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Abstract  
 
Multiple imputation (MI) techniques are applied to simulate missing wage rates of non-
working wives under the missing-at-random (MAR) condition. The assumed selection effect 
of the labour force participation decision is framed as deviations of the imputed wage rates 
from MAR. By varying the deviations, we assess the severity of subsequent selection bias in 
standard human capital models through sensitivity analyses (SA). Our experiments show that 
the bias remains largely insignificant. While similar findings are possibly attainable through 
the Heckman procedure, SA under the MI approach provides a more structured and principled 
approach to assessing selection bias. 
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1. Introduction 

Missing data can pose serious challenges to inferential validity when inference is based on 

the available parts of the data samples. A prominent case in the context of empirical labour 

economics is missing wage rates for non-working wives when investigating the labour supply 

behaviour of married women. If married women’s labour force participation (LPF) decision is 

regarded as a sample selection issue, any labour cost related inference drawn from subsample 

OLS estimates of working wives is deemed invalid as the OLS estimator suffers from selection 

bias (SB). A prominent solution to the SB problem is the two-stage Heckman procedure which 

augments the labour supply model by an inverse Mill’s ratio obtained from a binary LFP 

selection equation; see Heckman (1974; 1976) and also Vella (1998) for the subsequent 

developments.  

The Heckman procedure has become the standard approach, despite lack of conclusive 

empirical evidence of its correction for SB. Specifically, although the inverse Mill’s ratio is 

found to be statistically significant more often than not, the consequent bias correction on the 

OLS coefficient estimates of explanatory variables of the labour supply models is frequently 

negligible; e.g. Moffitt (1999), Blau and Kahn (2007) and Van der Klaauw (2014). 

Furthermore, the significance of the inverse Mill’s ratio is shown to be closely related to 

collinearity with selected covariates, raising questions regarding robustness of this ratio serving 

as evidence of the significant presence of SB; e.g. Moffitt (1999) and Puhani (2000). A study 

by Breuning and Mercante (2010) adds further doubt about the estimation accuracy of the 

Heckman procedure. When comparing predicted wage rates for non-employed individuals with 

observed wage rates when the same individuals re-enter employment, they find that OLS-based 

predictions consistently outperform predictions made by SB correction methods.  

Seeking general explanations to the above accrued evidence, we reflect on the estimator-

based route to correct SB from a methodological angle. The Heckman procedure was adapted 

from the tobit estimator which deals with truncated variables. We argue that it is implausible 

to regard missing wage rates of non-working wives as a data truncation problem. If a non-

working wife has the same educational attainment and skills as a working wife, her shadow 

wage rate should be comparable to what the working wife is paid. If most of the subsample of 

non-working wives has earning attributes comparable to the subsample of working wives, what 

we learn from the latter group concerning their wage cost effect in labour supply models should 

be inferable to the former group. Indeed, if we consider the standard human capital model 
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explaining the wage rate, e.g. the Mincer model, all the explanatory variables are observed for 

both non-working and working wives and they capture conditions that exist before married 

women decide whether or not to join the labour force. This suggests that their earning potential 

might not be dependent on the LFP decision and it is non sequitur to assume SB based on that 

decision.  

These considerations lead us to re-examining the missing wage rate issue by the multiple 

imputation (MI) approach pioneered by Rubin (1976); see also Little and Rubin (1987). Under 

this approach, SB amounts to asserting that the missing wage rates are missing not at random 

(MNAR). Following the MI approach, the assumed MNAR condition can be systematically 

investigated as deviation from stochastically imputed wage rates under the missing at random 

(MAR) condition via sensitivity analysis (SA). This way, the severity of SB resulting from MI 

wage rates under various plausible MNAR scenarios can be empirically assessed. The 

suggested approach is, to the best of our knowledge, unprecedented in the literature. Petreski 

et al (2014) come close in spirit. Their study uses MI to construct wage rates for non-working 

women to assess the gender wage gap for the Macedonian labour market. However, they do 

not utilise the MI approach to assess the severity of SB.  

Our MI-based SA is carried out on a standard human capital model1 using data from two 

widely used US-based data sources: The March Annual Demographic Survey of the Current 

Population Survey (CPS) and the Panel Study of Income Dynamics (PSID). The findings can 

be summarised in three points. Firstly, a significant SB can only be induced under MNAR 

scenarios which deviate from the MAR condition substantially, so much so that plausibility of 

those scenarios is extremely low. Secondly, the few cases in which a significant SB can be 

produced put into question whether these should still be treated as SB in coefficients under a 

single population or as coefficients under different population classifications; see also Breuning 

and Mercante (2010) and Petreski et al (2014) on heterogeneity in the non-working subsample. 

Thirdly, the pattern of SB corrections by Heckman procedure is irregular, with most corrections 

confirming the finding of insignificant SB of the MNAR experiments. In short, our findings 

highlight the importance for labour economists to reorient their attention from concerns over 

SB to careful studies of the missingness mechanisms by means of various data matching tools 

when faced with missing wage rates. 

                                                             
1 The application of SB correction estimators on the wage model has a long tradition, e.g. see Mroz (1987), and 
is still widely practised, e.g. Moeller (2002), Mercante and Mok (2014).   
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The paper is organised as follows. Following this brief introduction, section II introduces 

the MI approach and SA techniques. Section III describes experimental method and data used. 

Empirical results are reported and discussed in section IV and section V concludes with a brief 

discussion on methodological implications.  

2. A Principled Assessment of SB via MI  

The substantive model of our investigation into the severity of SB is a standard wage 

equation inspired by Mincer (1974):  

(1) 𝑤# = 𝜷𝑋# + 𝜀# 

with 𝑤# being the logarithm of wage rate received by individual 𝑖, 	𝑋# being a covariate 

column vector comprising variables linked to human capital such as education, work 

experience and age, and possibly their polynomial forms, and 𝜷 being a coefficient row vector.  

When household survey data are used to estimate (1), the problem of incomplete samples 

arises with respect to the wage rate records. For example, when we examine (1) for married 

women, we find a subsample is not working and 𝜷 as specified in (1) is inestimable. Let 𝑑# be 

the missing data indicator with 𝑑# = 0  if 𝑤#  is unobserved and 𝑑# = 1  if 𝑤#  is observed. 

Further, let 𝑤#,. = 𝑤#|𝑑# = 0 , 𝑋#,. = 𝑋#|𝑑# = 0  and 𝑤#,0 = 𝑤#|𝑑# = 1 , 𝑋#,0 = 𝑋#|𝑑# = 1  and 

𝑤#,.10 = 𝑤#,. + 𝑤#,0. Given the missingness of 𝑤#,., we can only estimate the complete-case 

(CC) for the subsample of working wives: 

(2) 𝑤#,0 = 𝜷0𝑋#,0 + 𝜀#,0,  when 𝑑# = 1 

It is widely accepted that 𝜷0 ≠ 𝜷 when the OLS estimator is used due to sample SB. The 

bias is embodied by an assumption of residual correlation, 𝑐𝑜𝑟𝑟(𝜀#𝑒#) ≠ 0, between (1) and 

the following LFP decision model:  

(3) 𝑑# = 𝝋𝑋# + 𝜽𝑍# + 𝑒#  

with 𝑍#  being another set of covariates pertinent to the LFP decision, e.g. husbands’ 

earning and number of young children. However, 𝑐𝑜𝑟𝑟(𝜀#𝑒#) ≠ 0 cannot be validated since (1) 

is inestimable. 

