Norms of products of polynomials

Gustavo Adolfo Muñoz Fernández

```
Salón de grados Manuel Valdivia
Facultad de Matemáticas
Universidad de Valencia
16 - NOV - 23 (11:00 h)
Workshop on
Functional Analysis
Solving the Invariant Subspace Problem
```


The factor problem for polynomials

General statement

If $\left(\mathcal{P}_{k},\|\cdot\|_{k}\right) k=a, b, c$ are three spaces of scalar polynomials with $P \cdot Q \in \mathcal{P}_{c}$ for all $P \in \mathcal{P}_{a}, Q \in \mathcal{P}_{b}$, we search for constants $\lambda, \mu>0$ such that

$$
\lambda\|P\|_{a}\|Q\|_{b} \leq\|P \cdot Q\|_{c} \leq \mu\|P\|_{a}\|Q\|_{b}
$$

for all $P \in \mathcal{P}_{a}$ and $Q \in \mathcal{P}_{b}$.

The factor problem in Banach spaces

Conventional notations

For a Banach space E :
(1) $\mathcal{P}_{n}(E)$: Space of bounded polynomials on E of degree $\leq n$.
(2) $\mathcal{P}\left({ }^{n} E\right)$: Space of bounded n-homogeneous polynomials on E.
(3) $\mathcal{P}_{n}(E)$ and $\mathcal{P}\left({ }^{n} E\right)$ are endowed with the usual sup norm over the closed unit ball B_{E} of E :

$$
\|P\|=\sup \left\{|P(x)|: x \in \mathrm{~B}_{E}\right\} .
$$

Products of arbitrary polynomials

Definition

If E is a B . s. over $\mathbb{K}, M_{\mathbb{K}}(n, k ; E)$ denotes the best constant in

$$
\|P\| \cdot\|Q\| \leq M_{\mathbb{K}}(n, k ; E)\|P \cdot Q\|
$$

for all $P \in \mathcal{P}_{n}(E)$ and $Q \in \mathcal{P}_{k}(E)$.
Theorem (Benítez, Sarantopoulos and Tonge - 1998)
If E is any complex Banach space then

$$
M_{\mathbb{C}}(n, k ; E) \leq \frac{(n+k)^{n+k}}{n^{n} k^{k}}
$$

Equality is attained for $E=\ell_{1}(\mathbb{C})$ and

$$
\begin{aligned}
& P\left(\left(x_{j}\right)_{j=1}^{\infty}\right)=x_{1} \cdots x_{n}, \\
& Q\left(\left(x_{j}\right)_{j=1}^{\infty}\right)=x_{n+1} \cdots x_{n+k} .
\end{aligned}
$$

Products of arbitrary polynomials

Theorem (Araújo, Enflo, M., Rodríguez, Seoane (2021))
If E is any real B. s. then

$$
M_{\mathbb{R}}(n, k ; E)=\frac{1}{2} C_{n+k, n} C_{n+k, k},
$$

where

$$
C_{r, s}=2^{s} \prod_{j=1}^{s}\left(1+\cos \frac{(2 j-1) \pi}{2 r}\right) \quad \text { for } 1 \leq s \leq r
$$

Equality is attained when $E=\mathbb{R}$ and
P vanishes at the n roots of T_{n+k} closest to -1 .
Q vanishes at the other k roots of T_{n+k}.

Products of homogeneous polynomials

Definition

If E is a B. s. over $\mathbb{K}, M_{\mathbb{K}}^{h}(n, k ; E)$ denotes the best constant in

$$
\|P\| \cdot\|Q\| \leq M_{\mathbb{K}}^{h}(n, k ; E)\|P \cdot Q\|
$$

for all $P \in \mathcal{P}\left({ }^{n} E\right)$ and $Q \in \mathcal{P}\left({ }^{k} E\right)$.

Theorem (Pinasco - 2012)
If H is a complex Hilbert space then

$$
M_{\mathbb{C}}^{h}(n, k ; H)=\sqrt{\frac{(n+k)^{n+k}}{n^{n} k^{k}}}
$$

Equality is attained for $H=\ell_{2}^{2}(\mathbb{C})$ and

$$
P\left(z_{1}, z_{2}\right)=z_{1}^{n} \quad \text { and } \quad Q\left(z_{1}, z_{2}\right)=z_{2}^{k} .
$$

