Espectroscopía 1.- Espectros

Juan Fabregat Universidad de Valencia

Crédito: Brittanica Online

Crédito: Spigget (CC BY-SA 3.0)

HD 109995 (AOV)

Rango espectral y dispersión

Rango: 5770 – 7265 (1495 Å) Npix = 690 píxeles Dispersión = 2.2 Å/pixel Rango: 6375 – 6720 (345 Å) Npix = 690 píxeles Dispersión = 0.5 Å/pixel

Resolución espectral

Rango espectral y resolución

Rango: 5770 – 7265 (1495 Å) Npix = 690 píxeles Dispersión = 2.2 Å/pixel Resolución = 8 Å R = $\lambda/\Delta\lambda \approx 800$ Rango: 6375 - 6720 (345 Å)Npix = 690 píxeles Dispersión = 0.5 Å/pixel Resolución = 2 Å R \approx 3200

Relación señal ruido

Rectificación del espectro

Créditos

- Fig. 1: "Newton dispersing sunlight though a prism", The Granger Collection, New York. (<u>http://kids.britannica.com/comptons/art-126632/A-19th-century-engraving-depicts-Isaac-Newton-dispersing-sunlight-through</u>), por Britannica Online for Kids.
- Fig. 2: "Dispersive prism illustration" (<u>https://commons.wikimedia.org/wiki/File:Dispersive_Prism_Illustration.jpg</u>), por Spigget (CC BY-SA 3.0)
- Fig. 3: "Espectro de HD 109995". Datos de STELIB (http://www.ast.obs-mip.fr/article181.html)

Espectroscopía 2.- Continuo y líneas espectrales

Juan Fabregat Universidad de Valencia

HD 109995 (A0V)

Crédito: STELIB

Crédito: STELIB

RX J2133.7+5107

Bandas moleculares

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Créditos

- Fig. 1: "Espectro de HD 109995". Datos de STELIB (<u>http://www.ast.obs-mip.fr/article181.html</u>).
- Fig. 3: Datos de STELIB (<u>http://www.ast.obs-mip.fr/article181.html</u>).
- Fig 5: "RX J2133.7+5107: identification of a new long period Intermediate Polar", por J.M. Bonnet-Bidadu et al., Astronomy & Astrophysics 445, 1037, 2006, figura 5 (http://www.aanda.org/articles/aa/abs/2006/03/aa3303-05/aa3303-05.html).
- Fig. 6: "A Digital Spectral Classification Atlas", por R.O. Gray (http://ned.ipac.caltech.edu/level5/Gray/ frames.html).

Espectroscopía 3.- Análisis espectral

Juan Fabregat Universidad de Valencia

HD 109995 (AOV)

Crédito: STELIB

Crédito: STELIB

Crédito: R.O. Gray, Digital Spectral Classification Atlas

El ensanchamiento natural

El ensanchamiento térmico

El ensanchamiento colisional

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Abundancias químicas

Crédito: D.F. Gray, Stellar Photospheres, Cambridge University Press

El ensanchamiento rotacional 1.8 1.7393 - 051.6 1.5 Normalised Flux 1.4 1.3 1.2 591 - 051.1 1.0 . 9 .8 4550 4552 4554 4556 4558 4560 4562 4566 4574 4576 4578 4564 4568 4570 4572 Wavelength

Crédito: Munn et al., A&A 419, 713, 2004

Análisis espectral cuantitativo

Crédito: Nieva y Simón-Díaz, A&A 532, A2, 2011

Créditos

- Fig. 1: "Espectro de HD 109995". Datos de STELIB (<u>http://www.ast.obs-mip.fr/article181.html</u>).
- Fig. 2: Datos de STELIB (<u>http://www.ast.obs-mip.fr/article181.html</u>).
- Figs. 4 y 7: "A Digital Spectral Classification Atlas", por R.O. Gray (<u>http://ned.ipac.caltech.edu/level5/Gray/frames.html</u>).
- Fig. 8: "The Observation and Analysis of Stellar Photospheres", por D.F. Gray, 3ª edición, Cambridge University Press 2005, figura 13.11.
- Fig 9: "A chemical analysis of five hot stars towards the Galactic centre", por K.E. Munn et al., Astronomy & Astrophysics 419, 713, 2004, figura 5 (http://www.aanda.org/component/article?access=bibcode&bibcode=&bibcode=2004A%2526A...419..713MFU).
- Fig. 10: "The chemical composition of the Orion star forming region. III. C, N, Ne, Mg, and Fe abundances in B-type stars revisited", por M.F. Nieva y S. Simón-Díaz, Astronomy and Astrophysics 532, A2, 2001, figura A1 (<u>http://www.aanda.org/articles/aa/abs/2011/08/aa16478-11/aa16478-11.html</u>).