To circumvent this impasse, we adopt the MI approach pioneered by Rubin (1976). At the 

core of this approach is the taxonomy of missing data mechanism, MAR when 𝑃𝑟(𝑑#|𝑤.) =
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𝑃𝑟(𝑑#|𝑤#) versus MNAR when 𝑃𝑟(𝑑#|𝑤.) ≠ 𝑃𝑟(𝑑#|𝑤#). Notice that this probability-based 

condition underlies (3) in principle and that the SB assertion amounts to MNAR. This 

recognition leads us to utilise SA as part of the MI approach to investigate the severity of SB 

under different MNAR scenarios, e.g. see Carpenter and Kenward (2013, Ch10). Specifically, 

we produce various sets of stochastically simulated 𝑤.  under MNAR as departures from 

stochastically simulated 𝑤. via MI under the MAR condition, such that the consequent SB in 

𝜷0  under various plausible MNAR scenarios can be empirically assessed in a principled 

fashion. Hence, we first simulate 𝑤.=>?  to generate a synthetic full-sample 𝑤.10=>?  by stacking 

𝑤.=>?  and 𝑤0 together, and then produce different versions of 𝑤.10=@>?  from 𝑤.10=>?  as judged 

by the following alternative to (3): 

(3’) 𝑑# = 𝛼𝑤.10=>? + 𝝋𝑋# + 𝜽𝑍# + 𝑒#,  with 𝛼 = 0 

𝑑# = 𝛼𝑤.10=@>? + 𝝋B𝑋# + 𝜽B𝑍# + 𝑒#B, with 𝛼 ≠ 0 

These various synthetic sets of 𝑤.10=@>?  can be used to empirically assess the severity of 

SB in 𝜷0 of (2).    

It should be noted that model (2) precedes the missingness mechanism implied in (3’). 

Hence, there are no conclusive reasons that prohibit us from ‘predicting’ 𝑤. based on (2) by 

means of MI under the assumption of MAR. In view of the prevailing evidence of relatively 

low fits from empirical wage model studies using household survey data, we choose to impute 

𝑤. by the predictive mean matching (PMM) method, see Little (1988). As a generalised hot 

deck method, PMM does not need any posterior distribution assumptions about 𝜀# ; for the 

features of PMM and its empirical popularity see Carpenter and Kenward (2013: section 6.3), 

Morris et al (2014), Beretta and Santaniello (2016) and Murray (2018).  

Under PMM, fitted and predicted values of 𝑤0 and 𝑤. respectively are obtained from the 

CC estimation of a predictive wage rate model by the OLS. The predictive distance 𝐷(𝑖, 𝑗) =

𝑤E#,.	 − 𝑤EG,0 with 𝑖 ≠ 𝑗 is then used to match each missing entry with its nearest neighbours such 

that the average wage rates of those neighbours are assigned as the imputed wage rates of those 

entries. The imputation is repeated 𝑚  times, generating 𝑚  version of 𝑤#,.=>? , following the 

Markov chain Monte Carlo (MCMC) principle. We can thus construct 𝑚 sets of synthetic full-

sample wage rates, 𝑤#,.10=>? .  
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A vital requirement of predictive models for the MI purpose is to include variables 

predictive of the missingness mechanism; see Murray (2018), Carpenter and Kenward (2013: 

Ch. 2). Such auxiliary variables have already been introduced as 𝑍# in (3). Hence, we use the 

following augmented wage model (4) as our basic predictive model for MI: 

(4) 𝑤#,0 = 𝒃0𝑋#,0 + 𝜸0𝑍#,0 + 𝑣#,0,  when 𝑑# = 1  

It should be noted that model (4) might be a more accurate wage model for married women 

than the standard human capital model, as the wage rate acceptable to working wives may 

depend on 𝑍#. The model is closer to the shadow wage model by Heckman (1974).  

However, model (4) might still be miss-specified, or the OLS estimates inconsistent, for 

the MI purpose. Two ‘doubly robust’ methods are thus adopted here: (a) inverse probability 

weighting (IPW) and (b) a doubly robust nonparametric (DRN) method; see Murray (2018). 

Both methods augment and modify the role of model (4) in MI by the predicted probability 

from model (3).  

IPW modifies the OLS applied to (4) by weighting each observation with the inverse of 

probability 𝜋# of it having been observed. Individuals that are less likely to be observed and 

hence more similar to those missing, are thereby given a larger weight. The p-scores from 

model (3) are used as estimates for 𝜋#. As a result, model (4) is modified into:  

(4’) 𝑤#,0 = 𝒃0M𝑋#,0N𝜋O#,0	P
Q0
+ 𝜸0M𝑍#,0N𝜋O#,0	P

Q0
+ 𝑣#,0M ,  when	𝑑# = 1 

IPW/MI using (4’) generates 𝑚 sets of 𝑤#,.10M=>? . The advantage of the IPW/MI method is 

that it is robust against miss-specification in either the predictive model or the logistic model, 

but not both; see Vansteelandt et al (2010), Carpenter et al (2006), Seaman and White (2013) 

and Seaman et al (2012).  

The DRN/MI method utilises the p-scores from (3) in a non-parametric way, different from 

the IPW/MI method, see Long et al (2012) and Hsu et al (2016). The p-scores are used as part 

of the nearest neighbour selection process. Specifically, DRN/MI uses the fitted and predicted 

values from (4) and (3) to construct a set of composite scores 𝑆 = (𝑊X ,𝛱X), where all the 

predicted values are standardised, indicated by use of capital letters. The distance 𝐷Z(𝑖, 𝑗) is 

used to find for each subject 𝑖 with missing 𝑤# the 𝑘 nearest observed neighbours: 
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(5) 𝐷Z(𝑖, 𝑗) = \𝜔0^𝑊X#,. −𝑊XG,0_
`
+ 𝜔`^𝛱X#,. − 𝛱XG,0_

`a
0/`
	 

with 𝜔0 + 𝜔` = 1. Note that with 𝜔0 = 1, DRN/MI is equivalent to the OLS/MI method. 

We follow Hsu et al (2016) in using a kernel-based version of the DRN/MI to construct 𝑚 sets 

of 𝑤#,.10Z=>? .2  

Having imputed three sets of 𝑤. , i.e. by OLS/MI, IPW/MI and DRN/MI respectively 

under the MAR condition, we are in the position to design different scenarios of MNAR for 

SA based on (3’) described earlier. With regard to the PMM-based MI approach adopted 

presently, we construct MNAR scenarios through simply imposing mean shifts on the imputed 

sets of 𝑤.  under MAR by a sensitivity parameter, 𝛿 ≠ 1 : 𝑤.=@>? = 𝛿𝑤.=>? , following 

Rubin’s (1987) original suggestion. The resulting 𝑤.=@>?  sets are then stacked onto 𝑤0 to form 

𝑤.10=@>? . These synthetic wage rate sets enable us to run model (1). Since our MI experiments 

via the three methods have generated a reasonably large set of imputed wage rates, we can pool 

them together to produce a pair of single 𝜷d.10=@>?  and 𝜷d.=@>?  estimates by means of the Rubin’s 

combination rule using the following variations of (1): 

(6a) 𝑤#,.10=@>? = 𝜷d.10=@>?𝑋#,.10 + 𝜀#,.10∗ , 

(6b) 𝑤#,.=@>? = 𝜷d.=@>?𝑋#,. + 𝜀#,.∗ ,  when 𝑑# = 0. 

