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Abstract

Otodontids include some of the largest macropredatory sharks that ever lived, the most

extreme case being Otodus (Megaselachus) megalodon. The reasons underlying their

gigantism, distribution patterns and extinction have been classically linked with climatic fac-

tors and the evolution, radiation and migrations of cetaceans during the Paleogene. How-

ever, most of these previous proposals are based on the idea of otodontids as ectothermic

sharks regardless of the ecological, energetic and body size constraints that this implies.

Interestingly, a few recent studies have suggested the possible existence of endothermy in

these sharks thus opening the door to a series of new interpretations. Accordingly, this work

proposes that regional endothermy was present in otodontids and some closely related taxa

(cretoxyrhinids), playing an important role in the evolution of gigantism and in allowing an

active mode of live. The existence of regional endothermy in these groups is supported here

by three different approaches including isotopic-based approximations, swimming speed

inferences and the application of a novel methodology for assessing energetic budget and

cost of swimming in extinct taxa. In addition, this finding has wider implications. It calls into

question some previous paleotemperature estimates based partially on these taxa, sug-

gests that the existing hypothesis about the evolution of regional endothermy in fishes

requires modification, and provides key evidence for understanding the evolution of gigan-

tism in active macropredators.

Introduction

Otodontids or megatooth sharks are an extinct family of lamniform apex predators that lived

from the Early Paleocene to Pliocene [1]. This group is only known from disarticulated

remains, mainly isolated teeth but also some sets of associated teeth and vertebral centra [2–5].

The large size of these remains, including teeth that reach up to 168 mm in height [6], has

aroused the interest in the group for some time. In consequence, several authors have tried to

establish accurate allometric relationships between tooth height (or vertebral centra width)

and body length and between body length and body mass in extant sharks with the goal of

inferring sizes and masses of otodontids [6–8]. The most conservative estimates for body
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length of the popularly known “Megalodon” (Otodus (Megaselachus) megalodon following

Capetta [1]) are about 16 meters, which makes it the largest megapredatory shark known

among both fossil and extant taxa [6]. However, the scarcity of studies dealing with the factors

that allowed megatooth sharks to reach such large sizes is striking. In this sense, some works

(e.g., [6,9,10]) suggest that the gigantism as well as the distribution patterns, evolution and

extinction of otodontids were closely linked to climatic factors and/or the abundance of their

potential prey after the radiation of the cetaceans in the Paleogene.

Most of these previous hypotheses, however, presupposed otodontids as ectothermic fishes

without taking into account some possible size-related metabolic constraints on the macropre-

datory lifestyle [11,12]. In this sense, there is a clear tendency for the largest marine vertebrates

to be slow filter-feeding planktivores, whereas active macropredators are much smaller, sug-

gesting that some size-related factors determine their activity and feeding strategy [13]. Most

of the biggest ectothermic fishes, such as the whale shark (Rhincodon typus), the basking shark

(Cetorhinus maximus) and the megamouth shark (Megachasma pelagios), are in fact filter-feed-

ing chondrichthyans that range in size from 5.5 to 21 meters [14]. Strikingly, the only marine

vertebrates with sizes and lifestyles comparable to those of the biggest megatooth sharks are

large odontocete cetaceans with well-developed homeothermy, such as the killer whale (Orci-
nus orca) and the sperm whale (Physeter catodon) [15].

Contrary to all classical interpretations, Ehret [5] questioned the ectothermic nature of oto-

dontids and suggested possible endothermy based on the lack of a correlation between their

growth rates and the sea temperature through the Cenozoic, which would be expected if they

were ectotherms. More recently, Pimiento et al. [16] have also proposed regional endothermy

for O.megalodon on the basis of paleobiogeographical data and the range of water tempera-

tures this species inhabited. Regional endothermy is the ability of some fish lineages to main-

tain certain body areas at higher temperatures than the surrounding water by means of

vascular countercurrent heat exchangers or specialized thermogenic organs [17,18]. This adap-

tation involves an active mode of life and much higher metabolic rates than those of the ecto-

thermic fishes of the same size [19,20]. Within osteichthyans, it has appeared independently in

at least three different groups including tunas (tribe Thunnini, Scombridae), billfishes (Xiphii-

dae and Istiophoridae) and Gasterochisma [17]. Recently, whole-body endothermy has also

been described in the opah (Lampris guttatus) [21]. In chondrichthyans, regional endothermy

is restricted to lamniform sharks, where it is found in two of the three species of alopids [22–

24] and in all species of the family Lamnidae ([25] and references therein).

Interestingly, regional endothermy of otodontids is rather parsimonious considering that

they seem to be phylogenetically closely related to lamnids [5], according to two hypotheses

about the relationships between the groups. The first considers otodontids as lamnids [6,9,26–

29], while the second considers them as a separate family, which is either sister-group, or

closely related to laminids [1,5,30–36]. In fact, some works have suggested that both groups

could have evolved from representatives of other Late Cretaceous-Paleocene lamniform

sharks, traditionally included in the family Cretoxhirinidae [1,9,26,31] (see Results and discus-

sion section for a more detailed revision of the phylogenetic affinities of cretoxyrhinids).

Here it is proposed that regional endothermy was present in otodontids and some close

related taxa (cretoxyrhinids), playing a key role in their evolutionary history, allowing gigan-

tism and the maintenance of active macropredatory modes of life. Three approaches provide

evidence for regional endothermy in these groups: (1) testing the degree to which their body

temperature is dependent on that of the surrounding water by analysing δ18O differences

between teeth of cretoxyrhinids-otodontids and associated ectotherms; (2) assessing whether

burst swimming speeds of cretoxyrhinids-otodontids, estimated assuming ectothermy and

regional endothermy, were fast enough for hunting successfully on their potential prey; and
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(3) assessing the energetic viability of ectothermy in cretoxyrhinids by calculating whether

their costs of swimming were long-term sustainable by their metabolic budget. In addition, a

number of multidisciplinary implications derived from this finding are discussed. These

include: (1) the possible overestimation of some previous paleotemperature estimates based

partially on these taxa, (2) the reinterpretation of some pre-existing hypotheses about the evo-

lution of regional endothermy in fishes, and (3) the contribution of this work to the under-

standing of the evolution of gigantism in active macropredators.

Data source and methodology

Oxygen isotopic approach

Vertebrate oxygen isotopic data have been compiled from the literature including records

from 20 different sedimentary beds, ranging in age from the Cretaceous to the Miocene, where

remains of Cretoxyrhinidae and Otodontidae have been recovered in association with pre-

sumed ectothermic taxa (Table 1 and S1 Table). Following the methodology established by

Bernard et al. [37], the difference in δ18O values between coexisting cretoxyrhinids/otodontids

and ectothermic taxa has been calculated in all beds, plotting them as a function of the ecto-

thermic taxa δ18O value (as a proxy of seawater temperature) and adjusting all points to a

regression line whose slope is an indicator of the degree of thermoregulation. Slope values

close to -1 imply that body temperature is independent of that of the water, slope values close

to 0 imply a complete dependence, and intermediate slope values indicate some degree of

independence. Three different regression analyses were performed: (1) including all cretoxyr-

hinids-otodontids and all associated ectothermic taxa; (2) including all cretoxyrhinids-

Table 1. Mean δ18O values of cretoxyrhinids-otodontids and associated ectotherms from different sedimentary beds.

