COMPETENCIAS TRANSVERSALES DE COMUNICACIÓN EN INGENIERÍA QUÍMICA: CONTRIBUCIONES DE LOS PROYECTOS YOIQINNOVO Y COM4SCIENCENG

Department of Chemical Engineering, University of Valencia .
Avinguda de la Universitat s/n 46100 Burjassot. València
jose.badia@uv.es

Jornada E4TSE de intercambios de experiencias de innovación docente en la ETSE-UV
Burjassot, 24 Julio 2018
The authors acknowledge the economic support of the Department of Chemical Engineering and the Technical School of Engineering of the University of Valencia, as well as the sponsorship given by the Vicerectorate of Formative Policies and Educational Policies through the projects

IDIQ-YOIQINNOVO: Development of innovation, creativity and technological entrepreneurship by means of project-based learning and flipped classroom, with reference UV-SFPIE_RMD16-415615

IDIQ-COM4SCIENCENG – Gamification and development of skills of technological watching and scientific communication in chemical engineering with reference UV-SPFIE_RMD17-589254
CONTENTS

- Aim
- Framework
- Methodology
- Results
- Conclusions
1. AIM

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering
CONTENTS

- Aim
- Framework
- Methodology
- Results
- Conclusions
2. FRAMEWORK

- Master Chemical Engineering
- University of València
- Subject: Integral Management of Quality, Security and Innovation, 4,5 ECTS.
- Section: Innovation: 1,5 ECTS
- 18-24 students/intake
CONTENTS

- Aim
- Framework
- Methodology
- Results
- Conclusions
3. METHODOLOGY

- DESIGN OF SUBJECT ➔ LEARNING OUTCOMES / ACTIVITIES / CONTENTS / ASSESSMENT

Badia, JD, Martínez-Soria, V.
Creative Project-based learning to boost technology innovation. @TIC: Revista d’ Innovació Educativa. Primavera (Enero-Junio 2017) Número 18. Págs. 10

CONSTRUCTIVE ALIGNMENT
3. METHODOLOGY

DESIGN OF WORKSHOPS ➔ COMMUNICATION SKILLS

P. San-Valero, A. Robles, M.V. Ruano, N. Martí, A. Cháfer, J.D. Badia
Workshops of innovation in chemical engineering to train communication skills in science and technology. Education for Chemical Engineers. In press
3. METHODOLOGY

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering

LEARNING BY DOING

PROJECT-BASED LEARNING

COOPERATIVE LEARNING

TECHNIQUES - TOOLS

ENTREPRENEURSHIP ECOSYSTEM
3. METHODOLOGY

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering

LEARNING BY ASKING

ANALYSIS OF OPTIONS

TECHNIQUES – TOOLS – ANALYSIS
3. METHODOLOGY

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering

POSTER VIDEO
ORAL DEFENCE
WRITTEN
GRAPHICAL
VERBAL
NON-VERBAL
3. METHODOLOGY

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering

NEEDS ANALYSIS
3. METHODOLOGY

- Info pills
- Contact points
- FAQs-Forum

- Scientific communication
- Scientific style
- IMRDC structure
- Referencing and citations
- Figures
- Tables
- Posters
- ...

jose.badia@uv.es
3. METHODOLOGY

- Entrepreneurship skills
- Critical thinking skills
- Communication skills
- Innovation in chemical engineering

PROJECT-BASED LEARNING

PROJECTS:
15/16 - BIOECONOMY
16/17 - FOOD WASTE
17/18 - COFFEE WASTE

FLIPPED TEACHING

S1. INNOVATION SYSTEMS
- Innovation scheme and strategies
- Creative generation of ideas
- Empowerment and implementation

S2. TECHNOLOGICAL WATCHING
- Public RDI financial programmes at regional, national and international level
- The European RDI framework
- Structure of a H2020 Project

S3. RDI FINANCING
- Private funding

S4. PROTECTION AND EXPLOITATION OF RESULTS
- Intellectual property
- Industrial property
- Rules of patentability
- Contractual exploitation of RDI results
- Societal exploitation of RDI results
3. METHODOLOGY

- WORKSHOP INSTEAD OF A PWP

PROFESSIONAL POSTER SESSION

EVALUATION BOARD

DIALOGUE - REPHRAISING

RECORDS
4. RESULTS

EVALUATION BOARD MARKS

[Box plot diagram showing mark distribution for different categories: Poster (40%), Video (10%), Defence (50%).]

- Structure/coherence: 50%
- Scientific content: 50%
- Design quality: 40%
- Message impact: 60%
- Performance: 40%
- Outfit: 10%
- Enthusiasm: 50%

TOTAL MARKS
4. RESULTS

IMPROVEMENT COMMUNICATION SKILLS

[Graph showing improvement in communication skills across different types: Written, Graphical, Verbal, Non-Verbal, and Use of ICT Tools. Comparison between Lecturers and Students.]

jose.badia@uv.es
4. RESULTS

SATISFACTION STUDENTS

SKILLS
4. RESULTS

SATISFACTION STUDENTS

- Participation
- Motivation

Likert scale:
- 1: 2% (Participation: 2% Motivation: 0%)
- 2: 4% (Participation: 0% Motivation: 4%)
- 3: 10% (Participation: 9% Motivation: 1%)
- 4: 30% (Participation: 30% Motivation: 10%)
- 5: 55% (Participation: 55% Motivation: 51%)
4. RESULTS

SATISFACTION STUDENTS

ENTREPRENEURSHIP

Cumulative counts

Likert scale

- Professional roles
- General satisfaction
- Recommend methodology
CONTENTS

- Aim
- Framework
- Methodology
- Results
- Conclusions

jose.badia@uv.es
5. CONCLUSIONS

- **WORKSHOPS** to boost communication skills, critical thinking and entrepreneurship

- **SCHEME OF WORKSHOP**: poster/video students, evaluation board, sounding info to community, recognition and celebration.

- **SATISFACTION** of students is relevant in terms of motivation, cooperation and foreseeable professional skills.

- **FUTURE** designs will implement more specific rubrics of evaluation of the different transversal skills, with focus on communication skills.