The severity of SB can then be assessed by comparing these 𝜷 estimates with those from 

model (2). This type of SA follows what is known as the ‘pattern mixture’ route, e.g. see 

Carpenter and Kenward (2013: Chapter 10). Our first MNAR scenario is aimed at identifying 

a ‘just MNAR’ case by (3’). Specifically, we conduct a tipping point analysis to search for 𝛿 

by gradually altering it in the neighbourhood of 1, such that the resulting 𝛿𝑤.=>?  will lead to 

𝛼 ≠ 0 in (3’); see Liublinska and Rubin (2012). Our other MNAR scenarios are aimed at 

assessing how the severity of SB could be aggravated through 𝛿 values further away from 1. 

To set these values within plausible boundaries, we look into the wage data features and decide 

on two scenarios: one utilising the minimum wage rates and the other the average wage rates 

of husbands. The detailed design is described in the next section. 

                                                             
2 We are grateful to Hsu et al (2016) for provision of their source code which we adapted for this paper.   
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3. Data and Method 

The empirical analysis is carried out for five years, 1981, 1991, 2001, 2011 and 2015 using 

samples from PSID and CPS data sources. Years of education and age are two common 

variables constituting 𝑋# in equation (1). While age is comparable across the two data sources, 

the coding for the education variable differs, which hampers comparability. For the PSID 

samples, years of previous work experience is available and included in 𝑋#. Unfortunately, this 

variable is unavailable from the CPS source. Age is therefore used as a proxy of work 

experience. 𝑍# in (3) is formed of three variables available via both data sources: husband’s 

wage rate, number of children, and a binary variable indicating if any of the children’s age is 

under six. A detailed description of the two datasets and processing of the data can be found in 

Appendix 1. 

Roughly a quarter of wives is not in the labour force. While the proportion of non-working 

wives is fairly constant across years and data sources, the average wage rates received by 

working women increase notably over the years. In 1981, average wage rates are around $6, 

almost double the minimum wage of $3.1, and rise to $24 in 2015, while the minimum wage 

only reaches $7.25. This rise is accompanied by a rapid narrowing of the gap between wife and 

husband mean wage rates. In 1981, the average husbands’ wage rate is around 1.7 times higher 

than the average wage rate received by working women. The ratio drops to roughly 1.5 in 2001 

and shrinks further to 1.3 in the last two years. These changes are accompanied by a notable 

rise in the educational attainment of working wives.  

A close comparison of working wives with non-working wives reveals that the key 

differences between the two sub-samples lie in educational attainment, the number of children 

in the household and the presence of young children in the household. These three variables 

serve as important predictors of the missingness in the wage rate variable and hence are 

essential regressors in the selection model (4). 

In the empirical specification of (4), we follow the common practice of using polynomial 

and cross-product terms of the variables in 𝑋# to capture possible nonlinear effects in the wage 

model. Specifically, the initial 𝑋#  contains not only education and age (and previous work 

experience in the case of PSID sets), but also their quadratic and cubic terms as well as their 

cross products. Correlation analysis of all possible regressors shows that correlations between 

𝑋# and 𝑍# are low, indicating a low risk of omitted variable bias between the beta estimates of 



SOAS Department of Economics Working Paper Series No 216 - 2019 
 

 

9	

(2) and (4). In contrast, correlations of variables in 𝑋# and their polynomial terms are very high; 

all above 0.9 and some even above 0.95. The estimated effects of education or age should hence 

not be interpreted singularly but in combination with their polynomial terms when present. 

Backward model selection is used to select a parsimonious model from a general model 

specification of (4), which results in slightly different model specifications across different 

years. To facilitate cross data source model comparison, we try to minimise specification 

differences between the two data sources within the same year, provided that this endeavour 

does not go against the backward model selection principle. The same criteria are applied to 

the selection of the logistic model (3).  

Since the null hypothesis 𝛼 ≠ 0  via (3’) in SA is false by the MNAR design, it is 

inadequate to judge 𝛼 ≠ 0 solely by the commonly used 5 per cent significance level without 

looking into the power of the test, or the probability of type II error. Trial calculation of this 

probability corresponding to the 5 per cent significance level shows a virtually zero value, 

thanks to our relatively large sample sizes. Hence, the null-hypothesis based standard criterion 

for significance still works here. 

However, the unequal sample size complicates cross data source comparability, when it 

comes to search for the tipping point, denoted by 𝛿fg, in the SA. The CPS data sets are about 

ten times larger than their PSID counterparts. The different sample size may undermine 

consistent choice of δfg  by p-values. To accommodate for this difference in sample size, we 

rely on effect size estimates as a measure independent of sample size (Lin et al 2013; Kelley 

and Preacher 2012). In particular, we run the tipping point analysis with PSID data sets first to 

find the effect size estimate (odds ratio) 𝑒𝑥𝑝(𝛼Ok) by logistic regression estimation of (3’) for 

which 𝛿fg,k yields ‘just MNAR’. We then choose 𝛿fg,l for CPS data sets so that 𝑒𝑥𝑝	(𝛼Ok) ≈

𝑒𝑥𝑝	(𝛼Ol) as a comparable sensitivity parameter to 𝛿fg,k of the smaller sample. 

The tipping point analysis only allows us to examine the sensitivity of SB at a marginal 

situation where MAR is just being violated. In order to consider economically plausible 

situations where the violations go beyond this ‘just MNAR’ scenario, we design two further 

scenarios: ‘minimum wage MNAR’ and ‘husband wage MNAR’. The two scenarios are 

expected to capture opposite sides in terms of direction and strength of SB over the spectrum 

of feasible MNAR situations. Under the former scenario, the Federal minimum wage rate of 

$7.25, which was set in 2009 and remained effective for the 2011 and 2015 samples, is used as 
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the threshold value to construct and design 𝛿no. Compared with the average wage rates of 

these two years, this threshold implies a wage reduction of 0.33% and 0.30% respectively.  

It should be noted that these ratios are not directly convertible into a single 𝛿no that could 

be multiplied with 𝑤.=>?  due to the logarithm model form. We thus derive the SA parameter 

via applying these wage reduction ratios to the mean sets of the MI wage variable.3 For the 

years before 2009, we reduce 𝛿no step wise towards 𝛿fg (see Table 7). We are thereby able to 

examine a range of sensitivity results as the severity of MNAR situations increases towards the 

minimum wage threshold. Under the ‘husband wage’ scenario, the average of husband wage 

rate for each cohort is used to derive 𝛿po, in the same way as $7.25 is used to derive 𝛿no for 

2011 and 2015 (see footnote 3). Furthermore, we exploit the variations in the ratios of the 

average MI wage variable to introduce a stochastic element to the mean-shift based 

simulations. Specifically, 𝛿po becomes randomised: 

(7)  𝑟𝑖,0 =
𝑤d𝑖,0
𝑀𝐴𝑅+𝑙𝑛N𝑊ℎwwwwwP

𝑤d 𝑖,0
𝑀𝐴𝑅 ,  𝛿po:∼ 𝑁N𝑟{,.wwww, 𝑆|},~P 

where 𝑊pwwww denotes husband’s average wage rate, 𝑟{,.wwww and 𝑆|},~ are the mean and standard 

deviation of 𝑟𝑖,0 respectively (see Tables A2 and 7 for the actual values used). 

