spaces 8

In this flow the variable z does not change with time, and formulae (3.3), (3.4), (3.5) and
(3.7) are true just by this change. Using them, equation (3.8) becomes

∂r

∂t
=

r̈

ṙ2 + f2
− f ′(r)
f(r)

(
1 +

ṙ2

ṙ2 + f2

)
− (n− 1)

h′(r)
h(r)

+H

√
1 +

ṙ2

f2
. (3.9)

Replacing H in (3.9) by any C1,α/2 real valued function ψ such that ψ(0) = H(0), we obtain a
parabolic equation which, at least for small t, has a unique solution satisfying ṙ(a) = ṙ(b) = 0.
Now, using a routine fixed point argument (cf. [18]), we can establish short time existence
also for (3.9) with the same boundary conditions.

4 Upper bounds for r and rough bounds for H

In this section, we shall prove that if Mt is a maximal solution of (1.1) with initial
condition in the setting RSS and satisfying the boundary condition (1.3), then rt has a
finite upper bound and H is positive and bounded from above. Under additional curvature
assumptions, which include both situations of the setting RSS2, we shall show that H is
actually bounded away from zero.

The aforementioned bounds will be the key to prove the conservation of the property of
being a graph for the generating curve (cf. section 5). This and the results of section 6 will
help us to obtain more accurate bounds for H (cf. section 7).

Let us define the functions β and δ and the numbers r2 > r1 > 0 by

β(r) =
∫ r

0
f(r)h(r)n−1dr, r1 = β−1

(
V

(b− a)σ

)
, (4.1)

δ(r) =
∫ r

0
h(r)n−1dr, r2 = δ−1

(
vol(M)
σ

+ δ(r1)
)
, (4.2)

where σ denotes the volume of Sn−1 with its standard metric. Let us remark that the
functions β and δ are increasing, thus they have inverse and r2 > r1 as claimed. Moreover,
r1 and r2 depend only on b− a, V , vol(M) and the metric g of the ambient space M .

Proposition 1 If M is in the setting RSS and [0, T [ is the maximal time interval where the
flow (1.1) satisfying (1.3) is defined, then rt < r2 for every t ∈ [0, T [.

Proof From the expression (1.2) of the metric of M it follows that its volume element is

µ = f(r)h(r)n−1dr ∧ dz ∧ Sµ, (4.3)

being Sµ the volume element on Sn−1 defined by its standard metric.
Using expression (4.3), the volume V enclosed by Mt can be computed as

V = σ

∫ b

a

∫ r(z)

0
f(r)h(r)n−1dr dz, (4.4)
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and the definition of r1 gives

V = σ

∫ b

a

∫ r1

0
f(r)h(r)n−1dr dz. (4.5)

Comparing these formulae, we deduce that minz∈[a,b] r(z) =: rm ≤ r1 ≤ rM := maxz∈[a,b] r(z)
and one of the inequalities is strict if and only if the other is.

The induced volume form µt on Mt is defined by the contraction

µt = ıNtµ =
√
ṙ2(z) + f2(r(z)) h(r(z))n−1dz ∧ Sµ, (4.6)

where we have used (2.2), (3.3) and (4.3). Hence

vol(Mt) = σ

∫ b

a

√
ṙ2(z) + f2(r(z)) h(r(z))n−1dz > σ

∫ b

a
|ṙ| h(r(z))n−1dz

≥ σ
∫ rM

rm

h(r)n−1dr = σ

(∫ r1

rm

h(r)n−1dr +
∫ rM

r1

h(r)n−1dr

)
. (4.7)

From this inequality we obtain

vol(Mt) > σ

∫ rM

r1

h(r)n−1dr = σ(δ(rM )− δ(r1)). (4.8)

Then, having into account that vol(Mt) < vol(M), we reach

δ(rM ) <
vol(M)
σ

+ δ(r1),

from which the proposition follows. tu

Next, the goal is to bound the averaged mean curvature Ht.

Proposition 2 Let Mt be the solution of (1.1) with initial condition M in the setting RSS
and satisfying (1.3). For every t such that

0 < ρ ≤ rt ≤ z0 := min{z(h′), z((n− 1)h′f + f ′h)} for some fixed ρ,

there is a constant h2(V, g, n, b− a, vol(M), ρ) > 0 such that 0 ≤ H ≤ h2.

Proof Before starting the proof, let us remark that

• By (2.6), we have min{z(h′), z((n− 1)h′f + f ′h)} > 0.

• The hypothesis on the variation of rt together with Proposition 1 imply that rt ≤ r =
min{r2, z0}.
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From (3.4), (3.6) and (3.7) we can write

Ht =
1

vol(Mt)

∫
Mt

1√
ṙ2 + f2

(
− d

dz
arctan

(
ṙ

f

)
+ (n− 1)

h′

h
f + f ′

)
µt = I1 + I2, (4.9)

where we have (by (4.6)) the following expressions for I1 and I2:

I1 =
σ

vol(Mt)

∫ b

a
− d

dz
arctan

(
ṙ

f
h(r(z))n−1

)
dz and (4.10)

I2 =
1

vol(Mt)

∫
Mt

1√
ṙ2 + f2

(n− 1)h′f + hf ′

h
µt. (4.11)

Integrating by parts and realizing that the condition in the boundary gives ṙ(b) = ṙ(a) =
0, we get

I1 =
σ

vol(Mt)

