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Abstract

Acoustic maps are the main diagnostic tools used by authorities for

addressing the growing problem of urban acoustic contamination. Geo-

statistics models phenomena with spatial variation, but restricted to ho-

mogeneous prediction regions. The presence of barriers such as buildings

introduces discontinuities in prediction areas. In this paper we investigate

how to incorporate information of a geographical nature into the process

of geostatistical prediction. In addition, we study the use of a Cost-Based

distance to quantify the correlation between locations.

keywords: non-Euclidean geostatistics, computational methods, acous-

tic maps, Cost-Based distance ,GIS

1 Introduction

Acoustic contamination in urban areas is becoming increasingly con-
sidered as a public health topic by authorities [1]. Noise maps are
the diagnostic tools used for planning prevention and correctional
measures. Noise maps represent, for each location, the mean noise
level over a timespan, expressed on an appropriate scale.

Making a single measurement of noise level is not trivial. There
are many restrictions to take into account, and it is an operation
that takes no less than 15 − 30 minutes of a qualified operator’s
work. In short, observations are expensive.

This led to another approach based on the simulation of deter-
ministic models of noise diffusion which make use of a digitalized
model of the city together with a number of traffic parameters for
each road. But uncertainty and variability of parameters and simpli-
fications in the model propagates error over thousands of iterations
in an unknown and uncontrolled way.

Geostatistics provides a set of statistical tools specifically de-
signed for spatial problems, in which prediction is required over a
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region of interest where some observations have been taken. Pre-
dictions are based on an underlying statistical model that can take
additional information into account as explanatory variables. In
addition, the prediction error can be estimated based on the prop-
agation of uncertainty.

The main drawback with geostatistics is that it assumes the area
of interest to be a homogeneous, unrestricted region. However, it is
clear that buildings and urban infrastructure represent restrictions
or barriers to noise flow.

In this study we develop a methodology for overcoming this prob-
lem, taking advantage of modern Geographical Information Systems
(GIS). We propose the use of a Cost-Based distance to quantify the
correlation between locations. In this way we take into account the
heterogeneous configuration of the environment.

We used GRASS GIS [2] for geographical analysis, and R [3] for
geostatistical computation. Both are open source, free, powerful,
flexible and customizable software. In addition, they communicate
with each other easily through a library called spgrass6 [4], and
they provide scripting capabilities so automatization is possible.
The geoR [5] package implements most geostatistical methods in
R. We adapted some of its algorithms to implementing geostatistical
models with non-Euclidean distances.

In Section 2 we present and define the so-called Cost-Based dis-
tance and compare it with the Euclidean distance. We show that
this is a generalization that overcomes the classical ”homogeneous
and unrestricted region” constraint. We also outline the algorithm
we developed to automatically compute this type of distance.

In Section 3 we explain the processing of geographical informa-
tion, emphasizing the use of Cost-Based distances to relevant objects
as explanatory variables.

In Section 4 we provide a brief review of classical geostatistical
theory, and explain the modifications needed for implementing geo-
statistical analysis with Cost-Based distance.

In Section 5 we briefly outline the whole process and in Section 6
we present an example of its application to the problem of noise
mapping. We make final comments and conclusions in Section 7.

2 Cost-Based Distance

2.1 Motivation and concept

Methods for spatial data analysis have typically been applied to
convex subsets of R

2 [6]. In this situation it is sensible to think of
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Euclidean distance as the natural argument for a correlation func-
tion. However, the presence of barriers within the region of interest
changes things. Imagine two locations at a given (Euclidean) dis-
tance such that they are significatively correlated, because of un-
derlying relevant factors affecting both of them. Now put a barrier
between them that blocks or absorbs the effect of the underlying
factors. This obviously pulls the correlation down. So when bar-
riers exist, the correlation depends on something other than the
Euclidean distance, which therefore cannot account for correlation
by itself.

A natural extension is to associate the correlation between two
locations with the minimum distance that has to be traveled without
crossing any barriers (see Fig. 1). Note that when there is no barrier
at all, this reduces to a Euclidean distance. Little, Edwards and
Porter, who worked with contaminants in estuaries, illustrated this
by saying that distance could be measured as the crow flies, or as

the fish swims [7].
There are more general situations where barriers are not absolute,

but regions are harder (or easier) to cross. For example, a fungus in
a field will easily spread over fertile, warm and protected portions
of land. In contrast, it will spread with more difficulty over exposed
and rocky areas. This heterogeneity can be modeled with a Cost

surface representing how hard it is to cross a given portion of area.
And accordingly, the correlation between two locations should be
associated with the minimum-cost path connecting them. Formally:

Definition 2.1 (Cost Surface). A function over the region of in-
terest with values in the non-negative real numbers, such that the
value at a given location is interpreted as the cost density at that
point.