Code Locality Age Cretoxyrhinid or otodontid taxa Cretoxyrhinid or

otodontid δ18O

Ectotherm δ18O Ectotherm δ18O

(without bentic

genera)

Source

n δ18O SD n δ18O SD n δ18O SD

1 Cerro la Bruja, Peru Miocene Otodus megalodon 1 20.90 2 21.00 0.42 2 21.00 0.42 [39]

2 Sidi Daoui, Morocco Upper Maastrichtian Cretolamna biauriculata marocana 1 19.98 1 20.15 [40]

3 Oued Erguita, Morocco Lower Maastrichtian Cretolamna 1 18.95 1 18.66 [40]

4 Ouled Abdoun, Morocco Upper Maastrichtian Cretolamna 2 20.35 0.92 1 19.50 1 19.50 [37]

5 Ouled Abdoun, Morocco Thanetian Cretolamna sp. 1 19.47 1 19.98 [38]

6 Ouled Abdoun, Morocco Thanetian Otodus sp. 2 20.92 0.08 3 21.65 0.61 3 21.65 0.61 [38]

7 Ouled Abdoun, Morocco Thanetian Otodus sp. 2 20.49 0.04 1 20.57 1 20.57 [38]

8 Ouled Abdoun, Morocco Maastrichtian Cretolamna marocana 1 20.56 1 19.87 1 19.87 [38]

9 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 1 21.04 1 21.19 1 21.19 [38]

10 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.67 0.48 1 21.03 1 21.03 [38]

11 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.44 0.65 2 20.53 0.35 2 20.53 0.35 [38]

12 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.41 0.65 2 20.77 0.11 2 20.77 0.11 [38]

13 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.26 0.22 1 19.62 1 19.62 [38]

14 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.25 0.10 2 20.39 0.37 2 20.39 0.37 [38]

15 Ganntour Basin, Morocco Maastrichtian Cretolamna marocana 2 20.76 0.18 4 20.94 0.23 4 20.94 0.23 [38]

16 Yonne, France Upper Campanian Cretolamna appendiculata 1 21.00 1 21.10 1 21.10 [41]

17 Ardèche, France Upper Aptian *Otodus sp. 1 20.10 1 20.70 [41]

18 Skotniki, Poland Lower Cenomanian *Otodus appendiculatus 1 20.52 2 19.35 0.77 2 19.35 0.77 [42]

19 Asen, Sweden Uppermost Lower Campanian Cretolamna appendiculata 1 20.94 1 19.62 1 19.62 [42]

20 Benguerir, Moroco Maastrichtian Cretolamna maroccana 6 19.43 0.31 5 19.98 0.51 5 19.98 0.51 [42]

* Cretolamna specimens

https://doi.org/10.1371/journal.pone.0185185.t001
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otodontids and only associated pelagic ectothermic taxa (minimizing variability caused by the

thermal gradient of the water column); and (3) including only cretoxyrhinids-otodontids and

associated pelagic ectothermic taxa from Kocsis et al. [38], where remains considered as con-

temporary come from well delimited individual layers (reducing variability associated with

low stratigraphic and temporal precision). Data from specimens doubtfully assigned to Creto-
lamna and Otodus or specimens where diagenetic alterations have been demonstrated were

not included in the analyses. In order to avoid the inclusion of endothermic taxa as a proxy of

water temperature, the following cases were also discarded: (1) data from expected endother-

mic taxa, such as mammals, ichthyosaurs, plesiosaurs, mosasaurs or some fish groups (see

Introduction) and (2) data from chondrichthyans whose taxonomic assignment does not rule

out the possibility of pertaining to one of the regional endothermic families.

In parallel, measurements of internal body organs/tissues and surrounding water tempera-

ture have also been compiled for three extant species of regional endothermic sharks from

Lowe and Goldman [25] (S2 Table). Data were represented in a similar way that was done for

isotopic data, calculating the differences in temperature between each pair of measurements

for all sharks, plotting them as a function of the seawater temperature and adjusting all points

to a regression line. Slopes were then contrasted with those obtained for δ18O values of cretox-

yrhinids and otodontids in order to evaluate if the degree of thermoregulation is comparable

between living and extinct groups.

Finally, latitudinal changes in δ18O tooth values of cretoxyrhinids and presumed ectother-

mic fishes were also compared from Campanian-Maastrichtian data compiled in Pucéat et al.

[42] (S3 Table). δ18O values were represented as a function of latitude, regression lines were

obtained for both groups and ANCOVA analysis was performed by means of PASW software.

The same analyses were carried out considering the sea surface temperatures predicted from

the δ18O values (S3 Table). Data from undetermined teeth were not included in either analysis.

Cruise and burst speed inferences

Records of cruise and burst relative swimming speeds of living fishes have been compiled from

the literature including both ectothermic and regional endothermic species, trying to cover a

wide range of sizes and taxonomic groups (S4 Table). Data were log-transformed and plotted

as a function of total fish length. Then, the scaling of both swimming speeds was studied in

ectotherms and regional endotherms by linear regression analysis and differences between

both groups were tested by ANCOVA analysis using PASW software. Cruise and burst swim-

ming speeds of some cretoxyrhinids (Cretolamna and Cretoxyrhina) and otodontids (Megalo-
lamna, Otodus (Megaselacus), Otodus (Otodus) and Parotodus) were estimated from their total

body lengths by interpolation of the regression analyses. Estimates were carried out consider-

ing them both as ectotherms and regional endotherms and 95% individual prediction intervals

were calculated for all swimming speeds. Total body lengths of 17.9 m, 9.2 m, 6.8 m, 5.0 m, 6.4

m and 3.0 m have been considered here for Otodus (M.),Otodus (O.), Parotodus, Megalolamna,

Cretoxyrhina and Cretolamna respectively. Body length estimations of cretoxyrhinids (Cretox-
yrhina and Cretolamna) were taken from previous studies based on articulated or semi-articu-

lated specimens [43,44]; whereas those of otodontids (Megalolamna, Parotodus, Otodus (O.)
and Otodus (M.)) were based on analysis of isolated teeth figured in the literature. Following

the methods described in Pimiento et al. [45], once a range of plausible positions was assigned

to each tooth, crown height was used to calculate body lengths from the position-specific

regressions established in white sharks by Shimada [8] (Table 2). Only one tooth per species

was selected representing the largest or one of the largest records for its position in the dental

series. This allows a conservative estimate of the body sizes of these taxa to be obtained, but

Regional endothermy in extinct macropredatory sharks
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larger individuals probably existed. In any case, determining the maximum body lengths of

these sharks is beyond the scope of this paper and considering larger body size estimates

would only favour the endothermic scenario (see Results and discussion section).

Independent estimations of cruise and burst swimming speed of Cretoxyrhina were

obtained following the models developed by Sambilay [48] on the basis of the relationship

between swimming speed and caudal fin aspect ratio:

Log
10
ðScÞ ¼ � 0:828þ 0:6196 � Log

10
ðPCLÞ þ 0:3478 � Log

10
ðARÞ

Log
10
ðSbÞ ¼ � 0:0659þ 0:6196 � Log

10
ðPCLÞ þ 0:3478 � Log

10
ðARÞ

Considering AR = H2 / S

Where Sc is cruising swimming speed in kilometres � hours-1, Sb is burst swimming speed

in kilometres � hours-1, PCL is precaudal body length (i.e., body length excluding the caudal

fin or standard length) in centimetres, AR is aspect ratio, H is height of the caudal fin, and S is

surface area of the caudal fin (note that H2 and S should be expressed in the same units because

AR is dimensionless).

PCL of Cretoxyrhina was calculated assuming 640 cm TL from Mollet and Cailliet’s [49]

equation:

PCL ¼ � 0:09195þ 0:8535 � TL

The aspect ratio of Cretoxyrhina mantelli was inferred from two different caudal fin vari-

ables (Cobb’s angle and hypochordal ray angle, S1A Fig) measured on a well-preserved speci-

men (CMN 40906, S1B Fig). The relationship between such metric variables and AR was

previously established in living lamniform sharks by linear regression from data provided in

Kim et al. [50] (see S5 Table).

Cost of swimming and energy budget inferences

The energy budget of Cretoxyrhina mantelli (assessed from its routine metabolic rate) was

compared with independent inferences of its locomotion energy requirements (i.e., net cost of

swimming), considering different water temperatures and both ectothermy and regional endo-

thermy. The potential habitable temperature range (i.e., temperatures at which energy budget

exceeds locomotion requirements) was then evaluated for each thermophysiological strategy

and compared with pre-existent paleoclimatic data and the paleobiogeographic distribution of

this shark. This allowed the plausibility of the ectothermic and the endothermic scenarios to be

contrasted.

Table 2. Tooth crown heights (CH) and total body length (TL) estimates of otodontids and cretoxyrhinids. Tooth positions: A, upper anterior tooth; a,

lower anterior tooth; L, upper lateral tooth.

Taxa Source CH (mm) Tooth position TL (m)

Otodus (M.) [46]: Suppl. Mat. (UF 257579) 41.2 L5-L7 17.90*

Otodus (O.) [1]: fig. 208A 65.0 a1-a2 9.18*

Parotodus [1]: fig. 211A 48.0 a1-a2 6.76*

Megalolamna [47]: fig. 2L 38.8 A1-A2 or a1-a2 5.02*

Cretoxyrhina [43] - - 6.40

Cretolamna [44] - - 3.00

* Total length estimates calculated from the average of length estimates for the different positions where each tooth could have belonged.

https://doi.org/10.1371/journal.pone.0185185.t002
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Net cost of swimming. Power-performance curves establish the relationship between rel-

ative swimming speed (U, body lengths�s-1) and oxygen consumption (MO2, mgO2
�kg-1�s-1).