∫ b

a
arctan

(
ṙ

f

)
(hn−1)′ ṙ dz ≥ 0 (4.12)

because arctan
(
ṙ

f

)
ṙ ≥ 0. Since arctan

(
ṙ

f

)
ṙ ≤ π

2

√
ṙ2 + f2,

I1 ≤
σ

vol(Mt)
π

2

∫ b

a

√
ṙ2 + f2 (hn−1)′ dz (4.13)

=
π

2vol(Mt)

∫
Sn−1

∫ b

a

(hn−1)′

hn−1
hn−1

√
ṙ2 + f2 dz Sµ

=
π

2vol(Mt)

∫
Mt

(hn−1)′

hn−1
µt ≤

π

2
max
r∈[ρ,r]

(hn−1)′

hn−1
(r) <∞. (4.14)

From (4.6) and (4.11) we have

I2 =
σ

vol(Mt)

∫ b

a

(
(n− 1)h′f + f ′h

)
hn−2dz ≥ 0. (4.15)

On the other hand, (4.11) also implies that

I2 ≤
1

vol(Mt)

∫
Mt

1
f

(n− 1)h′f + f ′h

h
µt ≤ max

r∈[ρ,r]

(n− 1)h′f + f ′h

fh
(r) <∞. (4.16)

In conclusion, the existence of the finite upper bound h2 follows from (4.14) and (4.16).
Moreover, the non-negativity of H is due to (4.12) and (4.15), which in turn are true thanks
to the assumption rt ≤ z0. tu

Corollary 3 Let Mt be the solution of (1.1) with initial condition M in the setting RSS
and satisfying (1.3). Let us suppose that the sectional curvatures Szi and Sri of M are non-
positive. For every t such that 0 < ρ ≤ rt for some fixed ρ, there are constants hi(V, g, n, b−
a, vol(M), ρ) > 0, i = 1, 2 such that h1 ≤ H ≤ h2.
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Proof From Remark 3 it follows that the hypotheses on the curvature of M imply z0 =∞.
Then the upper bound is an immediate consequence of Proposition 2. Remarks 2 and 3 tell
us that the hypotheses on the curvature imply that h, h′ are non decreasing, f ≥ 1 and
f ′h ≥ 0, therefore, from (4.15) we obtain

I2 ≥
σ(b− a)
vol(Mt)

min
r∈[ρ,r2]

(
(n− 1)h′f + f ′h

)
hn−2(r) ≥ σ(b− a)

vol(M)
(n− 1)

(
h′hn−2

)
(ρ) > 0, (4.17)

which gives the positive lower bound for H. tu

5 Preserving the property of being a graph for the generating
curve

This section is devoted to prove that, for M in the setting RSS2, the evolving hypersurface
remains a revolution hypersurface generated by a smooth graph. As we pointed out above,
Mt is always a revolution hypersurface. Then the aim is to show that the generating curve
remains a graph over the axis of rotation for all the time.

In this section we continue with the notation used in sections 2 and 3. Moreover, by
α we represent the second fundamental form of Mt, with the sign convention α(X,Y ) =〈
∇XN,Y

〉
, and L denotes its Weingarten map (defined by LX = ∇XN). ∇ means the

intrinsic covariant derivative on Mt.
Recall that the generating curve is a graph if and only if u := 〈N,Er〉 > 0, which is

equivalent to say 1 < v =
1
u
< ∞. Therefore, our goal is to obtain an upper bound for v.

To achieve this, we need the evolution equation for v.

Lemma 4 Under (1.1), v = 〈N,Er〉−1 evolves as

∂v

∂t
=∆v − 2

v
|dv|2 −

(
1
v

f ′

f
− k1

)2

v +H
f ′

f
(1− v2)

−

(
f ′′

f
− 2

(
f ′

f

)2

+ (n− 1)
((

h′

h

)′
− h′f ′

hf

))(
1− 1

v2

)
v. (5.1)

Proof First we compute ∆u. To do so, we shall use an orthonormal frame of M of the form
t, E2, ..., En. It follows from (2.4), (3.1) and (3.2) (compare with (3.7)) that

∇EiN = k2Ei = u
h′

h
Ei, (5.2)

Eiu = 0, ∇tt = 0, (5.3)

∇tEr = u
f ′

f
Ez, ∇tN = k1t. (5.4)
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From (5.3) we have

∆u = ttu−
n∑
i=2

(∇EiEi)u, (5.5)

and, using formulae (5.4), (2.4), (3.2) and 〈N,Ez〉2 = 1− u2, we obtain

tu =
(
u
f ′

f
− k1

)√
1− u2,

ttu =
(
u
f ′

f
− k1

)
f ′

f
(1− u2)−

(
u
f ′

f
− k1

)2

u

− u
(
f ′

f

)′
(1− u2)− tk1

√
1− u2, (5.6)

(∇EiEi)u = 〈∇EiEi, t〉 tu =
h′

h
(1− u2)

(
u
f ′

f
− k1

)
. (5.7)

Joining (5.5), (5.6) and (5.7), we reach the desired expression for ∆u:

∆u =
(
u
f ′

f
− k1

)
f ′

f
(1− u2)−

√
1− u2 tk1 −

(
u
f ′

f
− k1

)2

u

− u
(
f ′

f

)′
(1− u2)− (n− 1)

(
u
f ′

f
− k1

)
h′

h
(1− u2). (5.8)