To evaluate the severity of SB, the 𝜷.10=@>?  and 𝜷.=@>?  estimates obtained via (6) under the 

three different SA scenarios are compared against 𝜷0  from (2) and their 95% confidence 

intervals. 4  For consistency, the model specification of (2) matches (4) in the choice of 

covariates 𝑋#.  In addition, we also provide an estimate, denoted as 𝜷0� , by the standard 

Heckman 2-step procedure. Specifically, this is obtained via augmenting (2) with a covariate, 

known as the inverse Mill’s ratio, which is derived from (3) under the assumption that 𝜌 =

𝑐𝑜𝑟𝑟N𝜀#,0𝑒#P ≠ 0.  We start from the chosen (3) for the MI experiments as described above and 

revise them to make sure that the exclusion restrictions are satisfied as required by the Heckman 

procedure.  

                                                             
3 Take 2011 as an example, 𝑟#,. =

od},~
���1��(..��)

od},~
��� ,  𝛿no ≔ 𝑟{,.wwww = 0.6, for the construction of 𝑤d#,.10�=@>?. 

4 We are aware that the MI variance estimator by Rubin’s combination rule becomes inconsistent under improper 
imputations; see Carpenter and Kenward (2013: pp.62), and Murray (2018). Xie and Meng (2017) suggest using 
2*MI Rubin’s variance as a simple adjustment instead. This adjustment would result in a less severe SB in our 
case. Nevertheless, Reiter (2017) notes that this inconsistency is of much less practical importance than coefficient 
bias. We hence refrain from the adjustment.  
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To summarise, the above steps provide us with up to seven 𝜷 estimates under different 

MNAR scenarios per year and data source to compare the CC estimate 𝜷0  with 

𝜷d.10,���
=@>? , 𝜷d.,���

=@>?, 𝜷d.10,���
=@>? , 𝜷d.,���

=@>?, 𝜷d.10,���
=@>? , 𝜷d.,���

=@>?  and 𝜷0� respectively.  

4. Empirical Results  

Table 1 reports the coefficient estimates of the two 𝑋# variables of interest from a SB point 

of view, education and age, and their quadratic terms from the CC OLS regression estimation 

of model (4). Although not reported here, most of the coefficient estimates of the covariates in 

𝑍#  are found highly significant, justifying their inclusion in the model. Further, model 

specification search for (4) results in the retained polynomial and cross-product terms in 𝑋# 

across years, a clear case of non-linear forms. The relatively low fit as reflected by the low 𝑅` 

reported and the overwhelming rejection of the normality assumption of the residuals by the 

Shapiro-Francia normality test lend further support to our choice of PMM as the stochastic 

residual simulation method in our MI experiment.  

Table 1. 𝜷𝟏	Estimates for Education and Age Variables and R-squares from the CC 
Estimation of (4) 
 

 Education Education2 Age Age2 S-F Normality  𝑅` 
 

PSID CPS PSID CPS PSID CPS PSID CPS PSID CPS 
PSID 
/CPS 

1981 0.0769** 

(.0069) 
-0.1783** 

(.02758) 
n/a 

0.0029** 

(.00035) 
0.0234 

(.0148) 
0.0157** 

(.00440) 
-0.0003 

(.00018) 
-0.0002** 

(.00005) 
0.9644 
(0.000) 

0.9685 
(0.000) 

0.2166 
/0.11 

1991 -0.0646** 

(.01696) 
-0.3167** 

(.03254) 
0.0063** 

(.00074) 
0.0049** 

(.00041) 
-0.0063** 

(.00185) 
0.0376** 

(.00466) 
n/a 

-0.0004** 

(.00006) 
0.9732 
(0.000) 

0.9739 
(0.000) 

0.2682 
/0.2084 

2001 0.0851** 

(0.0056) 
-0.3450** 

(.03316) 
n/a 

0.0054** 

(.00042) 
0.0597** 

(.0121) 
0.0377** 

(.00534) 
-0.0007** 

(0.0002) 
-0.0004** 

(.00006) 
0.9829 
(0.000) 

0.9752 
(0.000) 

0.2734 
/0.2196 

2011 0.0980** 

(.00582) 
-0.2919** 

(.03118) 
n/a 

0.0050** 

(.00037) 
0.0374** 

(.01243) 
0.0522** 

(.00847) 
-0.0003* 

(.00015) 
-0.0004** 

(.00005) 
0.9803 
(0.000) 

0.9777 
(0.000) 

0.2123 
/0.2343 

2015 -0.1067* 

(.05433) 
-0.3080** 

(.03686) 
0.0063** 

(.00141) 
0.0054** 

(.00044) 
0.0333* 

(.01514) 
0.0626** 

(.00974) 
-0.0005** 

(.00014) 
-0.0003** 

(.00006) 
0.9834 
(0.000) 

0.9833 
(0.000) 

0.2504 
/0.2343 

Notes: The coding of the education variable differs between PSID and CPS samples and coefficients estimates are therefore 
not expected to align. 2 indicates the quadratic term of the education and age variable. Standard errors in (.). * indicates 
significance at the 5% and ** at the 1% level respectively. ‘S-F Normality’ is the test statistic of the Shapiro-Francia 
normality test and respective p-value.  

Prediction accuracy of the p-score from logistic estimation of model (3) is assessed by 

means of the receiver operating characteristic (ROC) in Table 2. The p-score prediction of 

working women is very high, with a sensitivity statistic of around 90 per cent and higher. These 

statistics contribute to the significant ROC area and lend support for the use of p-score 

estimates of the working women group in the IPW/MI. The weights used for the DRN/MI in 

(5) are set to 𝜔0 = 0.6 for model (4) and 𝜔` = 0.4 for model (3) after extensive experiments 
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on the weight variations, judged mainly by the relative variance increase (RVI) and the fraction 

of missing information (FMI) statistics of MI.  

 

 
Table 2. Prediction Accuracy of (3) and Estimated ROC Area 
 

 Sensitivity (%) Specificity (%) ROC area (s.d.) 
 PSID CPS PSID CPS PSID CPS 

1981 95.98 89.95 17.89 25.88 0.7178 (0.0115) 0.6880 (0.0037) 
1991 97.20 96.78 21.81 11.72 0.7661 (0.0101) 0.6939 (0.0042) 
2001 99.57 97.88 2.31 8.63 0.6962 (0.0140) 0.6813 (0.0049) 
2011 99.38 97.55 4.24 10.62 0.6879 (0.0133) 0.6660 (0.0040) 
2015 99.78 96.60 3.38 14.09 0.6967 (0.0133) 0.6775 (0.0041) 

Note: The classification statistics are based on the threshold value of 0.50 for the predicted p-scores. 

After various trial experiments on the numbers of imputation 𝑚  and neighbours 𝑘  in 

PMM, we set 𝑘 = 4 for the smaller PSID samples and 𝑘 = 10 for the large CPS samples.5 The 

number of imputations is set at 𝑚 = 50 in consideration of the FMI statistics reported in Table 

3.  