Products of homogeneous polynomials

Theorem (Carando, Pinasco \& Rodríguez (2013))
If $1<p<2$ then

$$
M_{\mathbb{C}}^{h}\left(n, k ; L_{p}(\mu)\right)=\sqrt[p]{\frac{(n+k)^{n+k}}{n^{n} k^{k}}}
$$

Equality is attained for $\ell_{p}^{2}(\mathbb{C})$ and

$$
P\left(z_{1}, z_{2}\right)=z_{1}^{n} \quad \text { and } \quad Q\left(z_{1}, z_{2}\right)=z_{2}^{k} .
$$

Products Linear forms

Definition (Linear polarization constants)

If E is a B. s. over \mathbb{K} then $c_{\mathbb{K}}(m ; E)$ denotes the best constant in

$$
\left\|L_{1}\right\| \cdots\left\|L_{m}\right\| \leq c_{\mathbb{K}}(m ; E)\left\|L_{1} \cdots L_{m}\right\|
$$

for all $L_{1}, \ldots, L_{m} \in E^{*}$.

Theorem

If E is a B. s. over \mathbb{K} with $\operatorname{dim}(E) \geq m$ then

$$
c_{\mathbb{K}}(m ; E) \leq m^{m}
$$

with equality for $E=\ell_{1}(\mathbb{K})$ and $L_{k}\left(\left(x_{j}\right)_{j=1}^{\infty}\right)=x_{k}, 1 \leq k \leq m$.

- Benítez, Sarantopoulos and Tonge (1998) for $\mathbb{K}=\mathbb{C}$.
- Révész and Sarantopoulos (2004) for $\mathbb{K}=\mathbb{R}$.

Linear polarization constants

Theorem (Arias de Reyna - 1998)
If H is a complex Hilbert space with $\operatorname{dim}(H) \geq m$ then

$$
c_{\mathbb{C}}(m ; H)=m^{\frac{m}{2}}
$$

Equality is attained for

$$
L_{k}(x)=\left\langle a_{k}, x\right\rangle \quad(1 \leq k \leq m)
$$

where $\left\{a_{1}, \ldots, a_{m}\right\}$ is orthonormal.

Linear polarization constants

On the calculation of $c_{\mathbb{R}}\left(m, \ell_{2}\right)$

- It has been conjectured that $c_{\mathbb{R}}\left(m, \ell_{2}\right)=m^{\frac{m}{2}}$.
- Proved for $m \leq 5$: Benítez, Sarantopoulos and Tonge (1998).
- Proved for $m \leq 14$. Pinasco (2022).
- $c_{\mathbb{R}}\left(m, \ell_{2}\right) \leq\left(\frac{3 \sqrt{3}}{e} m\right)^{\frac{m}{2}}$, where $\frac{3 \sqrt{3}}{e} \approx 1.9115$: Frenkel (2008).
- $c_{\mathbb{R}}\left(m, \ell_{2}\right) \leq m 2^{m / 4} \cdot m^{\frac{m}{2}}=m(\sqrt{2} m)^{\frac{m}{2}}$ for sufficiently large m : M. Sarantopoulos and Seoane (2010).

A FEW INSTANCES OF INTEREST

Common choices for the polynomial spaces

(1) Polynomials on the real line of degree at most n and m and coefficients in \mathbb{K}.
(2) Polynomials on the complex plane of degree at most n and m and coefficients in \mathbb{K}.
(3) Polynomials in several variables of degree at most n and m and with coefficients in \mathbb{K}.
(4) Even infinite series.

Common choices for the norms
(1) Sup norm over $[-1,1]$ or \mathbb{D}.
(2) L_{p} like norms.
(3) The ℓ_{p} norm of the coefficients.
(- Lacunary norms.

Polynomials in several variables

Definition

$$
\begin{aligned}
& P(x)=\sum_{|\alpha| \leq n} a_{\alpha} x^{\alpha}, x \in \mathbb{C}^{N}, 1 \leq p<\infty \text {. } \\
& \text { (1) }|P|_{p}=\left(\sum_{|\alpha| \leq n}\left|a_{\alpha}\right|^{p}\right)^{\frac{1}{p}} . \\
& \text { (2) }|P|_{\infty}=\max \left\{\left|a_{\alpha}\right|:|\alpha| \leq n\right\} . \\
& \text { (3) }[P]_{p}=\left(\sum_{|\alpha| \leq n}\left(\frac{n!}{\alpha!}\right)^{p-1}\left|a_{\alpha}\right|^{p}\right)^{\frac{1}{p}} \text {. }
\end{aligned}
$$

(9) $\|P\|_{p}=\left(\int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}\left|P\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)\right|^{p} \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{N}}{2 \pi}\right)^{\frac{1}{p}}$.
(5) $\|P\|_{\infty}=\sup \left\{\left|P\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)\right|: \theta_{1}, \ldots, \theta_{N} \in \mathbb{R}\right\}$.