Net costs of swimming at cruising speed (NCS) were calculated in Cretoxyrhina from power-

performance curves of living sharks as the difference between the total metabolic rate (TMR,

oxygen consumption at a particular swimming speed) and the standard metabolic rate (SMR,

oxygen consumption at resting) (S2 Fig). Estimates were obtained from the equations estab-

lished in Carcharhinus acronotus [51] (S2A Fig) and Isurus oxyrinchus [52] (S2B Fig), consid-

ered as ectothermic and regional endothermic oxygen consumption models respectively (see

S1 Text for a detailed justification of this selection):

LogðMO2ÞC:acronotus ¼ 2:38þ 0:377U

from which it is deduced that

TMRðU>0ÞC:acronotus ¼ 10^ð2:38þ 0:377UÞ

SMRðU¼0ÞC:acronotus ¼ 10^2:38

LogðMO2ÞI:oxyrinchus ¼ 2:0937þ 0:97U

from which it is deduced that

TMRðU>0ÞI:oxyrinchus ¼ 10^ð2:0937þ 0:97UÞ

SMRðU¼0ÞI:oxyrinchus ¼ 10^2:0937

Where MO2 is oxygen consumption in mgO2
� kg-1 � s-1, U is relative swimming speed in body

lengths � s-1, TMR is total metabolic rate in mgO2
� kg-1 � s-1, and SMR is standard metabolic

rate in mgO2
�kg-1�s-1.

Thus, NCS of Cretoxyrhina at cruising speed assuming ectothermy and regional endo-

thermy was calculated as:

NCSEctothermic Cretoxyrhina ¼ TMREctothermic Cretoxyrhina � SMREctothermic Cretoxyrhina

NCSEctothermic Cretoxyrhina ¼ ½10^ð2:38þ 0:377UcÞ� � ð10^2:38Þ

NCSR: endothermic Cretoxyrhina ¼ TMRR: endothermic Cretoxyrhina � SMRR: endothermic Cretoxyrhina

NCSR: endothermic Cretoxyrhina ¼ ½10^ð2:0937þ 0:97UcÞ� � ð10^2:0937Þ

Where NCS is net cost of swimming in mgO2
� kg-1 � s-1, TMR is total metabolic rate in

mgO2
� kg-1 � s-1, SMR is standard metabolic rate in mgO2

� kg-1 � s-1, and Uc is relative cruis-

ing swimming speed in body lengths � s-1 calculated from [48]’s model, see above.

The use of NCS was preferred here instead of TMR as they are considered a better parame-

ter for assessing the energy expenditure of thrust generation during swimming [53] and seem

to be independent of the water temperature [54–56].

Routine metabolic rate. Routine metabolic rate (RMR) is the mean metabolic rate mea-

sured in an animal that performs random physical activity over a given period [57]. Here,

the scaling of RMR with body mass has been independently established in ectothermic and

regional endothermic fishes and used to infer the RMR of Cretoxyrhina assuming both condi-

tions. For this, 43 records of RMR of extant sharks and rays were compiled from the literature

Regional endothermy in extinct macropredatory sharks
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(S6 Table). RMR data were temperature adjusted to 5˚C, 10˚C, 15˚C, 20˚C, and 25˚C using

Q10 of 2.3 (following [19]). RMR and body mass data were log-transformed and regression

lines were fitted independently for points corresponding to ectothermic and regional endo-

thermic species at each temperature. The RMR of Cretoxhirina was then inferred in all possible

scenarios, assuming a body mass of 2655 kg (calculated from the exponential model proposed

by Gottfried et al. [6] assuming a total body length of 6.4 m [43]).

Validation Test. Following the same procedure, the thermophysiological strategy of 17

living sharks, including 14 ectothermic species and 3 regional endothermic species, was

assessed from simultaneous records of their cruise swimming speeds, water temperatures and

body masses (S7 Table).

Results and discussion

Evidence of regional endothermy in otodontids and cretoxyrhinids

Oxygen isotopic approach. The oxygen isotopic composition of bioapatite phosphate

and carbonate has been extensively studied in vertebrates for different purposes (see [58] for a

detailed review). Given that δ18O value of a biomineral depends both on the δ18O value of the

body fluid from which it precipitates and the temperature at which it forms [58], some authors

have used oxygen isotopic data from bone, dentine or enamel to infer high body temperatures

or thermoregulation in fossil taxa (e.g., [37,59–62]). Recently, Bernard et al. [37] have estab-

lished a useful approach for inferring the dependence of body temperature of extinct aquatic

animals on that of the surrounding water (see Data source and methodology section), demon-

strating thermoregulation in some Mesozoic marine reptiles. Following this methodology, the

thermophysiology of cretoxyrhinids and otodontids has been explored here from the isotopic

composition of fossil remains from 20 different sedimentary beds, ranging in age from the

Cretaceous to the Miocene (Table 1 and S1 Table).

The regression line slopes obtained for the analysis of Cretolamna-Otodus species are signif-

icantly different from zero and their values are consistent with the existence of partial indepen-

dence from sea water temperature (Fig 1A–1C). These results are comparable in some aspects

with those provided by Bernard et al. [37], showing similar fits in the regression lines and simi-

lar standard deviation values for isotopic data (see Table 1 and compare with [37]: table S1).

Furthermore, a significantly higher number of localities has been considered here, increasing

the reliability of the regression results and allowing consistent conclusions. In addition, some

considerations have been taken into account in order to remove or minimize possible biases

related to preservation or ecological aspects. Firstly, although diagenesis may occur in a bio-

mineral altering the δ18O composition, enameloid is rather resistant to postdepositional alter-

ation and recrystallization due to its dense and slightly porous structure [58]. Accordingly,

almost all δ18O data selected here come from measurements taken in tooth enameloid (except

for two turtle osteocutes and a few taxa where the whole tooth was considered, S1 Table). In

fact, there are previous Rare Earth Elements analyses [40,63–65] as well as taphonomic evi-

dence [38,39] for almost all the teeth included in this analysis supporting the lack of diagenetic

processes (see [66] for a detailed review on the applicability of REE analysis as a tool for detect-

ing diagenetic processes). Moreover, Žigaitė and Whitehouse [67] have recently studied the

isotopic composition of different tooth tissues in extant sharks demonstrating that enameloid

shows less δ18O variation than dentine and recommended it as a target biomineral and as a

preferential biogeochemical reference for environmental and paleoenvironmental studies (see

also [68]). Secondly, δ18O differences between teeth of co-occurring individuals can also reflect

differences in water column temperature due to distinct water depth preferences [40,69,70]. In

order to minimize this bias, isotopic data from benthic ectothermic vertebrates were discarded
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Fig 1. Oxygen isotopic evidence and the effect of regional endothermic taxa in previous paleotemperature

estimates. (A-C) Difference in the δ18O value between coexisting cretoxyrhinids/otodontids and ectothermic taxa in

several localities/sedimentary beds plotted against the ectothermic taxa δ18O value (as a proxy of seawater

temperature). Three different regression analyses have been performed: (A) including all cretoxyrhinids-otodontids

and all associated ectothermic taxa, (B) including all cretoxyrhinids-otodontids and only associated pelagic

ectothermic taxa; and (C) including only cretoxyrhinids-otodontids and associated pelagic ectothermic taxa from

Kocsis et al. [38] (regression lines are showed with associated 95% confidence intervals). Details of each fossil

locality (denoted by numbers) are given in Table 1 and S1 Table. (D) Regression analyses performed in living lamnid

sharks for comparative purposes, considering direct water and body temperature records compiled in Lowe and

Goldman [25] (DM, deep muscle; ST, stomach). In all cases, slope values close to -1 imply that body temperature is

independent from that of the water, slope values close to 0 imply a complete dependence, and intermediate slope

values indicate some degree of independence. (E-F) Campanian-Maastrichtian latitudinal gradients of δ18O and

seawater temperature calculated from cretoxyrhinids and ectothermic taxa. (G-H) Campanian-Maastrichtian δ18O

and seawater temperature estimates calculated for three different latitudinal ranges (11˚-13˚, 20˚-23˚ and 36˚-49˚),

considering only cretoxyrhinids (pink), all taxa (black) and only ectothermic taxa (green). Significance of pairwise

mean contrasts are shown in each case. Data in E-H taken from Puceat et al. [42]. ** indicates significance at the

0.05 level and * indicates significance at the 0.1 level.

https://doi.org/10.1371/journal.pone.0185185.g001
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from adjusted regression lines, leaving only taxa with similar ecology to cretoxyrhinids and

otodontids as water temperature proxies. As expected, the effect of water column temperature

variations became evident when a wide ecological range of taxa are considered, resulting in

less well fitting regression lines including benthic taxa (R2 = 0.45, Fig 1A) than excluding them

(R2 = 0.68, Fig 1B). Finally, individuals collected from the same sedimentary bed may not be

strictly contemporaneous and differences in δ18O values could be reflecting seasonality or cli-

mate change. Although this problem can never be ruled out, accurate stratigraphic knowledge

of layers that yield the presupposed contemporaneous remains can minimize it. In this sense,

the best regression line fit is obtained taking into account only taxa included in Kocsis et al.