Table 3. RVI and FMI Statistics for Education and Age Variables from PMM OLS/MI 
  

 Education Education2 Age Age2 Av RVI/max FMI 
 PSID CPS PSID CPS PSID CPS PSID CPS PSID CPS 

Relative Variance Increase (RVI) 

19
81

 OLS 0.3135 0.5167 n/a 0.4900  0.3816 0.5094 0.4226 0.5484 0.3896  0.5267  
IPW 0.2708 0.4767 n/a 0.4591 0.4152 0.9587 0.449  1.0543 0.3709  0.596  
DRN 0.6492 0.9231 n/a 0.8672 0.5524 0.6867 0.6093 0.7795 0.5314 0.7267 

19
91

 OLS 0.6577 0.4040 0.5342 0.3868 0.4535 0.2919 n/a 0.2890 0.3309 0.3929 
IPW 0.7241 0.3929 0.6089 0.3864 0.4735 0.4895 n/a 0.5011 0.3322 0.4204 
DRN 0.9296 0.9723 0.7103 0.9205 0.7846 0.4579 n/a 0.4989 0.5388 0.5604 

20
01

 OLS 0.2368 0.3171 n/a 0.3063 0.2170 0.2645 0.2404 0.2664 0.1973 0.3571 
IPW 0.2151 0.3601 n/a 0.3496 0.2451 0.2867 0.2697 0.3014 0.2133 0.3497 
DRN 0.2354 0.5977 n/a 0.5615 0.2739 0.2614 0.3151 0.2805 0.2603 0.5088 

20
11

 OLS 0.3535 0.4032 n/a 0.4544 0.2332 0.4374 0.2491 0.3029 0.2513 0.3918 
IPW 0.2883 0.3349 n/a 0.3704 0.1957 0.2977 0.2095 0.4244 0.2555 0.3694 
DRN 0.1834 0.6779 n/a 0.5574 0.1942 0.6884 0.2104 0.3233 0.2804 0.5704 

20
15

 OLS 0.5488 0.6415 n/a 0.6214 0.2452 0.4033 0.2603 0.5690 0.3002 0.4733 
IPW 0.3942 0.4699 n/a 0.5469 0.2248 0.7151 0.1383 0.3793 0.2748 0.4595 
DRN 0.7153 1.2063 n/a 0.9972 0.3669 1.0357 0.3130 0.6172 0.3283 0.6747 

Fraction of Missing Information (FMI) 

19
81

 OLS 0.2406 0.3438 n/a 0.3318 0.2786 0.3406 0.2998 0.3575 0.3435 0.4133 
IPW 0.2147 0.3257 n/a 0.3174 0.2961 0.4944 0.3128 0.5184 0.3573 0.5184 
DRN 0.3978 0.4849 n/a 0.4691 0.3594 0.4111 0.3825 0.4424 0.4159 0.4874 

19
91

 OLS 0.4008 0.2902 0.3516 0.2812 0.3149 0.2276 n/a 0.2258 0.4008 0.4000 
IPW 0.4243 0.2844 0.3823 0.2810 0.3244 0.3316 n/a 0.3369 0.4243 0.3369 
DRN 0.4869 0.4980 0.4196 0.4842 0.4443 0.3168 n/a 0.3359 0.4869 0.5099 

2 0 0 1 OLS 0.1928 0.2426 n/a 0.2362 0.1795 0.2106 0.1952 0.2118 0.1952 0.3455 
                                                             
5 Experiments with different 𝑘 did not make much of a difference in the case of CPS data sets. However, for 
PSID, larger 𝑘 resulted in a slightly narrower distribution of imputed wage rates, but the overall impact of 
different k values on the distribution is quite small as long as 𝑘 = 1 is disregarded, e.g. Beretta and Santaniello 
(2016). 
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IPW 0.1782 0.2669 n/a 0.2611 0.1983 0.2244 0.2140 0.2333 0.2140 0.3273 
DRN 0.1919 0.3777 n/a 0.3630 0.2166 0.2086 0.2415 0.2206 0.2504 0.3862 

20
11

 OLS 0.2634 0.2897 n/a 0.3152 0.1904 0.3069 0.2009 0.2342 0.2634 0.3693 
IPW 0.2255 0.2528 n/a 0.2725 0.1647 0.2311 0.1743 0.3005 0.2255 0.3445 
DRN 0.1559 0.4080 n/a 0.3613 0.1636 0.4117 0.1750 0.2462 0.2783 0.4544 

20
15

 OLS 0.3579 0.3946 n/a 0.3869 0.1983 0.2898 0.2080 0.3661 0.3749 0.3946 
IPW 0.2853 0.3225 n/a 0.3568 0.1848 0.4211 0.1221 0.2773 0.2975 0.4211 
DRN 0.4214 0.5522 n/a 0.5044 0.2707 0.5139 0.2403 0.3853 0.4392 0.5783 

Notes: The coding of the education variable differs between PSID and CPS samples and coefficients estimates are therefore not 
expected to align. 2 indicates the quadratic term of the education and age variable. ‘Av RVI’ is the average RVI over all 
covariates. ‘max FMI’ is the maximum FMI over all covariates.  

Computing time was an additional factor considered, especially with respect to the 

DRN/MI method. It is noticeable that the RVI statistics due to missingness tend to rise as we 

move from OLS/MI to IPW/MI and DRN/MI. This reflects the expected cost for consistency 

by sacrificing efficiency. After each set of MIs, the logistic regression (3’) is run to verify 𝛼 ≠

0 and hence MAR. 

In order to check whether models (4), (3) and (4’) provide adequate neighbours for PMM 

imputation, we examine the minimum and the maximum of the fitted values of these models 

from the working women subsample and compare them with the predicted values of the non-

working wife subsamples in Table 4. When the latter falls outside the range of the former, the 

number of outliers in the non-working wife subsamples are calculated. We see that such cases 

are rare, and outliers are very few if they exist, indicating that most of the non-working wives 

find potential matches from the working wife group.6  

Table 4. Ranges of 𝑤E., 𝑤E0, and P-scores From Estimation of (4), (3) and (4’) 
 

  Fitted from OLS of (4) P-score from Logit of (3) Fitted from WLS of (4’) 
  PSID CPS PSID CPS PSID CPS 
  Min Max Min Max Min Max Min Max Min Max Min Max 

19
81

 𝑑 = 0 0.2767 2.5701 0.8044 2.2073 0.1443 0.9446 0.0814 0.9571 0.2487 2.5732 0.7755 2.2008 
𝑑 = 1 0.2636 2.5715 0.8720 2.2476 0.1205 0.9687 0.0815 0.9744 0.2548 2.5612 0.8328 2.2415 
Outlier 0 0 5 0 0 0 1 0 1 1 4 0 

19
91

 𝑑 = 0 0.9558 3.1423 1.1943 2.9410 0.0308 0.9743 0.1032 0.9701 0.9679 3.1537 1.1662 2.9417 
𝑑 = 1 1.0140 3.1005 1.2167 3.1318 0.1120 0.9866 0.0966 0.9803 1.0145 3.1105 1.2074 3.1259 
Outlier 2 3 2 0 12 0 0 0 2 3 2 0 

20
01

 𝑑 = 0 0.8316 3.3696 1.5752 3.4892 0.2124 0.9894 0.1106 0.9540 0.8015 3.3807 1.5700 3.4894 
𝑑 = 1 0.7674 3.5911 1.5332 3.4879 0.2057 0.9905 0.1818 0.9721 0.7423 3.5978 1.5276 3.4875 
Outlier 0 0 0 1 0 0 3 0 0 0 0 1 

20
11

 𝑑 = 0 1.3918 3.5360 1.6328 3.8581 0.1108 0.9635 0.0933 0.9514 1.3499 3.5449 1.6135 3.8582 
𝑑 = 1 1.4674 3.6715 1.8690 3.7883 0.2730 0.9768 0.1086 0.9644 1.4438 3.6847 1.8498 3.7859 
Outlier 3 0 3 2 5 0 2 0 3 0 3 2 

20
15

 𝑑 = 0 1.9801 3.8276 1.8759 3.8926 0.2840 0.9707 0.0656 0.9502 1.9970 3.8315 1.8700 3.8980 
𝑑=1 1.9457 3.8554 1.8176 3.8499 0.3647 0.9868 0.0763 0.9560 1.9513 3.8609 1.8140 3.8519 

Outlier 0 0 0 1 3 0 1 0 0 0 0 1 
Notes: ‘Min’ is the minimum and ‘Max’ the maximum wage rate/p-score from the fitted observed (𝑑 = 1) and predicted missing (𝑑 = 1) 
set obtained from fitting (4) and (5). ‘WLS’ is the weighted least square using IPW on (4). ‘Outlier’ is the number of predicted values 
falling outside the min/max range of the fitted values.  