From the standard evolution formula
∇N
∂t

= gradH for (1.1), using again (2.4) and (3.2),
we get

∂

∂t
u = 〈gradH,Er〉+ (H −H) 〈N,Ez〉2

f ′

f

but

〈gradH,Er〉 = (tk1 + (n− 1)tk2) 〈t, Er〉

= −
√

1− u2 tk1 + (n− 1)u(1− u2)
(
h′

h

)′
− (n− 1)(1− u2)

(
u
f ′

f
− k1

)
h′

h
. (5.9)

Then, combining (5.8) with (5.9) and rearranging terms, we arrive at the formula

∂u

∂t
=∆u+

(
u
f ′

f
− k1

)2

u+ u(1− u2)

(
f ′′

f
− 2

(
f ′

f

)2

+ (n− 1)
((

h′

h

)′
− h′f ′

hf

))

+H
f ′

f
(1− u2) (5.10)
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Now the definition of v leads to

dv = − 1
u2
du,

∂v

∂t
= − 1

u2

∂u

∂t
, ∆v = − 1

u2
∆u+

2
u3
|du|2. (5.11)

Finally, (5.1) follows from (5.10) and (5.11). tu

Theorem 5 Let Mt be the solution of (1.1) defined on a maximal time interval [0, T [, with
initial condition M in the setting RSS2 and satisfying (1.3). The generating curve of the
solution Mt of (1.1) remains a graph over the axis of revolution for every t ∈ [0, T [.

Proof The case of M being the Euclidean space was proved in [5]. Hence we shall suppose
that Szi < 0 and Sri ≤ 0.

For every t0 ∈ [0, T [, let ρ(t0) = min(x,t)∈M×[0,t0] rt(x) > 0. Then we can apply Corollary
3 to conclude that

0 < h1 ≤ Ht ≤ h2 for t ∈ [0, t0], (5.12)

where hi := hi(V, g, n, b− a, vol(M), ρ(t0)).
While the generating curve is a graph, one has v ≥ 1 and so(

1− 1
v2

)
v ≤ v and H

f ′

f
≤ Hf ′

f
v. (5.13)

Putting the above inequalities in (5.1) and forgetting about the negative addends, we
reach the inequality:

∂v

∂t
≤ ∆v − 2

v
|dv|2 −

(
1
v

f ′

f
− k1

)2

v −Kv2 + Cv ≤ ∆v −Kv2 + C v, (5.14)

where

K = K(V, g, n, b− a, vol(M), ρ(t0)) = h1 min
r∈[ρ(t0),r2]

f ′

f
, (5.15)

C = C(V, g, n, b− a, vol(M), ρ(t0))

= max
r∈[ρ(t0),r2]

∣∣∣∣∣f ′′f − 2
(
f ′

f

)2

+ (n− 1)
((

h′

h

)′
− f ′h′

fh

)∣∣∣∣∣+ h2 max
r∈[ρ(t0),r2]

f ′

f
. (5.16)

Let t1 ∈ [0, t0] be any time such that the generating curve of Mt is a graph for every
t ∈ [0, t1]. Let (x2, t2) ∈ Mt2 × [0, t1] be the space-time point where v attains its maximum
for t ≤ t1. If v2 := v(x2, t2) > 1 and t2 6= 0, then x2 is an interior point of Mt2 (because at
the boundary v = 1) and it has to satisfy ∂v

∂t ≥ 0 as well as ∆v ≤ 0. Using these inequalities
in (5.14), we can write 0 ≤ −Kv2

2 + C v2 = v2(−Kv2 + C), and so

v2 ≤ C1 = max{max
x∈M

v(x), C/K}.

Notice that C1 does not depend on t1, thus v cannot become ∞ in the interval [0, t0]. Since
t0 is arbitrary, the same conclusion is true for [0, T [. tu
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6 The first singularities of the motion are produced at the
axis of revolution

This section is devoted to the proof of the following result, which assures long time
existence unless the evolving hypersurface reaches the axis of rotation.

Theorem 6 Let Mt be the maximal solution of (1.1), defined on [0, T [, with initial condition
M in the setting RSS2 and satisfying (1.3). Then either

T =∞ or lim
t→T

min
x∈Mt

rt(x) = 0.

Proof First, let us recall that rt > 0 for every t ∈ [0, T [. Hence the continuous function
t 7→ β(t) := minx∈Mt rt(x) satisfies β(t) > 0 for every t ∈ [0, T [. If limt→T β(t) > 0, then
there is a ρ > 0 such that β(t) ≥ ρ for every t ∈ [0, T [. We shall prove that, if this is the
case, then the solution of the flow can be prolonged after T , which is a contradiction.

The key for proving that the solution can be extended if rt ≥ ρ > 0 is to show that, under
this condition, |L|2 is bounded. To do so, we need the evolution equation of |L|2 under (1.1)
for hypersurfaces in arbitrary Riemannian manifolds. Previously, it is necessary to know the
evolution equations for the metric gt of Mt, its dual metric g[t and the second fundamental
form αt:

∂g

∂t
= 2(H −H)α,

∂g[

∂t
= −2(H −H)α[,

∂α

∂t
= ∆α+

(
H − 2 H

)
αL−H R · N · N + (|L|2 +Ric(N,N))α

−Ric(· , L · )−Ric(L · , · ) +R(N,L · , N, ·) +R(N, · , N, L ·)
+ 2RiL−∇·Ric(·, N)− δR · · N ,

where RiL(Z, Y ) =
∑n

i=1Rei,Z,Lei,Y and δR =
∑n

i=1∇ei(R)ei for some local orthonormal
frame {ei} of Mt and αL is defined by αL(X,Y ) = α(LX, Y ).