[38] (R2 = 0.85, Fig 1C), where the layer of provenance of each specimen is specified accurately

(note that the stratigraphic resolution of some of the other localities is given only at bed level,

S1 Table).

The existence of some decoupling between the enamel δ18O composition of cretoxyrhinids-

otodontids and coetaneous ectothermic organisms implies the presence of more constant

body temperatures in the head and jaws of the former. Body temperature decreases towards

the exterior in extant regional endotherms and is almost equal to the surrounding water tem-

perature on the body surface [71–74]. Thus, the influence of the changes of water temperature

it is expected to be more noticeable on external body parts, such as the region where teeth cal-

cify. Unfortunately, this influence has never been quantified in this area and direct compari-

sons with results obtained for cretoxyrhinids and otodontids are not possible. However,

elevation in deep muscle and stomach temperature over ambient temperatures has been

recorded in some species of extant regional endothermic sharks [25]. Here, the influence of

water temperature on the deep muscle of Isurus and Lamna and on the stomach of Isurus and

Carcharodon has been quantified from measurements reported in previous works (S2 Table).

The representation of these temperature data in the same way as the isotopic data allows a

comparison between the slopes obtained in both cases given that δ18O values reflect water and

body temperatures indirectly (Fig 1D). The influence of surrounding water temperature on

teeth in formation of cretoxyrhinids and otodontids (slope value of -0.66, Fig 1C) seems com-

parable to that on the stomach of Isurus and less important than on the muscle of Lamna
(slope values of -0.59 and -0.37 respectively; Fig 1D). In any case, although calcifying teeth are

embedded in relatively superficial tissues, this result might be expected as many regional

endonthermic fishes have cranial endothermy. Namely, lamnids, xiphids, istiophorids and

some tunas are able to elevate the temperature of their brains and nearby structures ([75] and

references therein). In lamnids this is achieved mainly by means of a red muscle vein that

transfers heat from red muscles to brain and orbital retia, but also by the heat supplied by

some aerobic muscles, such the eye muscles, and other metabolically active tissues [76]. Inter-

estingly, Tubbesing and Block [76] noted that jaw muscle of Lamna nasus, composed of slow-

twitch aerobic fibbers, could also aid in local heat generation, being a closer possible heat

source for dental lamina. In sum, the presence of different mechanisms that contribute to tis-

sue warming in the head of some lamniform sharks makes the existence of high temperatures

in the area where teeth calcify likely, affecting the isotopic composition of enameloid in devel-

oping teeth. In fact, the effect of cranial endothermy on the isotopic composition of other calci-

fied structures of the head has already been demonstrated in tuna otoliths [77]. However,

studies focused on recording temperatures in dental lamina of the upper and lower jaw in

regional endotherms are needed in order to determine the degree of temperature indepen-

dence of these tissues and the possible influence of cranial endonthermy on the oxygen isoto-

pic composition of teeth.

Cruise and burst swimming speed inferences. The scaling of fish locomotion has been

comprehensively studied both in terms of steady and unsteady swimming, and it is well
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known that cruise and burst relative speeds decrease with body length [78–82]. The reasons

underlying this phenomenon are related to physiological constraints that imply lower muscle

contraction rate when body mass increases [83,84], resulting in lower tail beat frequencies in

larger fishes [79]. However, although the scaling of locomotion is well known for fishes in gen-

eral, there are virtually no works comparing the relationship between swimming speed and

body size in ectothermic and regional endothermic taxa (with the only exception of [85]).

Here, fish swimming speed data have been compiled for extant species covering a wide range

of body sizes (S4 Table) and this relationship has been studied and compared in both groups.

ANCOVA analysis, adjusted regression lines and their associated confidence intervals strongly

support the existence of higher cruise and burst swimming capabilities in regional endotherms

(Fig 2A and 2B).

Some works have previously suggested differences in swimming speeds of regional endo-

therms and ectotherms on the basis of indirect evidence such as the increase in power output

and muscular contraction rate at high body temperatures, the enhancing of the diffusion of

oxygen to the muscle mitochondria and increasing lactate turnover ([18] and references

therein). Nonetheless, direct records of swimming speeds are scarce and sometimes inconclu-

sive given the size limitations of controlled experiments and the difficulty of taking measure-

ments in the wild. Regarding cruising speeds, some experiments carried out in water tunnels

suggested similar speeds for ectothermic and regional endothermic taxa [86–91]. However, the

work of Watanabe et al. [85] has recently shed light on this, demonstrating that cruising speeds

of fishes with regional endothermy are greater than fishes without it using free-swimming

data. They argued that previous results obtained under non free-swimming conditions may be

explained by the small size of water tunnels that do not allow the study of big adults where the

Fig 2. Scaling of swimming speed in extant fishes and swimming speed inferences in cretoxyrhinids and

otodontids. (A) Cruise and (B) burst relative swimming speeds (U, body lengths*s-1) against body lengths (meters)

of living ectothermic and regional endothermic fishes. Adjusted regression lines are showed with associated 95%

confidence intervals. (C) Cruise and (D) burst swimming speed estimates (V, km*h-1) of cretoxyrhinids and

otodontids, considering them as ectothermic sharks (green) or regional endothermic sharks (pink), with associated

95% individual prediction intervals. Values of absolute (V, km*h-1) and relative (U, BL*s-1) speed estimates are also

shown for each case. ** indicates significance at the 0.05 level.

https://doi.org/10.1371/journal.pone.0185185.g002
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regional endothermy is well developed. ANCOVA analysis performed here also suggest that

differences in cruise swimming capabilities of ectothermic and regional endothermic fishes

increase gradually with body size (Interaction, p = 0.002; Fig 2A). The intersection of adjusted

lines occurs at 24 cm total length meaning that cruising speeds of both regional endotherms

and ectotherms are equal at that size. Interestingly, Dickson [92] and Dickson et al. [93] have

proposed similar lengths as minimum sizes of functional endothermy in fishes. A high surface

area-to-volume ratio constrains the ability to maintain warm tissues in smaller individuals and

endothermy cannot be completely developed until a threshold mass is reached [94]. On the

other hand, works comparing burst swimming speeds of ectothermic and regional endother-

mic fishes from direct measurements are virtually non-existent. Some extraordinarily high

speed records of small ectothermic sphyraenids and scombrids (9.5 BL�s-1 and 19.4 BL �s-1 for

Sphyraena barracuda and Acanthocybium solandri respectively) equal or exceed the maximum

speeds documented in regional endotherms of similar sizes (See S4 Table). These data and the

methodology by which they were obtained have been sometimes questioned (see [95–99]).

However, high burst speeds could be expected for these and other tropical or subtropical spe-

cies inhabiting warm waters as the contraction time of the anaerobic muscles involved in burst

swimming becomes shorter when temperature rises [100]. In any case, here, ANCOVA analy-

sis detects differences between burst speeds of both groups even when these bizarre speeds are

taken into account (Interaction, p = 0.966; Ecto/Endo, p< 0.000; data not shown in Fig 2B).