                                                             
6 We ran similar checks using the standard wage model (2) for MI instead of (4). Unsurprisingly, the number of 
outliers is distinctly larger than reported in Table 4. This shows the importance of including covariates 𝑍# that 
are predictive of missingness in the predictive model, as already discussed in the methodological section.  
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Table 5 provides basic summary statistics of the MI wage rates compared to those of the 

observed wage rates. Distributions of MI wage rates are more centred with distinctly smaller 

standard deviations than those of the observed wage rates. In contrast, there is far less 

dissimilarity between distributions of pairwise comparisons of the three sets of imputed wage 

rates. Kolmogorov-Smirnov test of equality of distributions reported in Table 6 show that there 

is no statistical difference between the three sets of MIs from the PSID data sets, and little 

difference for the CPS sets.7 

Table 5. Distribution of 𝑤0 and 𝑤.=>?  Under Different MI Methods 
 

  PSID CPS 
  𝑤0  𝑤.=>?  𝑤0  𝑤.=>? 
  Observed OLS/MI IPW/MI DRN/MI Observed OLS/MI IPW/MI DRN/MI 

19
81

 Mean 1.6659 1.5628 1.5637 1.5578 1.5764 1.5350 1.5328 1.5368 
s.d. 0.6243 0.3024 0.3053 0.3311 0.5473 0.1995 0.2016 0.2222 
Min -0.6162 0.1396 0.1255 0.3161 -0.6035 0.8192 0.7841 0.6520 
Max 4.6051 2.5120 2.4396 2.3836 4.9053 2.4242 2.4241 2.7163 

19
91

 
 

Mean 2.1410 1.9111 1.9126 1.9141 2.1337 2.0498 2.0468 2.0519 
s.d. 0.6747 0.4227 0.4228 0.4226 0.6064 0.2916 0.2941 0.3050 
Min -0.1508 0.8630 0.8819 0.7360 -0.1823 1.2618 1.2715 0.9489 
Max 4.6051 3.2046 3.2995 3.3418 5.3391 3.1168 3.1611 3.0982 

20
01

 Mean 2.5621 2.5048 2.5117 2.5126 2.5419 2.4626 2.4587 2.4617 
s.d. 0.6340 0.3878 0.3927 0.3990 0.6321 0.3356 0.3364 0.3490 
Min 0.0677 1.4569 1.5861 1.5905 0.0561 1.5523 1.4964 1.5224 
Max 5.0360 3.3605 3.4067 3.3739 5.7446 3.6922 3.7990 3.7217 

20
11

 Mean 2.8569 2.7633 2.7638 2.7569 2.8743 2.7774 2.7784 2.7699 
s.d. 0.6719 0.3633 0.3635 0.3627 0.6516 0.3645 0.3641 0.3750 
Min 0.3075 1.6582 1.7544 1.9025 0.3175 1.8691 1.8149 1.8183 
Max 5.4525 3.7720 3.6956 3.8574 5.9757 3.8481 4.0013 3.9868 

20
15

 Mean 2.9462 2.8113 2.8128 2.7924 2.9641 2.8214 2.8240 2.8218 
s.d. 0.6554 0.3586 0.3571 0.3639 0.6693 0.3618 0.3652 0.3752 
Min 0.5008 2.0491 1.9060 1.9214 0.4055 1.8332 1.9362 1.7899 
Max 5.2478 3.7460 3.7038 3.7511 6.0715 4.0497 4.1211 4.3013 

Note: MI statistics are based on the averages of 𝑚 = 50. 
 

Table 6. Equality of Distribution Test for 𝑤.=>?  Under Different MI Methods  
 

 OLS versus IPW OLS versus DR IPW versus DR 
 PSID CPS PSID CPS PSID CPS 

1981 0.0415 
(0.653) 

0.0154 
(0.318) 

0.0543 
(0.314) 

0.0353** 

(0.000) 

0.0591 
(0.224) 

0.0293** 
(0.003) 

1991 0.0223 
(0.996) 

0.0133 
(0.772) 

0.0223 
(0.996) 

0.0236 
(0.126) 

0.0297 
(0.928) 

0.0319* 
(0.013) 

2001 0.0282 
(0.998) 

0.0134 
(0.885) 

0.0436 
(0.853) 

0.0273 
(0.117) 

0.0410 
(0.898) 

0.0275 
(0.111) 

2011 0.0254 
(0.998) 

0.0081 
(0.987) 

0.0466 
(0.684) 

0.0180 
(0.271) 

0.0403 
(0.839) 

0.0209 
(0.135) 

2015 0.0383 
(0.901) 

0.0136 
(0.639) 

0.0450 
(0.759) 

0.0200 
(0.184) 

0.0541 
(0.535) 

0.0140 
(0.608) 

                                                             
7 Kolmogorov-Smirnov test is run between observed wage rates and imputed wage rates and the results are all 
rejections. We decide not to report those test statistics but those summary statistics in Table 4 as those statistics 
are more telling than the K-S test statistics, which reject overwhelmingly that the imputed wages distribute 
similarly as those of observed wages. 
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Notes: Two-group Kolmogorov-Smirnov test of equality of distributions. MI statistics are based on the averages of 
𝑚 = 50. P-values in (.).  

 
  



SOAS Department of Economics Working Paper Series No 216 - 2019 
 

 

16	

Figure 1a: 𝜷 estimates from (6) with 95% confidence intervals for 𝑥0 = 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛  
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Note: The coding of the education variable differs between PSID and CPS samples and coefficients estimates are 
therefore not expected to align. 2 indicates the quadratic term of the education. 
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Figure 1b: 𝜷 Estimates from (6) with 95% confidence intervals for 𝑥` = 𝐴𝑔𝑒 
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Note: 2 indicates the quadratic term of the age variable. 
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Core findings of the SA-based SB bias assessment are summarised in Figures 1a and 1b, 

which plot the estimated 𝜷0 of the two key variables – education, age, and their quadratic terms 

– and the corresponding 𝜷d.10,���
=@>? , 𝜷d.,���

=@>?, 𝜷d.10,���
=@>? , 𝜷d.,���

=@>?, 𝜷d.10,���
=@>? , 𝜷d.,���

=@>?  under different 

MNAR scenarios, and also 𝜷0�, together with their 95% confidence intervals. Figure 2 further 

summarises the tipping-point search for 𝛿fg in the ‘just MNAR’ scenario via (3’). We find 

values for 𝛿fg,k around 0.95-0.97 across different years. As evident from Figure 2, 𝛿fg,l values 

for the CPS data sets found by matching the odd ratios of the estimated 𝛼 in (3’), do not differ 

much from 𝛿fg,k. This finding eases our concerns over cross data set comparability as the found 

variations in 𝛿fg are too small to warrant much practical concern. Further, the consequent bias 

in 𝜷0 under the ‘just MNAR’ scenario is negligible and none of the biases are statistically 

significant, as evident from the overlapping confidence intervals of the 𝜷0 estimates and the 

respective ‘just MNAR’ estimates 𝜷d.10,���
=@>? and 𝜷d.,���

=@>?  in Figures 1a and 1b. This finding 

indicates that a statistically significant bias in 𝜷0 requires more extreme MNAR scenarios, i.e. 

scenarios which depart much further from the MAR condition than ‘just MNAR’. 