Problem

Estimate the best λ, μ in $\lambda\|P\| \cdot\|Q\| \leq\|P \cdot Q\| \leq \mu\|P\| \cdot\|Q\|$ for various combinations of the norms above.

Polynomials in several variables

Definition (Concentration)

$P \in \mathcal{P}_{n}\left(\mathbb{C}^{N}\right)$ has concentration $d \in(0,1]$ at degree k if

$$
\left.|P|_{k}\right|_{1}=\sum_{|\alpha| \leq k}\left|a_{\alpha}\right| \geq d|P|_{1}
$$

Theorem (Enflo - 1987)

There is $\lambda\left(d_{1}, d_{2}, n^{\prime}, k^{\prime}\right)>0$ such that for every $P \in \mathcal{P}_{n}\left(\mathbb{C}^{N}\right)$ with concentration d_{1} at degree n^{\prime} and every $Q \in \mathcal{P}_{k}\left(\mathbb{C}^{N}\right)$ with concentration d_{2} at degree k^{\prime} we have

$$
|P \cdot Q|_{1} \geq \lambda|P|_{1} \cdot|Q|_{1}
$$

Acta Mathematica

On the invariant subspace problem for Banach spaces

by
PER ENFLO
Institute Mittag-Leffler Royal Institute of Technology
Djursholm, Sweden
Stockholm, Sweden

Homogeneous polynomials in several variables

Theorem (Enflo - 1987)
There is $\lambda(n, k)>0$ such that for $P \in \mathcal{P}\left({ }^{n} \mathbb{C}^{N}\right)$ and $Q \in \mathcal{P}\left({ }^{k} \mathbb{C}^{N}\right)$,

$$
|P \cdot Q|_{1} \geq \lambda|P|_{1} \cdot|Q|_{1}
$$

Theorem (Beauzamy, Bombieri, Enflo, Montgomery - 1990)
If P and Q are homogeneous of degree n and k and $1 \leq p \leq \infty$:

$$
\begin{aligned}
& |P \cdot Q|_{p} \leq 2^{\frac{n+k}{p^{*}}}|P|_{p} \cdot|Q|_{p} \\
& {[P \cdot Q]_{p} \geq \sqrt{\frac{(n+k)!}{n!k!}}[P]_{p} \cdot[Q]_{p}}
\end{aligned}
$$

Polynomials in one variable

Definition (Lacunary sets)

(a) The 0-lacunary sets are of the form $\{k\}$ with $k \in \mathbb{N}$.
(b) Given $k \in \mathbb{N}$ and $E \subset \mathbb{N}, E$ is k-lacunary if for every positive integer $m,(m+E) \cap E$ is contained in a $(k-1)$-lacunary set.
The set of all k-lacunary subsets of \mathbb{N} is denoted by Ω_{k}.

Definition (Polynomial lacunary norm)
$|h|_{k-\text { lac }}=\left.\sup _{E \in \Omega_{k}}|h|_{E}\right|_{1}$ for $h=\sum_{j \geq 0} h_{j} x^{j},\left.h\right|_{E}(x)=\sum_{j \in E} h_{j} x^{j}$.

Proposition

$$
|q|_{1}=\lim _{k \rightarrow \infty}|q|_{k-\mathrm{lac}} \geq \cdots \geq|q|_{k-\mathrm{lac}} \geq \cdots \geq|q|_{0-\mathrm{lac}}=|q|_{\infty}
$$

Polynomials in one variable

Theorem (Araújo, Enflo, M., Rodríguez, Seoane - 2021)
Given n, C, K, i, and $Q>1$, there is a $\beta=\beta(n, C, K, Q, i)>0$ such that for all polynomials h and q satisfying

$$
\begin{aligned}
|h|_{i-\mathrm{lac}} & \leq Q\left|h_{0}\right|^{\prime} \\
|h|_{1} & \leq K|h|_{i-\mathrm{lac}} \\
|q|_{1} & \leq\left. C|q|_{n}\right|_{1}
\end{aligned}
$$

where $h_{0} \neq 0$ is the independent term of h, we have

$$
|h q|_{i-\mathrm{lac}} \geq \beta(n, C, K, Q, i)|h|_{1}|q|_{1} .
$$

Thank you for your attention