Figure 1: Cost-Based distance (continuous) vs. Euclidean distance (dotted).
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This is the tool we use to represent every relevant factor affect-
ing correlation. In particular, in this surface are synthesized the
Euclidean distance and the environmental configuration. The Cost
surface is not necessarily continuous, nor even bounded. For exam-
ple, barriers are regions with infinite cost. It should be theoretically
defined over all the plane, since the optimum path must be found
among all possible paths. However, in practice it is enough to define
it over a region covering all relevant locations, by arguing that all
minimum-cost paths must lie within the region.

Any path connecting two locations has an associated cost:

Definition 2.2 (Cost of a path). Given a Cost surface, every path
lying within the working region has an associated cost that is com-
puted by integrating the Cost surface along it.

Definition 2.3 (Cost-Based distance). Given a Cost surface, the
Cost-Based distance between two locations is defined as the cost of
the minimum-cost path connecting them.

In this framework, the standard geostatistical assumptions where
the region is homogeneous is a particular case where the Cost surface
is a constant 1-valued surface, and therefore the minimum-cost path
between two given locations is the straight line connecting them,
hence the Cost-Based distance equals the Euclidean distance. Also,
the more general situation with barriers in the working region is
another particular case where the Cost surface takes the value 1
over non-barrier areas and the value ∞ over barrier areas, therefore
the Cost-Based distance equals the minimum distance needing to be
traveled without crossing any barriers, as was required.

2.2 Relationship with Euclidean distance

A natural question to ask is whether using Cost-Based distances
makes a big difference or not. This will depend on how different (in
some sense) the Cost surface is from a constant surface, which in
turn depends on the geometry of the environment.

In an urban environment, buildings and infrastructure may well
act as barriers for many response variables. Examples are pollutants,
noise, light or anything, in general, that flows through air and is
blocked by walls. Often, Euclidean and Cost-Based distances will
not differ too much. For example, for every pair of points along the
same road, both distances will coincide. However, it is not hard to
find situations where the two types of distance are very different.

Example 2.4. In Fig. 2, consider the distance (both types) between
the red dot and four points labeled A, B, C and D. It can be seen by
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Figure 2: Partial distance map (in meters) associated to the red dot.

the naked eye that A and B are at the same Euclidean distance from
the red dot; however, B is twice as far as A in Cost-Based distance
terms. Conversely, D is twice as far as C, while they are at the same
Cost-Based distance from the red dot.

2.3 Computation

In geostatistics, two distance matrices are implicitly used. One
holds the distances between observation points. This is a symmet-
ric square matrix, since the Euclidean distance from A to B is the
same as the converse. The second matrix holds the distances be-
tween observation points and the prediction location(s), so it is an
n(observations)×m(locations) sized matrix.

Computing both matrices reduces to the general problem of cal-
culating the distance matrix between two sets of points (which we
will call the from and to sets). For the first matrix, the from and to

sets are both the set of observations, while for the second they are
the observation and the prediction location sets respectively.

Our solution to this problem is based on the computation of
distance maps.

Definition 2.5 (Distance map for a given location). A map that, for
every point, represents its Cost-Based distance to the given location.

The color map in Fig. 2 is a partial representation of the distance
map associated with the red dot. In this way, we can know the
Cost-Based distance to the red dot for points A, B, C and D just by
looking at the value of the distance map at their respective locations.

Ingredients for computation are:

• A Coordinate Reference System (CRS), and a working
region. Every entity in our model must be (geo)referenced in
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the same system so we can measure relative distances. Besides,
we need a finite working region of interest where observations
and prediction locations are confined.

• Coordinates of point(s) in the from and to sets.

• Cost surface. A raster map (at some suitable resolution)
covering the working region.

Resolution is a parameter of the computing process that affects
both its speed and accuracy, in opposite directions. Theoretically,
we use a continuous Cost surface, but in practice discretization is
needed and this introduces error. The higher the resolution, the
lower the error. On the other hand, it takes more time to compute
the distance maps and they take up more disk space. Since we
need as many maps as observation points, the difference in time
and space can be very high. So resolution is a balance parameter
which depends in particular on n, the number of observations.