Scaling relationships of cruise and burst swimming speeds for both ectotherms and regional

endotherms fit well into linear models (Fig 2A and 2B). Comparatively low dispersion of the

data has made it possible to obtain narrow individual confidence intervals allowing swimming

speed predictions in new taxa accurate enough for the purpose of the present study. Cruise

and burst swimming speed estimates have been obtained for extinct cretoxyrhinids and oto-

dontids from their total body lengths (Fig 2C and 2D). Previous estimates of swimming speeds

of otodontids have only been provided by Jacoby et al. [101], predicting a cruising swimming

speed for Otodus (Megaselachus) megalodon (1.34 m�s-1) very similar to the values obtained

here assuming regional endothermy (1.40 m�s-1). On the other hand, there are no studies so

far aiming to assess the burst swimming speeds of cretoxyrhinids and otodontids, this work

being the first attempt in this sense. Unsteady swimming locomotion (i.e., burst speed) is

extremely important in prey-predator interactions, mainly when prey/predator length ratio

is high (similar to or higher than 10−1) and feeding strategy implies a whole body attack

[102,103]. Otodontids and cretoxyrhunids are thought to have been active macropredators

hunting on relatively big and fast swimming prey. This interpretation is based in functional

analyses of their dentitions [1,31], trophic level inferences from isotopic data [104] and direct

evidence such as coprolites with fish remains [105] or bite marks, fractures and embedded

teeth in fossil cetacean, sirenian and marine reptile bones [6,9,10,106–115]. As a most extreme

case, some of the largest representatives of the group were potential predators of big-sized

marine mammals ([16] and references therein), possibly exerting an important control on

their communities and even playing a significant role in the evolutionary history of big filter-

feeding whales [116] (although see also [115]). Consequently, it seems obvious that reaching

high swimming speeds should be also crucial for the hunting success of cretoxyrhinids and

otodontids. In this sense, the range of burst swimming speeds inferred here considering them

as ecthothemic sharks (6.7–7.9 km�h-1) seems to be too low for such active macropredators.

This is especially drastic for the case of the biggest species because their absolute speeds corre-

spond to extremely low relative speeds (e.g., 0.12 body lengths�s-1 in O.megalodon) and hunt-

ing success depends largely on the later [117]. In contrast, burst swimming speeds estimated

considering both groups as regional endotherms (30.6–37.2 km�h-1) appear to fit better with

their presupposed lifestyles, probably being high enough for active pursuit and hunting of fast
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prey (burst swimming speeds of extant big and medium-sized odontocetes, sirenians and otar-

iids range approximately between 20 km�h-1 and 30 km�h-1 [118–121]).

In addition, the squamation pattern and some morphofunctional interpretations of cretox-

yrhinids also support an adaptation to fast swimming, more congruent with values estimated

for the scenario of regional endothermy. Shimada [122] noted that the body surface of Cretox-
yrhina was covered by scales with parallel keels separated by U-shaped grooves where the aver-

age interkeel distance was approximately 45 microns (see [43]: fig 5 and [122]: fig 8B). These

aspects evidence a clear role in drag reduction and allow the unequivocal assignation of Cre-
toxyrhina scales to a morphotype that is exclusive to the fastest living species of sharks [123–

127]. In the same way, some other evident aspects of the squamation of Cretoxyrhina, such as

the high density of scales together with a notable overlapping ([122]: fig. 8A and B) or the pres-

ence of scales with crown thinning ([43]: fig. 5A and C), have also been interpreted as an adap-

tation for enhancing hydrodynamic efficiency in fastest pelagic species ([128] and references

therein). A few smooth rounded scales have also been described in Cretoxyrhina but they were

probably restricted to the snout and possibly other regions exposed to high abrasive stress

(scales of Type A in [122]). Similarly, functional interpretations of caudal fin remains also sup-

port the idea of Cretoxyrhia as a fast pelagic hunter. Specimen CMN 40906 exhibits the highest

Cobb’s and hypochordal ray angles ever recorded in lamniform sharks (49˚ and 133˚ respec-

tively), implying fast swimming capabilities in Cretoxyrhina [50]. Thomson and Simanek

[129] noted that Cobb’s angles above 30˚ are characteristic of fast swimming pelagic sharks

typified by the endothermic sharks within the family Lamnidae. In fact, the swimming speed

calculated from morphological variables of the caudal fin of Cretoxyrhina (�70 km�h-1, see S2

Text) is clearly incompatible with those predicted here under the assumption that it was an

ectothermic shark (�7 km�h-1). Finally, some other aspects, like the conical head and the

shape and number of vertebra in Cretoxyrhina [122] and the absence of dorso-ventral flatten-

ing in Cretolamna vertebra [44], also point towards the existence of fusiform bodies in cretox-

yrhinids compatible with an active pelagic lifestyle.

On the other hand, besides burst speed, some other unsteady swimming performance

parameters, such as acceleration and manoeuvrability, are also size-constrained and decrease

with body length [103]. For that reason, hunting strategies implying ambushing behaviour

and/or attacks under specific ambient conditions could be reasonable for massive otodontids

minimizing prey reaction time in a similar way to living great white sharks [130]. In fact, God-

frey and Altman [131], based on the analysis of a Miocene cetacean vertebra with a partially

healed compression fracture, suggested that O.megalodon could display comparable predatory

strategies to those of extant great white sharks. Similarly, predatory strategies implying group

hunting are also effective when feeding on prey of similar or larger size than the predator

[103]. However, although some modern marine vertebrates display examples of cooperative

attacks (i.e., the killer whale Orcinus orca) (see for example [132]), this behavior has never

been reported so far in big sharks and it is quite likely that O.megalodon was a solitary hunter

[133]. In any case, any interpretation on the hunting strategies of large otodontids is highly

speculative.

Costs of swimming and energy budget inferences. The comparison of locomotion costs

with the metabolic ceilings of ectotherms and endotherms (i.e., energy budget) has been

revealed as a useful approach for assessing the thermophysiological strategies of fossil groups

[134]. Following a similar procedure, here the thermophysiology of Cretoxyrhina mantelli has

been assessed by inferring and comparing estimates of its net costs of swimming and energy

budget under ectothermic and regional endothermic scenarios.

Power-performance curves of continuously active elasmobranch species have been used

by several authors for different purposes: (1) determining standard metabolic rates (SMR)
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extrapolating to 0 velocity (e.g., [51,135,136]) and (2) determining field total metabolic rates

(TMR) at a given measured speed [137,138]. In the present study, for the first time, power-per-

formance curves of living sharks have been used to estimate the locomotion energy require-

ments in an extinct taxon, Cretoxyrhina mantelli. A cruise swimming speed of 12 km�h-1 (0.53

body lengths�s-1) has been inferred here for this species after applying Sambilay’s [48] model

assuming a total body length of 6.4 m and aspect ratio of 4.3 (See Fig 3 and S2 Text for further

details of the aspect ratio and swimming speed inferences). At this speed, the net cost of swim-

ming is 373 gO2
�kg-1�h-1 and 622 gO2

�kg-1�h-1 assuming ectothermy and regional endothermy

respectively (Table 3). On the other hand, energetic budgets and metabolic ceilings in animals

are usually assessed by calculating sustained metabolic rate (SusMR, metabolic level that can

be sustained long-term by an animal) [139]. Unfortunately, there are virtually no works deal-

ing with SusMR of sharks and the data available in the literature are insufficient for establish-

ing predictive models. However, SusMR is considered as broadly equivalent in ecological

terms to another much more frequently measured parameter, the routine metabolic rate

(RMR) [140,141]. The well-fitted scaling relationships between the RMR and body mass

obtained here for ectothermic and regional endothermic living sharks has allowed reliable pre-

dictions of RMR to be obtained in Cretoxyrhina (as an approximation of its metabolic budget)

within narrow values of confidence (Table 3).

Metabolic ceilings have been proposed several times as constraining the distribution of

plants and animals, accounting for their observed latitudinal and altitudinal limits [142–144].

Differences in thermal physiology between ectotherms and endotherms affect their global dis-

tributions differently, with ambient temperature being the main constrain for ectothermic

organisms [145–147]. Accordingly, this work suggests differences in the potential habitable

temperature range of Cretoxyrhina depending on its thermoregulatory capabilities. When

Fig 3. Aspect ratio estimates of Cretoxyrhina mantelli. (A-B) Regression analyses between the aspect ratio (AR)

and two different caudal fin variables (Ca, Cobb’s angle; HRa, hypochordal ray angle) of living lamniform sharks.

Extrapolated position of Cretoxyrhina mantelli is denoted by a red dot. (C) Morphometric data for caudal fins (AR, Ca

and HRa) of lamniform sharks including Cretoxyrhina mantelli. Caudal fin profiles modified from Kim et al. [50].

https://doi.org/10.1371/journal.pone.0185185.g003
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considering Cretoxyrhina as an ectothermic shark the model predicts that its energy expendi-

ture of locomotion would not be sustainable over time in waters below 20˚C (note in Fig 4A

that NCS exceeds RMR below this temperature in the ectothermic scenario). In contrast, such

costs would be probably sustainable long-term by a regional endothermic shark in a wider

range of water temperatures (RMR could exceed NCS at all the considered temperatures in the

regional endothermic scenario, Fig 4A).