From these equations we obtain the evolution formula for the squared-norm of the shape
operator |L|2:

∂|L|2

∂t
= ∆|L|2 − 2|∇L|2 + 2|L|2

(
|L|2 +Ric(N,N)

)
− 2H

trL3 +
∑
j

RLejNejN

− 4
∑
i,j

(
RLeiejLeiej −RLeiejeiLej

)
− 2

∑
i,j

(
∇LeiRNejeiej +∇ejRNeiLeiej

)
. (6.1)

In our case, using the orthonormal local frame N, t = E1, E2, ..., En, we get

∂|L|2

∂t
= ∆|L|2 − 2|∇L|2 + 2|L|4 − 2HtrL3 + 2|L|2 (T + (n− 1)J )

− 2H (k1T + (n− 1)k2J )− 4(k1 − k2)2(n− 1)Y − 2
〈
α, δ̃RN

〉
, (6.2)
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where δ̃RN (X,Y ) :=
∑

i

(
∇XRNEiY Ei +∇EiRNYXEi

)
, T , J and Y are the sectional cur-

vatures of the planes generated by {t, N}, {Ei, N} and {Ei, t}, respectively.
We cannot deduce any bound for |L| directly from (6.2). Then, as in [5], we shall study

the evolution of g = (ϕ ◦ v)|L|2, where ϕ is a real function to be determined later. The
evolution of g is given by those of ϕ and |L|2 according to the formula:(

∂

∂t
−∆

)
g = |L|2

(
∂

∂t
−∆

)
ϕ+ ϕ

(
∂

∂t
−∆

)
|L|2 − 2

〈
dϕ, d|L|2

〉
= |L|2ϕ′

(
∂

∂t
−∆

)
v − |L|2ϕ′′ |dv|2 + ϕ

(
∂

∂t
−∆

)
|L|2 − 2

〈
dϕ, d|L|2

〉
. (6.3)

For the last addend in (6.3), we use the following inequality (cf. [10])

−2
〈
dϕ, d|L|2

〉
≤ − 1

ϕ
〈dg, dϕ〉+ 2ϕ|d|L|2|+ 3

2ϕ
|L|2|dϕ|2 (6.4)

and Kato’s inequality
|d|L||2 ≤ |∇L|2. (6.5)

If ϕ′ > 0, from (5.14) to (5.16) and (6.2) to (6.5), we conclude that there are constants
K = K(V, g, n, b− a, vol(M), ρ) and C = C(V, g, n, b− a, vol(M), ρ) such that(

∂

∂t
−∆

)
g ≤ |L|2ϕ′

(
−2
v
|dv|2 −

(
f ′

vf
− k1

)2

v −Kv2 + Cv

)
− |L|2ϕ′′|dv|2

+ 2ϕ|L|4 − 2ϕHtrL3 + 2ϕ|L|2 (T + (n− 1)J )

− 2ϕH (k1T + (n− 1)k2J )− 4ϕ(k1 − k2)2(n− 1)Y

− 2
〈
α, δ̃RN

〉
ϕ− 1

ϕ
〈dg, dϕ〉+

3
2ϕ
|L|2|dϕ|2. (6.6)

Next, let us bound and/or rearrange the different addends in (6.6).

−2
v
|L|2ϕ′|dv|2 − |L|2ϕ′′|dv|2 +

3
2ϕ
|L|2|dϕ|2 =

(
− 2
vϕ′
− ϕ′′

(ϕ′)2 +
3

2ϕ

)
|L|2|dϕ|2. (6.7)

2ϕ|L|4 − |L|2ϕ′v
(
f ′

vf
− k1

)2

= g
ϕ′

ϕ
v

(
2
k1f
′

vf
− (f ′)2

v2f2
− |L|2 + (n− 1)k2

2

)
+ 2ϕ|L|4

=
(
−ϕ
′v

ϕ2
+

2
ϕ

)
g2 + (n− 1)k2

2

ϕ′v

ϕ
g + 2k1

f ′ϕ′

fϕ
g −

(
f ′

f

)2 ϕ′

vϕ
g. (6.8)

Using Young’s inequality xy ≤ εx2 + 1
4εy

2 with x = g, y = 2f ′ϕ′|k1|
fϕ and ε = k/2, for some

k > 0 that we shall determine later, we have

2k1
f ′ϕ′

fϕ
g ≤ k

2
g2 +

1
2k

(
2k1f

′ϕ′

fϕ

)2

≤ k

2
g2 +

2
kϕ

(
ϕ′f ′

ϕf

)2

g. (6.9)
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If ϕ is bounded from below and ϕ′ is bounded from above by some positive constants, there

is 0 < K1 = C sup
(
ϕ′

ϕ
v

)
satisfying

|L|2ϕ′(−Kv2 + Cv) ≤K1g. (6.10)

Using |trL3| ≤ |L|3 and Young’s inequality with x = |L|, y = 2H and ε = kϕ:

−2ϕHtrL3 ≤ 2ϕH|L|3 = 2H|L|g ≤
(
kϕ|L|2 +

1
4kϕ

4H2
)
g = kg2 +

H
2

kϕ
g. (6.11)

To bound the rest of the addends in (6.6), we recall that, since ρ ≤ r ≤ r2, the curvatures
T , J , Y and |δ̃RN | are bounded; moreover, as

k1 ≤ |L|, k2 ≤ |L| and (k1 − k2)2 ≤ 3|L|2,

there are positive constants C1, C2, C3 and C4 such that

2ϕ|L|2 (T + (n− 1)J ) + 2ϕH (k1T + (n− 1)k2J )

