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Irregular locations

Non stationarity

I Barriers or other irregularities
break the functional relationship
between correlation and distance

Cost-based distances

Stationarity w.r.t. cost-based
distance

I Build cost surface c from
geographical characteristics

I Compute minimum-cost paths
I Set covariance model as a

function of cost-based distance

Positive-definiteness

Choose the covariance model C such that

∀ locations s1, . . . , sn ∈ Region,

∀ scalars α1, . . . , αn ∈ C,

} n∑
i=1

n∑
j=1

αiᾱjC(dcb(si, sj)) ≥ 0,

where dcb is the cost-based distance between its arguments.

Open lines of work

Riemannian Manifolds

I Consider the region M as a Riemannian
manifold

I Define the Riemannian metric as

gs(u, v) = c(s)2〈u, v〉
∀u, v ∈ TxM

I Metric induced
τg(s, t) = inf

{
lengths of the curves

connecting s and t
}

I Characterise the family of
positive-definite functions over M

In an analogous way to Bochner’s and Shoen-
berg’s theorems, this involves developing
Fourier and spectral analysis in this (much)
more general context, in order to compute
transforms of positive measures and to inte-
grate them out over the surfaces of constant
radius.

Pseudo-Euclidean spaces

I Definition
A pseudo-Euclidean space is a vector space of
dimension d, say Rd, with a non-degenerate
symmetric bilinear form

(·, ·) : Rd × Rd→ R
(x,y) = (x1y1 + · · · + xkyk)

− (xk+1yk+1 + · · · + xdyd),

where k is called the index, while the pair
(k, d−k) is called the signature of the space.
The space is denoted E(k,d−k).

I Results
The original locations, together with
their cost-based distances can be
exactly represented in a pseudo-
Euclidean space.

The Bochner’s theorem is still valid in
the pseudo-Euclidean space

I Too big
I The constant-radius surface

turns into a hyperboloid,
causing integration
to diverge.

I The pseudo-Euclidean space is
able to represent any set of dissimilarities. But
this is unnecessary, since the cost-based distance
is a (full) metric.

I The family of positive definite functions (which
includes the trivial constant function 1) is a
subset of those in the space M ,

1 ∈ P(E(k,d−k)) ⊂ P(M).

Bayesian Simulation

I Model

s1, . . . , sn ; Dcb = (rij);


rii = 0

rij ≥ 0

rij = rji

y1, . . . , yn ; y ∼ N (µ, τ 2I)

µ = Xβ + ω

ω ∼ N (0, σ2P)

P = f (Dcb)

f ∼ · · ·
where f is a random function satisfying
f (0) = 1, |f (r)| ≤ 1 and most impor-
tantly, the (correlation) matrix resulting from
the element-wise transformation of the (cost-
based) distance matrix must be positive defi-
nite.

I Simulate f from a given family of
functions
Maybe a non-paramteric family, honour-
ing the restrictions, and hopefuly positive-
definite, most times.

I Accept-reject

Check the positive-
definiteness condition

I Open questions

The procedure lacks theoretical foundation.
The positive-definiteness of the covariance
function is not guaranteed.
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