Cretoxyrhina remains have been documented from the Albian to the Cenomanian (Lower

to Upper Cretaceous) over a period when sea surface mean temperatures were higher than

nowadays and latitudinal gradients were less important [148]. Despite that, the fossil record of

this shark reveals a cosmopolitan distribution with a paleolatitudinal range wide enough to

suggest a broad tolerance to different water temperatures (see [1] for a summary of fossil

occurrences). Paleobiogeographical data within the Western Interior Sea (USA) prove that

Cretoxyrhina was able to inhabit conditions ranging from subtropical to cool temperate waters

[149] and probably to migrate through the Boreal ocean [150]. In fact, the most northern fossil

assemblages where Cretoxyrhina remains have been recovered demonstrate that this shark

was, indeed, able to inhabit circumboreal seas where the mean annual surface temperature has

been estimated to have been between 5˚C and 10˚C [151]. In consequence, the scenario of Cre-
toxyrhina as an ecothermic shark does not fit the paleobiogeographical and paleoclimatic evi-

dence. The model presented here predicts that, in the absence of regional endothermy, only

swimming speeds around or below to 0.1 body lengths�s-1 would be sustainable long-term for

sharks of comparable body mass at 5˚C (Fig 4A). Accordingly, very similar speeds have been

reported for Somniosus microcephalus (0.11 body lengths�s-1 and 1.22 km�h-1) [152], the big-

gest ectothermic shark inhabiting polar waters [153]. On the contrary, the scenario that

assumes regional endothermy seems to be more congruent with all these aspects. In that case,

the temperature at which the NCS of Cretoxyrhina equates its RMR (�5˚C; Fig 4A) fits well

within the lowest water temperatures inhabited by this taxon according to its northernmost

distribution limit (5˚C– 10˚C according to [151]).

Interestingly, a validation test performed in 17 living sharks from simultaneous records of

their cruise swimming speeds, water temperatures and body masses supports the notion that

this approach has a high predictive power, as it is able to correctly predict the thermophysiolo-

gical strategy of the vast majority of the species (Fig 4B). Energetic viability of ectothermy is

supported for all the 14 ectotherm species studied with no exception (inferred NCS lay below

Table 3. Predicted values of net cost of swimming (NCS) and routine metabolic rate (RMR) in Cretoxyrhina mantelli assuming ectothermy and

regional endothermy at five different scenarios of water temperature.

Predicted logNCS (mgO2*kg-1*h-1) Cretoxy. Regr. logRMR-logBody mass

Scenario R2 Predicted logRMR (mgO2*kg-1*h-1) Cretoxy.

5.572 Ectothermy 5˚C 0.97 4.716 ± 0.344

5.572 Ectothermy 10˚C 0.97 4.897 ± 0.344

5.572 Ectothermy 15˚C 0.97 5.078 ± 0.344

5.572 Ectothermy 20˚C 0.97 5.259 ± 0.344

5.572 Ectothermy 25˚C 0.97 5.440 ± 0.344

5.794 R. endothermy 5˚C 0.95 5.780 ± 0.486

5.794 R. endothermy 10˚C 0.95 5.961 ± 0.486

5.794 R. endothermy 15˚C 0.95 6.142 ± 0.486

5.794 R. endothermy 20˚C 0.95 6.323 ± 0.486

5.794 R. endothermy 25˚C 0.95 6.504 ± 0.486

https://doi.org/10.1371/journal.pone.0185185.t003
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or within the confidence intervals of the estimated RMRs). On the other hand, regional endo-

thermy is predicted as the only energetically sustainable strategy in two regional endotherms,

Lamna ditropis and Carcharodon carcharias (note that ectothermy cannot be rejected as a

sustainable strategy in a third regional endothermic taxon, Isurus oxyrhinchus). Thus, the

Fig 4. (A) Comparison between net cost of swimming (NCS) and routine metabolic rate (RMR) of Cretoxyrhina mantelli

at five different temperature scenarios (5˚C, 10˚C, 15˚C, 20˚C and 25˚C) assuming ectothermy (green) and regional

endothermy (pink). Green and pink gradations represent the NCS at different swimming speeds (see color code chart).

Note that NCS are constant in all temperature scenarios (see text). RMR estimate is represented with associated 95%

individual prediction intervals (in black). (B) Validation test performed in 17 living sharks, including ectothermic taxa

(green background) and regional endothermic taxa (pink background), from simultaneous records of their cruise

swimming speeds, water temperatures and body masses (data taken from [85]). Inferred RMR are denoted as green and

pink intervals for the ectothermic and regional endothermic scenario respectively; Inferred NCS are represented by black

dots.

https://doi.org/10.1371/journal.pone.0185185.g004
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recognition of the ectothermic scenario as a non-energetically viable possibility is highly indic-

ative of regional endothermy, this being the case for Cretoxyrhina mantelli.

Implications of the regional endothermy of otodontids and cretoxyrhinids

Three independent lines of evidence (i.e., isotopic data, swimming speed estimates and meta-

bolic inferences) strongly support the starting hypothesis of this work, strengthening the

evidence for the existence of regional endothermy in otodontids and cretoxyrhinids. The

detection of this adaptation in such extinct groups entails a series of implications, some of

them with important multidisciplinary significance.

Implications for sea surface paleotemperature estimations. Several works have used the

oxygen isotope composition of vertebrate remains for paleotemperature inferences of past sea-

water (e.g., [40–42,69,154–160] and many more). Most of them have been carried out by ana-

lyzing the enameloid from teeth and scales of fishes, without an exhaustive selection of the

included taxa, assuming a unique fractionation equation applicable to all the species [41].

However, the presence of regional or whole endothermy in some fish lineages could affect the

oxygen isotopic fractionation in their biominerals [58]. In fact, a number of studies have

empirically demonstrated differences in the δ18O isotopic composition of mineralized tissues

of coexisting taxa due presumably to differences in thermoregulatory physiology (e.g.,

[37,39,62]). In this sense, it is striking that several works aiming to reconstruct paleotempera-

tures of seawater [39,156,158] or interpret hydrographic changes [64] have ignored this fact,

including δ18O isotopic data from taxa belonging to groups with regional endothermy, such as

lamnids (e.g., Carcharodon, Isurus, Isurolamna, Cosmopolitodus andMacrorhizodus) or alopids

(e.g., Usakias). Likewise, δ18O isotopic composition of teeth of otodontids and cretoxyrhinids

has also been used for similar purposes (see for example [38–42,64,154–156,158,161]), without

taking into account that these groups are potential regional endotherms given their close phy-

logenetic relationship with lamnids. The presence of cretoxyrhinids is especially frequent in

works dealing with paleoenvironmental reconstructions of the Late Cretaceous-Paleocene as

a result of the high abundance of Cretolamna teeth in sediments of that age. For instance,

among the 108 fossil remains considered by Kocsis et al. [38], 30 are teeth belonging to Creto-
lamna and Otodus, constituting 28% of the total sample and up to 50% in some of the studied

localities. Similarly, 24% of all teeth analyzed by Pucéat et al. [42] belong to cretoxyrhinids

(Cretolamna and Archaelomana) and otodontids (Otodus). Among these works, the study car-

ried out by Amiot et al. [39] is probably one of the most remarkable cases where only two

(15%) of all included shark teeth belong unquestionably to ecothermic groups, whereas the

remaining 11 teeth belong to otodontids (8%) and lamnids (77%). In addition, some of these

studies include shark teeth with poor taxonomic determination meaning that it is not possible

to rule out, in most cases, the possibility that they belong to one of the regional endothermic

groups.