− 4ϕ(k1 − k2)2(n− 1)Y − 2
〈
α, δ̃RN

〉
ϕ

≤ C1g + C2
√
ϕ
√
g + C3g + C4

√
ϕ
√
g. (6.12)

Now, in order that ϕ′ ◦ v and ϕ ◦ v be double side bounded, and ϕ > 1 (conditions that
we have used before), we choose the function ϕ and the constant k to be

ϕ(v) :=
v2

1− kv2
, k :=

1
2 max v2

. (6.13)

With this election, ϕ also satisfies

3
2ϕ
− ϕ′′

ϕ′2
− 2
ϕ′v

=
v2 − ϕ

2ϕ2
< 0 and

2
ϕ
− ϕ′

ϕ2
v + k +

k

2
= −k

2
. (6.14)

Thanks to the expressions from (6.6) to (6.14), we reach(
∂

∂t
−∆

)
g ≤ −k

2
g2 +K2g +K3

√
g − 1

ϕ
〈dg, dϕ〉 , (6.15)

for two positive constants K2 and K3.
Let t1 ∈ [0, T [. Let us suppose that (x0, t0) is the point where g attains its maximum for

t ≤ t1. We further assume that x0 is an interior point of Mt0 and t0 6= 0. Observe that this
assumption can be made without loss of generality:

i. If z(x0) = b, then we can use the map ı1 : (r, z, u) 7→ (r, 2b−z, u), which is an isometry
of M , to extend the solution symmetrically onto [a, 2b− a]. In fact, by applying ı1 to
Mt, we construct a new solution Mt ∪ ı1(Mt) of (1.1), which is orthogonal to z = a
and z = 2b− a at the boundary, such that x0 still is a maximum of g, but it is not at
the spatial boundary.
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ii. If z(x0) = a, a similar argument with the isometry ı2 : (r, z, u) 7→ (r, 2a− z, u), allows
us to regard x0 as an interior point of Mt0 .

If g0 := g(x0, t0) > 1, then it has to satisfy 0 ≤ −k
2g

2
0 + (K2 +K3) g0, so

g0 ≤ max{max
M

g, 2(K2 +K3)/k, 1}. (6.16)

Since ϕ and g are bounded independently of T , |L|2 is bounded on [0, T [ with a bound
independent of t.

Once we achieve the upper bound for |L|2, it follows, like in [13] and [14] (see [15], [5] or
[7] for the volume-preserving version), that |∇jL| is bounded for every j ≥ 1. If T <∞, these
bounds imply (cf. [13] pages 257, ff.) that Xt converges (as t→ T , in the C∞-topology) to
a unique smooth limit XT . Now we can apply the short time existence theorem to continue
the solution after T , contradicting the maximality of [0, T [. tu

7 Finer bounds for H

If M is a revolution surface with boundary in the setting RSS2, theorems 5 and 6 tell us
that the flow Mt of M under (1.1), subject to the boundary conditions (1.3), exists as long
as Mt does not touch the axis of revolution, and the generating curve of each Mt is a graph
over the same axis. This fact will allow us to improve the bounds for H obtained in section 4
by using a Sturmian theorem (cf. [4]), as it was done in [6] when M is the Euclidean space.

Before going on, we want to stress a couple of remarks which is necessary to have in mind
from now on.

Remark 4 After the results of sections 4 and 5, it is clear that r and v remain bounded on
[0, t] for every t ∈ [0, T [. Then, from (3.3) and the definition of v, it follows that ṙ is also
bounded. Now, from (3.5) and (3.7), we conclude that all the derivatives of r are bounded
if and only if |∇jL| is bounded for every j ≥ 0, which was established within the proof of
Theorem 6.

Remark 5 Since the solutions of equations (1.1) and (3.8) differ only on the parametrization
of Mt, the functions rt(zt) and rt(z) corresponding to the solutions of (1.1) and (3.8), respec-
tively, will have the same number of zeroes for their first derivatives (with respect to z) at the
same values of z, and the same bounds for all their derivatives. Therefore, whenever we are
interested on these magnitudes, we can use either equation (1.1) or (3.8) at our convenience.

Lemma 7 Let Mt, with t ∈ [0, T [, be a maximal solution of (1.1) with initial condition M
in the setting RSS2 and satisfying (1.3). For each t ∈ [0, T [, the set Zt = {z ∈ [a, b]; ṙt = 0}
is finite, the function t 7→ N(t) := ](Zt) is non increasing and, at the points (z0, t0) satisfying
0 = ṙt0(z0) = r̈t0(z0) there is a neighborhood where the number of zeroes decreases.
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Proof Thanks to Remark 5, we can use equation (3.8) for this proof. In order to apply
the Sturmian theorem (cf. Theorem 1.1 in [6]) to ψt := ṙt, we compute ∂ψ

∂t by taking the
derivative of (3.9) with respect to z. The result is

∂ψ

∂t
=

ψ̈

ṙ2 + f2
+

(
H(f r̈ − f ′ṙ2)

f2
√
ṙ2 + f2

−
(
f ′

f
+ (n− 1)

h′

h

)′
− 2

f ′r̈

f(ṙ2 + f2)
− 2r̈

r̈ + ff ′

(ṙ2 + f2)2

− ṙ2

ṙ2 + f2

(
f ′

f

)′
+ 2ṙ2 f

′

f

r̈ + ff ′

(ṙ2 + f2)2

)
ψ. (7.1)