Figure 2: Tipping point search for 𝛿fg,k and the corresponding 𝛿fg,l via (3’)  

 
   

1981 
 

1991 
 

2001 
 

2011 
 

2015 

PS
ID

 𝛿fg,k 0.95 0.96 0.96 0.97 0.97 
𝑒𝑥𝑝	(𝛼) 1.288 1.255 1.348 1.26 1.315 
conf. int. (1.029, 1.613) (1.020, 1.544) (1.033, 1.760) (1.001, 1.586) (1.020, 1.695) 

C
PS

 𝛿fg,l 0.957 0.968 0.962 0.974 0.967 
𝑒𝑥𝑝	(𝛼) 1.288 1.256 1.343 1.259 1.322 
conf. int. (1.196, 1.388) (1.151, 1.370) (1.225, 1.473) (1.171, 1.354) (1.228, 1.424) 

Note: The figure plots the search for the tipping point using the PSID sets. Range of values for 𝛿fg [0.92; 
0.97] on the x-axis of the graph with respective estimates of the odds ratio, i.e. 𝑒𝑥𝑝(𝛼O) on the y-axis for 
different waves of the PSID sets. Tipping point is reached when 𝑒𝑥𝑝(𝛼O) = 1 cannot be rejected at the 5% 
significance level. conf. int. denotes 95% confidence interval. 

Let us examine the two more drastic MNAR scenarios: ‘minimum wage MNAR’ with 

𝛿no  and ‘husband wage MNAR’ with 𝛿po . The variety of 𝛿  values that emerge over the 
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decades under these two MNAR scenarios shows how SB in 𝜷0 varies with changing 𝛿 values; 

see Table 7 and the confidence interval plots of 𝜷d.10,���
=@>?  and 𝜷d.,���

=@>?  versus 𝜷d.10,���
=@>?  and 

𝜷d.,���
=@>?  in Figures 1a and 1b. It is noticeable from the odds ratios in Table 7 that effect size 

magnitudes in some of these scenarios have reached a very high level, e.g. Chen et al (2010). 

Unsurprisingly, the severity of SB in 𝜷0 raises with MNAR cases departing further away from 

the MAR condition. However, the bias remains statistically insignificant as reflected by the 

overlapping confidence intervals of the majority of 𝜷d.10,���
=@>?  and 𝜷d.10,���

=@>?  estimates with 𝜷0, 

even in cases where the departures of the MNAR scenarios from MAR result in large 

differences in terms of effect size in (3). This further strengthens our finding from the first 

scenario of ‘just MNAR’ that the departure from MAR has to be relatively large to invoke even 

a small SB in 𝜷0.  

Table 7. Odds Ratios From (3’) with 𝑤.10,�=@>?  Under 𝛿no And 𝛿po Scenarios 
 

  Minimum Wage Scenario with 𝛿no  Husband Wage Scenario with 𝛿po 
  PSID CPS PSID CPS 

1981 
𝛿 0.9 0.9 1.34 [0.0876] 1.34 [0.0444] 

Odds ratio 
(95% Conf int) 

1.66 
(1.328, 2.068) 

1.85 
(1.713, 2.008) 

0.23 
(0.166, 0.323) 

0.21 
(0.185, 0.228) 

1991 
𝛿 0.8 0.8 1.21 [0.050] 1.19 [0.0264] 

Odds ratio 
(95% Conf int) 

3.38 
(2.741, 4.162) 

4.74 
(4.288, 5.230) 

0.31 
(0.238, 0.401) 

0.29 
(0.259, 0.324) 

2001 
𝛿 0.7 0.7 1.16 [0.0272] 1.17 [0.0222] 

Odds ratio 
(95% Conf int) 

14.83 
(10.411, 21.123) 

19.22 
(16.445, 22.453) 

0.27 
(0.197, 0.377) 

0.30 
(0.266, 0.333) 

2011 
𝛿 0.6 0.6 1.11 [0.0139] 1.11 [0.0138] 

Odds ratio 
(95% Conf int) 

37.44 
(25.951, 54.006) 

105.76 
(90.826, 123.144) 

0.45 
(0.345, 0.594) 

0.41 
(0.378, 0.449) 

2015 
𝛿 0.56 0.56 1.1 [0.0123] 1.1 [0.0125] 

Odds ratio 
(95% Conf int) 

89.89 
(56.529, 142.927) 

153.34 
(127.096, 185.003) 

0.44 
(0.320, 0.594) 

0.46 
(0.424, 0.495) 

Notes: Odds rations are obtained as exp	(𝛼O) from estimating (3’) by logistic regression with different MNAR simulated 
wage rates: 𝑤.10,���

=@>?  and 𝑤.10,���
=@>? . The statistics in the squared brackets for the ‘husband wage’ scenario are standard 

deviations of the ratios of 𝑤.,���
=@>? to 𝑤.=>?, see equation (7), where 𝑤.,���

=@>? are produced by adding a randomised mean-
shift to 𝑤.=>?. 

However, there are a few cases where the overlap disappears between 𝜷0 and 𝜷d.10=@>? , or 

between 𝜷d.10=@>?  and 𝜷d.=@>?  under the two extreme MNAR scenarios, e.g. the PSID cases of 

the education variable in 2001 and 2011 and the CPS case of the age variables in 2015 under 

the minimum wage scenario. Given the severity of departure from MAR in these cases, it is 

questionable whether it is still appropriate to treat the difference as SB in 𝜷0, but to allow for 

different sub-sample coefficients. Making such a judgement requires information on the 

plausible MNAR mechanisms and a principled approach to handling the missing data to 
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identify how much and in what ways these plausible MNAR mechanisms may affect the 

covariates of interest.  

Finally, let us compare various 𝜷0 with 𝜷0�. It is unsurprising to find from Figures 1a and 

1b that most of 𝜷0�  do not exhibit significant deviations from 𝜷0, especially so when the 

residual correlations are small and the inverse Mill’s ratio are insignificant or marginally 

significant, e.g. 1981 and 1991; see Table 8. However, it is puzzling why this ratio is 

insignificant from the PSID cases in 1981 and 1991.8 Nevertheless, the facts that in most cases 

the inverse Mill’s ratio is significant and that the resulting SB correction lacks significance 

corroborate what has been summarised in Van der Klaauw (2014). Our simulations offer an 

empirically trackable window to illustrate how insensitive SB can be with the MNAR condition 

further deviating from the MAR condition. Interestingly, where bias correction by the 

Hackman Procedure results in 𝜷0 ≠ 𝜷0�, coefficient estimates tend to coincide with 𝜷d.10,���
=@>? , 

e.g. in 2011 and 2015. It is however difficult to generalise this finding in view of the outlier 

case shown from 𝜷0� of the age variable of the PSID case in 2001. 