The evidence provided in the present work in favour of cretoxyrhinids and otodontids as

regional endothermic sharks imply that some of the previous paleotemperature reconstruc-

tions based partially on these taxa could be overestimated and should be revised. As proof of

this, the effect of including representatives of such groups in this kind of studies has been

tested here considering the isotopic data provided by Pucéat et al. [42]. ANCOVA analyses

support this prediction detecting significant differences both in the δ18O values and tempera-

tures calculated from remains of cretoxyrhinds and ectothermic taxa at different latitudes

(δ18O, p = 0.022; Temperature, p = 0.013; Fig 1E and 1F). Parameter estimation of ANCOVA

analysis indicates that temperatures inferred from creotxyrhinids are 2.3˚C above those pre-

dicted from ectothermic fishes (Fig 1F). These differences are expected to be more important
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in high latitudes where body temperature of regional endothermic animals is much higher

than that of the surrounding water (see for example [162,163]). However, no significant differ-

ences have been found in the slope of ecothermic taxa and cretoxyrhinids (Interaction,

p = 0.505; Fig 1F), possibly due to the small sample size of the latter in latitudes above 30˚. In

any case, the effect of cretoxyrhinids on previous sea paleotemperature reconstructions

becomes clear when temperatures are re-estimated removing the isotopic data of such taxa

from the analysis. Overestimations of up to 1.9˚C have been calculated here for latitudes

around 20˚ where a large number of Cretolamna teeth were taken into account (Note that no

significant differences have been detected in latitudes around 10˚ and 40˚ probably due to the

smaller sample size of cretoxyrhinids considered in those cases, Fig 1H). Hence, in view of

these results, remains of regional endothermic taxa or closely related groups should be treated

more cautiously in future studies dealing with seawater paleotemperature reconstructions.

Evolutionary scenario of regional endothermy in lamniforms. Among living fishes,

endothermy is present in several orders and it is thought to have evolved independently at

least six times (in lamnids, billfishes, the butterfly mackerel, tunas, alopids and lamprids

[18,21,23]); but probably more if taking into account some other possible regional endotherms

included within mobulids and labrids [164–166]. Here the presence of regional endothermy is

strongly supported in two additional groups of extinct sharks, Cretoxyrhinidae and Otodonti-

dae, pushing the appearance of this adaptation among fishes back to the Albian (Late Creta-

ceous) [1] (note that some authors [11,12] have also suggested the possible existence of

endothermy in a few Paleozoic groups). Interestingly the evolution of regional endothermy in

extant fish families is thought to occur much later, during the Eocene coinciding with a major

cooling trend in the global climate ([18]; although see below). The monophyly of some cretox-

yrhinids and otodontids is widely accepted (Cretolamna-otodontid lineage) [1,9,31,47,167–

171], thus a common origin for the regional endothermy of both groups is the most parsimo-

nious option. However, phylogenetic affinities between these extinct families and living

lamniform groups are still controversial and, in consequence, it is difficult to establish the evo-

lutionary relationship between the regional endothermy of cretoxyrhinids and otodontids and

that of alopids and lamnids. Otodontids have usually been regarded as lamnids (e.g., [6,9,26–

29]), as their sister-group, or as a closely related group (e.g., [1,5,30, 31–36]). In fact, both

groups may have evolved from Cretolamna species, sharing a common ancestor within cretox-

yrhinids [1,9,26,31]. At present, monophyly of cretoxyrhinids is not sustained and they are

considered as a paraphyletic or even polyphyletic group although their systematics is main-

tained awaiting further results [1,172,173]. Cappetta [1] provisionally included five genera

within this family, of which Cretolamna and Cretoxyrhina are the best known by far. The phy-

logenetic position of Cretolamna among the extant lamniform taxa remains largely unknown

[44]. A number of works have proposed Cretolamna as being the “ancestor” of otodontids

[1,9,31,47,167–171], Cretoxhirhina [1] and even of lamnids [1,9,26,31] on the basis of dental

characters. Similarly, the phylogenetic position of Cretoxyrhina is also debated, having been

included within cretoxhyrhinids traditionally [1], within alopids following the only cladistical

approach on the group [174] and recently, after the discovery of one Cretaceous articulated

specimen of Isurus denticulatus, Cretoxyrhina has been placed among the earliest species of the

Isurus lineage as a lamnid [175]. In sum, several possible scenarios about the evolution of

regional endothermy within lamniforms can be drawn (Fig 5), some of them implying the

independent evolution of this adaptation up to three (or possibly more) times. Independent

evolution of the regional endothermy of alopids seems to be clear on the basis of their phyloge-

netic position [176] and some morphological aspects of their orbital retia [17] (Fig 5A). Lower

Eocene remains of Alopias denticulatus represent the earliest record of Alopiidae [173], how-

ever both the stratigraphic range and the origin of regional endothermy in alopiids could be
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Fig 5. Possible evolutionary scenarios for the origin of regional endothermy in lamniforms considering (A) only extant lamniform

groups, (B) Cretoxyrhina within alopids, and (C) Cretolamna representatives as ancestors of both lamnids and otodontids, and

Cretoxyrhina within lamnids. Stratigraphic ranges taken from [1].

https://doi.org/10.1371/journal.pone.0185185.g005
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extended back to the Late Cretaceous if Cretoxyrhina is included within the family (according

to [174]) (Fig 5B). On the other hand, given the relatively close phylogenetic affinity between

lamnids and otodontids, it is rather parsimonious to consider the regional endothermy of both

groups to be homologous and have evolved at least during the Late Cretaceous (if including

Cretolamna representatives as ancestors and/or considering Cretoxyrhina within Isurus; Fig

5C). However, different scenarios could be also possible and independent evolution of regional

endothermy in cretoxyrhinids cannot be ruled out given the possible polyphyly and poorly

resolved phylogenetic relationships of these groups. Therefore, the finding of further articu-

lated remains that allow robust cladistic analyses (not only based on dental characters) are

needed to unravel the affinities of otodontids and cretoxyrhinids and, in consequence, the ori-

gin of regional endothermy in lamniforms.

Several hypotheses have been proposed to explain the evolution of regional endothermy in

living groups (see [18] for a detailed review). Among them, the thermal niche expansion

hypothesis was supported by Dickson and Graham [18] comparing the thermal niche of extant

taxa, their fossil record, and the paleoceanographic conditions during the time that endother-

mic fishes radiated. According to their ideas, oceanic cooling and tropical compression during

the Eocene were the promoters of the almost simultaneous independent evolution of regional

endothermy in several groups of fishes. However, the discovery of regional endothermy

among cretoxyrhinids could extend the stratigraphic range of some regional endotherm

lineages (e.g., lamnids and alopids) back to the Cretaceous thus calling into question this

hypothesis. More recently, the elevated cruising speed hypothesis has gained support with the

development of modern animal-tracking tools. In this sense, Watanabe et al. [85] have demon-

strated in free swimming fishes that regional endotherms have higher cruise swimming speeds

and exhibit larger-scale annual migrations than ectotherms. This increases prey encounter

rates, enables larger-scale annual migrations and allows potentially greater access to seasonally

available resources. The selection pressures that lead to the evolution of regional endothermy

in cretoxyrhinids are difficult to ascertain. Current evidence only allows for speculation about

this issue and for some possible scenarios to be suggested for testing in future studies. The

thermal niche expansion hypothesis seems unlikely for this group as the first reports of both

Cretolamna and Cretoxyrhina from the Albian (Late Cretaceous) [1] are coincident with an

extremely warm climate and markedly reduced vertical and latitudinal temperature gradients

(see for example [148,177]). On the other hand, the worldwide distributions of cretoxyrhinids

[1] and morpho-functional interpretation of the caudal fin morphology of Cretoxyrhina (see

above) support good migratory capacities and strong swimming capabilities compatible with

the elevated cruising speed hypothesis. Also, regional endothermy could have provided cretox-

yrhinids with several evolutionary advantages over their ectothermic prey and competitors

([18] and references therein). Interestingly, some groups of marine reptile predators under-

went a rapid radiation and diversification during the Late Cretaceous [178,179] a few million

years after the appearance of the first cretoxyrhinids [1]. Such evolutionary success has some-

times been explained by the acquisition of endothermy providing them with some advantages

during the Late Cretaceous climate cooling [37,62]. Thus, the progressive cooling of the oceans

[180] together with increasing competition with marine retile top-predators might also be

suggested as major promoters of the evolution of regional endothermy in cretoxyrhinids

(although see [181]). In any case, several selection pressures could have worked together to

promote the evolution of regional endothermy in fishes and, at the same time, different evolu-

tionary scenarios could be expected in each separate group.