For every t1 < T , let ρ(t1) = min(x,t)∈M×[0,t1] rt(x) > 0. As follows from Remark 4, the
coefficients of (7.1) satisfy the hypotheses of the Sturmian theorem on [0, t1]. Then, applying
such theorem, we conclude that the statement is true for t ∈ [0, t1] and, since t1 is arbitrary,
also for all t ∈ [0, T [. tu

A first consequence, deduced from the previous lemma, is that we can find an upper
bound for the length of the generating curve of the evolving hypersurface. Indeed,

Lemma 8 Let Mt, with t ∈ [0, T [, be a maximal solution of (1.1) with initial condition M
in the setting RSS2 and satisfying (1.3). There is a constant c(N(0), r2, g, b− a) such that,
for every t ∈ [0, T [, the length of the generating curve of Mt is lower than c.

Proof From Lemma 7, Zt = {a = z1, ..., b = zN(t)} and N(t) ≤ N(0). The computation of
the length of the generating curve γt gives

L(γt) =
N(t)−1∑
j=1

∫ zj+1

zj

√
ṙ(z)2 + f(r(z))2 dz ≤ f(r2)(b− a) + (N(0)− 1)r2 =: c.

tu

Now we are in position to use the previous lemmas in order to achieve finer bounds for
H. With “finer” we mean that, unlike Corollary 3, here we obtain a double side bound for
H independent of the lower bound for r. In fact,

Proposition 9 Let Mt, with t ∈ [0, T [, be a maximal solution of (1.1) with initial condition
M in the setting RSS2 and satisfying (1.3). Then we can find constants hi(V, g, n, b −
a, vol(M),AV ) > 0, i = 1, 2 such that h1 ≤ H ≤ h2, where AV is the infimum of the
n-volume of the hypersurfaces satisfying the constraint of the setting RSS2 and enclosing a
volume V .

Proof As in the proof of Proposition 2 we have I1 ≥ 0 and, starting with formula (4.13)
for I1, we can write:

I1 ≤ σ
(hn−1)′(r2)

vol(Mt)
π

2
L(γt) ≤ σ

(hn−1)′(r2)
AV

π

2
c, (7.2)
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where the last inequality follows by Lemma 8. On the other hand, from the expression (4.15)
for I2, we obtain

I2 ≤
σ

AV
(b− a) max

r∈[0,r2]
((n− 1)h′f + f ′h)hn−2)(r). (7.3)

To prove that I2 has a positive uniform lower bound on [0, T [, let us consider

r3 = β−1

(
V

2(b− a)σ

)
. (7.4)

Observe that, by the above definition, 0 < r3 < r1 < r2. Let L3 be the measure of the set
L3 = {z ∈ [a, b]; rt(z) ≥ r3}. From (7.4), (4.1) and (4.4), we have

V

2σ
=
∫ b

a

∫ rt(z)

0
f hn−1 dr dz −

∫ b

a

∫ r3

0
f hn−1 dr dz =

∫ b

a

∫ rt(z)

r3

f hn−1 dr dz

≤
∫
L3

∫ rt(z)

r3

f hn−1 dr dz ≤ f hn−1(r2) L3 (r2 − r3), (7.5)

which implies that L3 ≥ ρ3 > 0 for some ρ3 independent of t. Now, we can use again (4.15)
to get

I2 ≥
σ

vol(Mt)

∫
L3

(
(n− 1)h′f + f ′h

)
hn−2dz ≥ σρ3

vol(M)
min

r∈[r3,r2]
((n− 1)h′f + f ′h)hn−2)(r).

This gives the desired positive lower bound for I2, which, together with the other inequalities
obtained for I1 and I2, finishes the proof of the proposition. tu

8 Discreteness of the first singularity set

According to Theorem 6, at the points z where one has a singularity at time T one must
have limt→T rt(z) = 0. It seems that these points must be limits of zeroes of ṙt. We shall
show that this is the case, which, thanks to Lemma 7, gives the discreteness of the set of
singular points at time T .

By Lemma 7, N(t) is finite and does not increase with time. Moreover, if 0 = ṙt0(z0) =
r̈t0(z0), there is a neighborhood where the number of zeroes decreases. Then, we can find
some time t1 ∈ [0, T [ such that for every t ∈ [t1, T [, N(t) is constant and 0 6= r̈t(z) for every
z ∈ Zt. Thus all the critical points of rt are local maxima or minima. Hereafter ξi(t) denotes
the minima and ηi(t), the maxima.

Notice that, if the number of critical points for rt on [a, b] is 2k + 2, we may have the
following situations

a < ξ1(t) < η1(t) < ... < ξk(t) < ηk(t) < b

a < η1(t) < ξ1(t) < ... < ηk(t) < ξk(t) < b
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and, if the number of critical points for rt is 2k + 3,

a < ξ1(t) < η1(t) < ... < ξk(t) < ηk(t) < ξk+1(t) < b

a < η1(t) < ξ1(t) < ... < ηk(t) < ξk(t) < ηk+1(t) < b.

On the other hand, as r̈t(ξi(t)) 6= 0 6= r̈t(ηi(t)), by the implicit function theorem, the
solutions ξi(t), ηi(t) of the equation ṙt(z) = 0 are smooth as functions of time. In addition,
since the map (r, z, u) 7→ (r, 2z0 − z, u) is an isometry of M for every z0 ∈ R, the same
arguments given in Lemma 2.3 of [6] (together with those of 5.1 in [1]) imply the existence
of the limits

ξi(T ) = lim
t→T

ξi(t) and ηi(T ) = lim
t→T

ηi(t).