Table 8. Inverse Mill’s Ratio Coefficient and Residual Correlation Estimates from the 2-step 
Heckman Procedure Estimation of (2)  
 

 Estimates 1981 1991 2001 2011 2015 

PSID 
Inverse mill’s ratio 

(s.d.) 
-0.043 
(0.115) 

-0.091 
(0.107) 

0.278* 
(0.109) 

0.498** 
(0.177) 

0.549** 
(0.144) 

Residual correlation -0.075 -0.153 0.444 0.736 0.826 

CPS 
Inverse mill’s ratio 

(s.d.) 
-0.051* 

(0.026) 
0.201** 
(0.036) 

0.307** 
(0.042) 

0.508** 
(0.042) 

0.442** 

(0.047) 
Residual correlation 0.097 0.353 0.511 0.758 0.666 

Note: The inverse Mill’s ratio is derived from a version of (3) that satisfies exclusion restrictions. Model specification of 
(2) is aligned with model specifications of (4). * indicates significance at the 5% and ** at the 1% significance level 
respectively. Given low correlation between 𝑋# and 𝑍#, OVB is negligible.  
 

5. Concluding Discussion  

Our SA experiments demonstrate that the MI-based approach to assessing SB is more 

empirically principled than the estimator-based approach. Essentially, the MI approach enables 

modellers to harness information from those incomplete cases in a structured way, while this 

is impossible under the residual correlation assumption of the estimator-based approach. Our 

experiments show that while missing data is known to be the result of certain selection 

decisions, such as the LFP decision, these likely MNAR mechanisms do not necessarily negate 

                                                             
8 Extensive specification searches of the Heckman selection model have been tried and the estimated results are 
quite robust. 
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a priori inferential validity of the parameters of interest of subjective models estimated using 

CC data. Modellers need to conduct carefully designed a posteriori SA in order to decide 

whether those MNAR mechanisms are ignorable for their subjective purposes. Such analyses 

should be aimed at assessing how much the essential features of the missing data in the 

incomplete case subsamples match with those in the CC subsamples, and what the plausible 

range of uncertainty of stochastically simulated matches may reach so that the degrees of 

severity of possible SB could be empirically assessed. Our experiments of the missing wage 

rate data show not only that the SB severity is practically ignorable for modelling wage 

equations within small to medium ranges of simulated mismatches under various MNAR 

scenarios, but also that the standard conceptualisation of SB is limiting our understanding of 

the mechanisms that result in SB. The idea of bias correction is predicated on the demarcation 

of what the appropriate population should be upon which valid inferences from CC analysis is 

allowed to reach or be bounded. In practice, the demarcation depends on valid sample data 

classification. This is essentially an aggregation issue and our experiments suggest that MI-

based SA offers an empirical route to investigate this classification. 

Further endeavour on matching features pertinent to human capital models between the 

incomplete and complete cases is desired, for instance via introducing more variables into 

model (4). Although stochastically imputed wage rates are not verifiable by nature of the data 

collection, improved matching will help raise our confidence on the judgment of whether and, 

if yes, to what extent the missingness mechanisms is non-ignorable. Moreover, more elaborate 

MNAR scenarios than the mean-shift based ones should be designed and experimented with 

so that our knowledge on the robustness and accuracy of the resulting SA of the risk of SB due 

to the missing wage rates can be enhanced.  
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Appendix 

Samples have been drawn from two widely used USA-based data sources: The March Annual 

Demographic Survey of the Current Population Survey (CPS), sponsored jointly by the Bureau 

of Labor Statistics and the US Census Bureau, and the Panel Study of Income Dynamics (PSID) 

provided by the Institute for Social Research at the University of Michigan. The Center for 

Economic and Policy Research (CEPR) Uniform Extracts from the CPS database are used. 

The following variables have been extracted and used from both data sets: wife’s hourly wage 

rate, wife’s age, wife’s education, husband’s wage, number of children, and a dummy that takes 

on 1 if there are children under the age of 6 in the household and 0 otherwise. For the PSID 

data, wife’s experience is also used, which is not available in the CPS data source. The coding 

for the education variable differs between the two datasets, hence hindering comparability. The 

education variable retrieved from PSID distinguishes between 8 categories coded 1 to 8, while 

the variable from CPS distinguishes between 6 categories coded 32.5 to 45. 

The choice of the years is made based on availability of data in the two data sources. The dates 

stand for the year the data was published, rather than collected. A sufficient number of years is 

used to examine possible changes in the relationship among the variables in question. After 

2000, the available years in the two databases do not match, so the comparison is made between 

the two closest years. More precisely, the data from PSID for 2001, 2011, and 2015 are drawn 

from the 2000, 2010, and 2014 sample year, respectively. 

The following selection criteria are applied to both CPS and PSID data sets, excluding 

households with: 

• Non-married, divorced, widowed or separated women. 

• Women under the age of 25 and over the age of 60. 

• Non-working husbands (0 wage). 

• Missing data on wife’s or husband’s education. 

• Wives or husbands working more than 4000 hours annually. 

• Wives or husbands earning more than $300 USD or under $1 USD at 1999 price level per 

hour 

• Family income net of wife’s income smaller than 0. 

• Wives reporting positive working hours but no wage and vice versa. 



SOAS Department of Economics Working Paper Series No 216 - 2019 
 

 

27	

Table A1 provides an overview of the sample characteristics of the different years for the two 

datasets, with respect to the sample size and the labour force participation. Table A2 provides 

detailed summary statistics for the households for each year for the two datasets. 

Table A1. Sample characteristics for the PSID and CPS samples. 

  1981 1991 2001 2011 2015 

PSID 

Total Sample 2,419 3,531 2,480 2,745 2,667 

Working wife subsample 1,793 2,857 2,090 2,273 2,223 

Rate of labour force participation 74% 81% 84% 83% 83% 

CPS 

Total Sample 22,205 19,600 16,111 23,860 22,479 

Working wife subsample 14,493 14,644 12,299 17,690 16,540 

Rate of labour force participation 65% 74% 76% 74% 73% 

Table A2. Summary statistics for the PSID and CPS samples.  

  1981 1991 2001 2011 2015 

  Mean SD Mean SD Mean SD Mean SD Mean SD 

PS
ID

 

Wife’s Age 37 9.78 37.9 8.58 40.5 8.84 40.9 10.34 40.5 10.07 

Wife’s Education 12.4 2.3 12.5 2.9 13.3 2.61 14.1 2.40 14.3 2.37 

Wife’s Experience 7.72 6.52 10.3 7.09 10.5 7.14 9.94 7.11 9.4 7 

Wife’s Hourly Wage* 6.37 4.59 10.6 8.39 15.9 11.67 21.83 17.64 23.5 16.86 

Husband’s Hourly Wage 10.37 6.74 15.2 11.76 23.5 21.06 29 27.96 30.1 28.16 

Number of Children 1.45 1.27 1.44 1.26 1.25 1.20 1.17 1.25 1.24 1.28 

C
PS

 

Wife’s Age 39.7 10.09 39.6 9.25 41.3 9.11 42.1 9.31 42.39 9.42 

Wife’s Education 39 2.87 39.8 2.84 40.3 2.91 41 2.86 41.16 2.88 

Wife’s Hourly Wage* 5.67 4.46 10.2 8.01 15.8 14.45 22.2 20.37 24.52 22.06 

Husband’s Hourly Wage 9.6 5.07 15.1 9.26 23.4 22.47 29.7 26.3 32.58 31.37 

Number of Children 1.3 1.30 1.26 1.25 1.23 1.25 1.31 1.21 1.32 1.22   

* conditional on working. Wage rates are nominal wages rates.  

 