Regarding the anatomical and physiological aspects of regional endothermy, diverse

structures and mechanisms are involved in heat production and maintenance of high body

temperatures in extant regional endothermic groups [18]. The physiological and anatomical
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adaptations that allowed high body temperatures in cretoxyrhinids and otodontids are difficult

to determine. The large size and low surface area-to-volume ratio expected for some otodon-

tids might suggest a passive accumulation of heat (gigantothermy). However, although this

phenomenon could contribute to heat retention in these huge taxa, it seems unlikely that it

played a major role in smaller forms such as Cretolamna where other active mechanisms are

expected to be present. Considering then that Cretolamna occupies a basal position to (or

within) otodontids [47], it is expected that such mechanisms were inherited by all the species

of otodontids. On the other hand, the detection of relatively low δ18O values in teeth of cretox-

irhinids and otodontids implies the existence of high temperatures in the anterior part of their

bodies, consistent with the presence of cranial endothermy. Based on the apparent dependence

of cranial endothermy on red muscle endothermy, Dickson and Graham [18] argued that the

former should have evolved after or at the same time as the latter. Accordingly, regional endo-

thermy could be present in lamniforms even earlier than proposed here. In this sense, per-

forming isotopic analyses on postcranial endoskeletal elements (e.g., vertebra) could be

interesting for testing the existence of other sources of heat within the trunk region, compati-

ble with the presence of red muscle endothermy.

Distribution patterns, extinction and the evolution of gigantism in the megatooth

sharks. The existence of an ectothermic physiology and/or low tolerance to cold waters in

otodontids has sometimes been proposed as a constraining factor on their distribution pat-

terns and as an underlying cause of their extinction [6,9,10,18]. Gottfried et al. [6] and Die-

drich [10] suggested that differences in prey and water temperature preference in megatooth

and white sharks led to the extinction of the former in the Pleistocene due to climate change

and ocean cooling. Segregated distribution patterns of both taxa, with otodontids and white

sharks inhabiting warmer and colder waters respectively, have been sometimes explained by

competitive exclusion of the latter sharks from the preferred warmer areas of gigant-toothed

species [9]. Similarly, Dickson and Graham [18] interpreted the differential success of white

and megatooth sharks as a consequence of the differences in the thermal physiology of both

taxa. Accordingly, the regional endothermy of white sharks allowed them to face oceanic cool-

ing during the Pliocene-Pleistocene successfully, whereas some supposed ectothermic taxa

such as O.megalodon became extinct. On the other hand, shifts in the distribution of large

marine mammals to colder high-latitude conditions have also been proposed as possible causes

of the extinction of otodontids [6]. However, Pimiento et al. [16] have recently demonstrated

that the range of water temperatures inhabited by O.megalodon was wider than previously

expected being rather consistent with the existence of regional endothermy in this taxon. Fur-

thermore, they noted that the occupancy range of O.megalodon was not correlated with cli-

matic changes thus suggesting that extinction of otodontids was not primarily driven by

climatic change and ocean cooling. Results presented here strongly support the existence of

regional endothermy in the Cretolamna-otodontid lineage making it necessary to integrate

this phenomenon and its consequences (e.g., tolerance to a wider range of water temperatures

and less vulnerability to ocean cooling) in new explanatory hypotheses about the extinction of

otodontids. In this sense, hypotheses that involve global habitat loss produced by sea-level

oscillations during the Pliocene [182] and/or biotic factors such as the drop in the diversity of

potential prey (filter-feeding whales) or the appearance of new competitors (large predatory

whales and the great white shark) could be more in agreement with all these aspects ([16,115]

and references therein).

On the other hand, previous interpretations regarding the evolution and maintenance of

gigantism in the biggest otodontids have been supported almost exclusively by the availability

of high energetic blubber-rich marine mammals as prey. Gottfried et al. [6], based on the anal-

ysis of bite marks in fossil cetacean bones and previous dietary studies in extant white sharks,
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suggested that the gigant megatooth sharks could have relied on large blubber-rich marine

mammals that may constituted an important part of their diet. Purdy [9] also noted that

marine mammals could have constituted an important part of otodontid diet on the basis of

positive correlation between the abundances of fossil remains of both groups. Regarding evo-

lutionary intrinsic mechanisms that allowed gigantism in otodontids, Ehret [5] described

acceleration of growth rates and delay in the offset timing of somatic growth in some otodon-

tids but proposed again the evolution and diversification of cetaceans as the most plausible

driver of these changes. However, although the availability of potential prey played a funda-

mental role in this regard, all these previous hypothesis obviated some other intrinsic aspects

that should also be fundamental for maintaining an active lifestyle with such large body mass.

In this sense, Ferrón et al. [11] have recently provided key ideas to understand the evolution

of gigantism in active vertebrate predators from a metabolic perspective. Activity and feeding

strategies of living organisms are limited by specific values of mass-specific metabolic rate (i.e.,

metabolic ceilings). Given that mass-specific metabolic rate decreases when the body mass

increases, active macropredation is not sustainable once a given body mass is reached and only

less active modes of life and feeding strategies (e.g. filter feeding) are physiologically affordable

above this size. However, this limit is reached at different body masses depending on thermo-

regulatory strategy and, ultimately, metabolic level; endothermic macropredators can attain

larger potential body masses than their ectothermic counterparts (Fig 6A). Interestingly, shifts

towards higher metabolic levels, promoted by different factors (i.e., increases in ambient tem-

perature and atmospheric oxygen levels, evolution of highly efficient respiratory systems or

acquisition of endothermy), can allow the same activity level and feeding strategy to be sus-

tained at larger body masses, offering a suitable explanation for the evolution of gigantism in

active macropredators (see Ferrón et al. [11] for further discussion) (Fig 6B). Among these fac-

tors, endothermy seems to have played an important role in the evolution of gigantism in

many extinct macropredatory groups including some dinosaurs [134,183,184], ichthyosaurs,

plesiosaurs and mosasaurs [37,62]. Ferrón et al. [11] also suggested that a number of extinct

macropredatory fishes, including some members of the family Otodontidae, could have been

regional or whole endotherms considering their presumed active lifestyle and big body sizes

(Fig 6C). Now, regional endothermy of otodontids is strongly supported here from multiple

approaches, and is confirmed as the key element that promoted the metabolic shift needed to

reach huge sizes as macropredators in this group. Therefore, the integration of ecological and

physiological triggers (i.e., availability of blubber-rich prey and endothermy inherited from

cretoxyrhinids) offers a more holistic hypothesis to explaining the evolution of gigantism and

the maintenance of active modes of life in this shark lineage.

The gigantic sizes reached by some otodontids were the result of an evolutionary tendency

towards larger body sizes [46]. According to the ideas presented in Ferrón et al. [11], a trend to

less active lifestyles in bigger species would be expected if all otodontids shared the same meta-

bolic level. This phenomenon is well documented in the evolution of mysticetes where extinct

small basal forms were actively carnivorous whereas more derived giant species are slow filter

feeders (and intermediate-sized forms were probably facultative filter feeders) [185] (Fig 6D).

However, the existence of similar active macropredatory lifestyles in all species of otodontids

implies that more derived and larger forms would have had higher metabolic levels and, there-

fore, the tendency towards gigantism should be accompanied by a tendency towards a better-

developed endothermy (Fig 6E). The factors that promoted this tendency towards gigantism

are poorly understood. Pimiento and Balk [46] have recently argued that this phenomenon

could be the result of a long-term selective pressure on otodontids favouring bigger forms with

a broader range of prey. On the other hand, the fact that otodontids grew in size proportionally

to cetaceans during the Neogene [10] could suggest that gigantism coevolved in both groups as
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Fig 6. (A) Diagram showing the relationship between body mass, metabolic rate (� activity level and feeding strategy)

and metabolic level (ecto, meso and endothermy) in aquatic vertebrates. (B) Schematic explanation of how shifts

towards higher metabolic levels, promoted by different factors, contribute to maintaining a predatory lifestyle at bigger

body sizes. (C) Diversity of body masses, feeding and thermoregulatory strategies of living and extinct aquatic

vertebrates (ed, endotherm; ec, ectotherm; me, mesotherm; cross sign denotes an extinct taxon). A-C modified from

Ferrón et al. [11]. (D-E) Diagrams showing body sizes, feeding and thermoregulatory strategies of mysticete cetaceans

and otodontid sharks respectively. Mysticete skull and otodontid tooth outlines modified from Fitzgerald [185] and

Pimiento and Balk [46]. Bluish and reddish tones represent lower and higher metabolic levels, respectively.

https://doi.org/10.1371/journal.pone.0185185.g006
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a result of an evolutionary race between predators and prey. In either case, the acquisition of

anatomical structures and physiological mechanisms that allowed regional endothermy in cre-

toxyrhinids probably played a key role in the subsequent evolutionary history of the lineage,

acting as a trigger for the evolution of gigantism in more derived otodontids, allowing active

macropredatory lifestyles and helping them in the struggle for survival.
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