We can now state the main theorem of the present section.

Theorem 10 Let Mt, with t ∈ [0, T [, be a maximal solution of (1.1) with initial condition
M in the setting RSS2 and satisfying (1.3). For any closed interval [c, d] not containing
any of the points a, ξi(T ), ηi(T ), b, there exist δ > 0 and t2 ∈ [0, T [ such that rt(z) ≥ δ for
z ∈ [c, d], t ∈]t2, T [.

Proof First, assume that [c, d] ⊂]ξj(T ), ηj(T )[ (the other cases can be proved in a similar
way, in a half of them with the inequalities reversed and using upper right Dini derivative
instead of the lower one). Let a′, b′ be real numbers satisfying [c, d] ⊂]a′, b′[ and [a′, b′] ⊂
]ξj(T ), ηj(T )[ . By the definition of t1 (at the beginning of this section), ṙt(z) > 0 for
ξj(t) < z < ηj(t) and t ∈ [t1, T [. Moreover, by the continuity of ξj(t) and ηj(t) on [t1, T ],
there is a t2 ∈]t1, T [ such that ṙt(z) > 0 for (z, t) ∈ [a′, b′]×]t2, T [. On this domain, by
discarding the positive addends in (7.1), we have

∂ψ

∂t
≥ ψ̈

ṙ2 + f2
+ T (ψ) ψ − f ′H

f2
√
ṙ2 + f2

ψ3, (8.1)

being

T (ψ) =
Hr̈

f
√
ṙ2 + f2

− f ′′

f
− 2

f ′ r̈

f(ṙ2 + f2)
− 2

r̈2 + ff ′r̈

(ṙ2 + f2)2

− (n− 1)
h′′

h
+

ṙ2

f (ṙ2 + f2)

(
−f ′′ + 2r̈f ′

ṙ2 + f2

)
.

Next, taking A and M1 two constants to be determined later, we define

w(z, t) = e−At sin(µ(z − a′)), where µ =
π

b′ − a′
and A ≥ µ2 +M1. (8.2)

Observe that w satisfies

∂w

∂t
≤ −

(
µ2 +M1

)
w ≤ − µ2

f2 + ṙ2
w −M1w =

ẅ

f2 + ṙ2
−M1w. (8.3)
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Let us consider the difference w = ψ −w. From (8.1) and (8.3), we obtain the estimate:

∂w

∂t
≥ ẅ

ṙ2 + f2
+

(
T (ψ)− f ′H

f2
√
ṙ2 + f2

)
ψ +M1w +

f ′H

f2
√
ṙ2 + f2

(ψ − ψ3). (8.4)

Let us define the function wm(t) := minz∈[a′,b′] w(z, t). For any t′ ∈ [t2, T [, let It′ =
{z ∈ [a′, b′]; wm(t′) = w(z, t′)}. We have two possibilities for any fixed t ∈ [t2, T [: either
{a′, b′} ∩ It 6= ∅ or {a′, b′} ∩ It = ∅.

If a′ or b′ are in It, then
w(z, t) ≥ wm(t) = ψt(a

′) > 0 or

w(z, t) ≥ wm(t) = ψt(b
′) > 0.

(8.5)

In the other case (that is, if {a′, b′}∩ It̄ = ∅), let us call ]t3, t4[ the maximal open interval
in [t2, T ] such that t ∈]t3, t4[ and {a′, b′} ∩ It = ∅ for every t ∈]t3, t4[ (notice that t3 = t2 or
{a′, b′} ∩ It3 6= ∅ and that t4 = T or {a′, b′} ∩ It4 6= ∅).

On this interval we can write

∂wm

∂t
(t) ≥ min

z∈It

((
T (ψ)− f ′H

f2
√
ṙ2 + f2

)
ψ +M1w

)
+ min

z∈It

f ′H

f2
√
ṙ2 + f2

(ψ − ψ3), (8.6)

where ∂wm
∂t (t) must be understood in the sense of a lower right Dini derivative (cf. page 160

of [8]).
Using the function Ψ(t) = minz∈It(ψ − ψ3)(z, t) (defined on [t3, t4[), we decompose

[t3, t4[= J1 ∪ J2, where J1 = Ψ−1(]0,∞[) and J2 = Ψ−1(]−∞, 0]).

For t ∈ J2, there is a zt ∈ It such that ψ(zt, t) ≥ 1. Hence, for every z ∈ [a′, b′],

w(z, t) ≥ wm(t) = ψ(zt, t)− w(zt, t) ≥ 1− w(zt, t) > 0. (8.7)

If t0 ∈ J1, let (τ, η[ be the maximal interval containing t0 and contained in J1 (this
interval is ]τ, η[ if τ > t3 and it may be [t3, η[ when τ = t3). Notice that Ψ(t) > 0 on
]τ, η[ and the function t 7→ minz∈It

f ′H

f2
√
ṙ2+f2

(ψ − ψ3)(z, t) is positive at the same t as Ψ(t).

Therefore, by (8.6), we have

∂wm

∂t
(t) ≥ min

z∈It

((
T (ψ)− f ′H

f2
√
ṙ2 + f2

)
ψ +M1w

)
(z, t) on ]τ, η[. (8.8)

On the other hand, at z ∈ It,

0 = ẇ = ψ̇ − ẇ, that is, ψ̇ = ẇ = e−Atµ cos(µ(z − a′)).