Espectroscopía 4.- Clasificación espectral

Juan Fabregat Universidad de Valencia

Espectros de Angelo Secchi

Clasificación espectral moderna

Diagrama de Hertzprung-Russell

Crédito: Observatorio de París/U.F.E.

Diagrama de Hertzprung-Russell

Crédito: Wikimedia Commons (CC BY-SA 3.0)

Tipos espectrales

Tipo Líneas espectrales

Temperatura efectiva

- O Líneas de absorción de HeII
- B Líneas de absorción de HeI
- A Líneas de absorción del HI
- F Líneas de metales ionizados
- G Líneas de metales neutros e ionizados
- K Líneas de metales neutros y óxido de Ti
- M Bandas moleculares de óxido de Ti

Main Sequence 04 - 09

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Main Sequence 09 - B5

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Main Sequence B5 – A5

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Main Sequence A5 - G0

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Main Sequence G0 – K5

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Clases de luminosidad

Clase	Tamaño	Estado evolutivo
V IV III II I	0.1 < R/Ro < 2 2 < R/Ro < 10 10 < R/Ro < 100 100 < R/Ro < 300 300 < R/Ro < 1000	Enana de la secuencia principal Subgigante Gigante Gigante brillante Supergigante

Luminosity Effects at B1

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Luminosity Effects at A0

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Luminosity Effects at F0

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Luminosity Effects at GO

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Normalized Flux

Crédito: R.O. Gray, Digital Spectral Classification Atlas

Calibración de los tipos espectrales

Tipo	M_V	$T_{eff}(\mathbf{K})$	$M(M_{\odot})$	$R(R_{\odot})$	$\log L(L_{\odot})$	Tipo	M_V	$T_{eff}(\mathbf{K})$	$M(M_{\odot})$	$R(R_{\odot})$	$\log L(L_{\odot})$
O5V	-5.5	41 000	40.0	17.8	5.7	GOIII	0.6	5800	2.5	6.3	1.5
BOV	-4.1	29000	18.0	7.4	4.3	G5III	0.4	5 200	3.2	10.0	1.7
B5V	-1.1	15000	6.5	3.8	2.9	KOIII	0.2	4810	4.0	16.0	1.9
A0V	1.4	9800	3.2	2.5	1.9	K5III	-0.4	3950	5.0	25.0	2.3
A5V	2.1	8150	2.1	1.7	1.3	MOIII	-0.7	3850	6.3		2.6
FOV	2.6	7250	1.7	1.3	0.8	M5III	-1.6	3 3 5 0			3.0
F5V	3.4	6550	1.3	1.2	0.4						
GOV	4.4	5900	1.1	1.0	0.1	B0Ia	-7.0	30 000	50.0	20.0	5.4
G5V	5.1	5580	0.9	0.9	-0.1	A0Ia	-7.1	9900	16.0	40.0	4.3
K0V	5.9	5280	0.8	0.9	-0.4	FOIa	-8.5	7 200	12.5	63.0	3.9
K5V	8.0	4 4 0 0	0.7	0.7	-0.8	G0Ia	-8.0	5 5 9 0	10.0	100.0	3.8
MOV	9.2	3760	0.5	0.6	-1.2	G5Ia	-8.0	5 000	12.5	125.0	3.8
M5V	14.5	3 0 8 5	0.2	0.3	-2.1	KOIa	-8.0	4 500	12.5	200.0	3.9
M8V	16.5	2680	0.1	0.1	-3.1	K5Ia	-8.0	3900	16.0	400.0	4.2
						MOIa	-7.3	3790	16.0	500.0	4.5

Créditos

- Fig. 4: "Diagrama de H.N. Russell", Astrophysique sur Mesure, Observatorio de París/ U.F.E. (<u>http://media4.obspm.fr/public/VAU/temperatura/diagrama/hertzsprung-russel/historico-hr/OBSERVER.html</u>).
- Fig. 5: "HRDiagram-es" (<u>https://commons.wikimedia.org/wiki/File:HRDiagram-es.png</u>), por Alvaro qc (CC BY-SA 3.0).
- Figs. 6 a 16: "A Digital Spectral Classification Atlas", por R.O. Gray (<u>http://ned.ipac.caltech.edu/level5/Gray/frames.html</u>).