Thus |ψ̇| = |r̈| ≤ µ on It, which can be used to bound

T (ψ)− f ′H

f2
√
ṙ2 + f2

≥ − sup
r∈[0,r2]

(
h2(µ+ f ′) + 2|f ′′|+ 4µf ′ + 2µ2 + 2ff ′µ+ (n− 1)

h′′

h

)
= −C5, (8.9)
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where C5 < ∞ because −h′′

h is a sectional curvature of the ambient space (cf. (2.7)) and f
has all its derivatives bounded on a closed interval. If z̄ ∈ It is the point where the minimum
in the right hand side of (8.8) is attained, then taking M1 = C5 and substituting (8.9) in
(8.8), we get

∂wm

∂t
(t) ≥ −C5 (ψ − w)(z̄, t) = −C5 wm(t) on ]τ, η[. (8.10)

From (8.10) we conclude that, on ]τ, η[,

wm(t) ≥ e−C5(t−τ)wm(τ) ≥ e−C5(T−t2)wm(τ). (8.11)

For every z ∈ Iτ ,

wm(τ) = ψ(z, τ)− e−Aτ sin(µ(z − a′)) ≥ ψ(z, τ)− e−At2 . (8.12)

We have two possibilities for τ . Either τ = t3 or Ψ(τ) = 0.
In the first case (τ = t3), as remarked after (8.5), we have again two possibilities:

• {a′, b′} ∩ It3 6= ∅, then wm(τ) = wm(t3) =


ψ(a′, t3) > 0

or
ψ(b′, t3) > 0

.

• t3 = t2, then Ψ(t2) ≥ 0 and, for z ∈ It2 ,

m1 := min
[a′,b′]

ψ( · , t2) ≤ ψ(z, t2) ≤ 1.

Then, from (8.12), wm(τ) > 0 if A ≥ − 1
t2

lnm1, where m1 = minz∈[a′,b′] ṙ(z, t2).
In the second case, there is a zτ ∈ Iτ such that 1 = ψ(zτ , τ), thus wm(τ) > 0 if A > 0.
Since A has also to satisfy (8.2), we define A = max{− 1

t2
lnm1, C5 + µ2}. With this

election, having also in mind the inequalities (8.5), (8.7) and (8.11), we obtain w ≥ 0 on
[a′, b′] × [t2, T [, i.e. ṙ(z, t) ≥ e−At sin(µ(z − a′)) and, integrating with respect to z between
a′ and z, for z ∈ [c, d],

r(z, t) ≥ e−At

µ

(
1− cos

(
π(z − a′)
b′ − a′

))
≥ e−AT

µ

(
1− cos

(
π(c− a′)
b′ − a′

))
= δ > 0,

which finishes the proof of the theorem. tu

9 Small n-volume for M implies long time existence and con-
vergence.

Lemma 11 In the setting RSS, if vol(M) ≤ V

(b− a)
δ(r1)
β(r1)

, then there is a r0 > 0 such that

rt > r0 for every t such that the flow Mt exists.
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Proof If there is some t0 and x0 for which rt0(x0) = 0, using (4.7) and (4.5), we obtain

vol(M) ≥ vol(Mt0) > σ

∫ r1

0
h(r)n−1dr ≥ V δ(r1)

(b− a)β(r1)
, (9.1)

in contradiction with the hypothesis. tu

Remark 6 Notice that
δ(r1)
β(r1)

≤ 1 with equality if f(r) ≡ 1. So the hypothesis on the n-

volume of M when M is the Euclidean space coincides with that of [5]. For n = 2 and
M a space of constant curcvature λ, the explicit value of the upper bound in Lemma 11 is
2π
−λ

(
−1 +

√
1− λV

π(b− a)

)
.

Theorem 12 If M belongs to the setting RSS2 and has vol(M) ≤ V

(b− a)
δ(r1)
β(r1)

, then the

solution of (1.1) satisfying (1.3) is defined for all t > 0 and converges to a revolution
hypersurface of constant mean curvature in M .

Proof By Lemma 11 and Theorem 6, we know that the solution of (1.1) is defined on
[0,∞[. Using again Lemma 11, together with Proposition 1, we conclude that r is double
side bounded uniformly on [0,∞[. After the results of section 5, it is clear that ṙ remains
bounded all the time. In addition, the proof of Theorem 6 shows that |∇jL|2 is uniformly
bounded for every j ≥ 0. Once we have all these bounds, it follows from (3.5) and (3.7) that
all the derivatives of r are bounded on [0,∞[.

We are now in position to apply Arzelà-Ascoli Theorem to assure the existence of a
sequence of maps rti satisfying (3.9) which C∞-converges to a smooth map r∞ : [a, b] −→ R+

satisfying (3.9). A standard argument like in [7] proves that M∞ = (z, r∞(z), u) has constant
mean curvature.

On the other hand, for any 0 < τ1 < τ2, from (3.9), we have

max
M
|r(x, τ2)− r(x, τ1)| ≤ max

M

∫ τ2

τ1

∣∣∣∣∂r∂t (x, t)
∣∣∣∣ dt

≤ max
M

∫ τ2

τ1

|H −H|
√
ṙ2 + f2dt ≤ Cε(t) (τ2 − τ1),

where ε(t) → 0 as t → ∞. Then, arguing as in [16] (end of section 2), we conclude that rt
C∞-converges to r∞. Therefore, M∞ = (z, r∞(z), u) is, up to tangential diffeomorphisms,
the limit of Mt. tu
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