The value assigned to a raster cell in the discretized Cost surface
represents the integration of the continuous ideal surface over a path
traversing that specific cell. Obviously the exact value depends on
the relative position of the path with respect to the cell. Hence,
the assigned value can only be an approximation, depending on the
size of the cell, i.e. the resolution of the raster. As a result, the
constant value of the discretized Cost surface is another parameter
closely related to the resolution parameter. In our application we
used the same value for both parameters. Resolution is 5 metres,
so each raster cell represents a 5 m × 5 m portion of land, and the
cost assigned to each (non-barrier) raster cell was also 5, meaning
that traversing the cell requires a distance of approximately 5 metres
long.

The distance maps are cumulative cost surfaces, computed by
expanding from the associated point and accumulating the cost of
each cell. There are several expansion strategies. For example, we
can expand only to adjacent cells or we can expand also to diag-
onal cells, multiplying the cost of the cell by a correction factor.
A more sophisticated alternative is also expanding as the Knight
moves, which improves accuracy significantly. Over a constant Cost
surface, the accumulated cost grows outwards in 4, 8 or 16 directions
respectively (see Fig. 3).

Since we are working with georeferenced information, the natu-
ral environment to work within is a Geographical Information Sys-
tem(GIS). Most GIS software implements algorithms to compute
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(a) (b) (c)

Figure 3: Level curves for a constant Cost surface with different expansion
strategies. (a) Expanding to adjacent cells only (b) Expanding also in diagonals
(c) Expanding also with Knight’s move.

the cumulative cost surfaces, which is the most demanding step in
terms of computational cost.

We implemented this process in GRASS GIS. The algorithm
takes as input a raster map representing the Cost surface, a vec-
tor layer with the from set of points, and one or more vector layers
with the to set(s). Null-valued cells in the cost raster are interpreted
as infinite cost. It generates (temporal) raster distance maps (cumu-
lative cost surfaces) for each of the from points, making use of the
r.cost [8] GRASS base function. Then, for each of the to layers of
points it generates as many columns as from points in the to layer’s
attribute table, filling them with values collected with corresponding
values picked from the distance maps.

In summary:

FOR each point A in the from set:

– Compute its distance map D

– FOR each point B in the to set:

Pick value of D in position B

Using the observation layer as from and again the observation and
prediction location layers as to, we get the two Cost-Based distance
matrices required, with a single and automatic command.
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3 GIS analysis

The first step in the GIS analysis stage is to create the prediction
location layer, which will contain the points where predictions are
required, and also the additional geographical information associ-
ated to each of the locations that will be used as covariates in the
external trend estimation.

3.1 Prediction Locations

In the default case that no specific point is of particular interest, we
assume that prediction is required over all possible areas within the
working region. That is, we want to predict everywhere it makes
sense. Deciding whether predicting somewhere makes sense or not
requires geographical information that has to be provided in the
form of a GIS layer(s).

A parameter of the process is the resolution of the prediction
locations, i.e. how fine the grid is. This will affect the resolution of
the final prediction maps. With this resolution we define a vectorial
regular grid covering the region. We now make use of the input layer
with either predictable or unpredictable areas (we should be able to
compute one of them from available geographical information). In
the former case we take the intersection with the predictable area,
while in the latter case we subtract the unpredictable area from it.
At this point, we have a tessellation of the predictable areas from
where we can pick the centroids of the polygons as the prediction
locations.

In our application, we had a layer with the buildings in the city,
which were the places where we did not want to predict. So we
started by creating a vector grid with the selected resolution and
subtracted the building layer from it. The centroids of the resulting
polygons were then picked as the prediction locations.

Fig. 4 shows the prediction area tessellation with centroids, once
buildings (in beige) had been subtracted. It can be seen that this
process generates a set of locations at the desired resolution, or
higher in those cases closer to buildings.

Note that the operations carried out here are typical of GIS anal-
ysis: the creation of a vectorial grid, intersection/subtraction with
another vectorial layer and centroid extraction. Since we are han-
dling geographical information, GIS is the natural environment to
work within at this point.
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Figure 4: Automatic creation of prediction locations.

3.2 Incorporating additional geographical information

Geostatistical computations can be performed jointly with regres-
sion models, enabling the use of explanatory variables which may
provide additional information about the response variable. In most
environmental applications, for example, altitude turns out to be a
very informative covariate.

Distances to relevant objects can also provide valuable informa-
tion in some situations. For example, distances to sources of chemi-
cal waste disposals in contamination problems, or distances to noise
sources in acoustics. Of course, for the reasons presented in previous
sections, Cost-Based distances should be used in these models.

Some GIS analysis is required in order to make this possible.
A distance map has to be computed for every relevant entity of
interest. Finally, an iterative process, the analog to that described
in Section 2, picks up the corresponding values for every observation
and prediction location.

3.3 Representation of results

One final stage where GIS analysis is of particular use is, of course,
the representation of the resulting maps. The outcomes of geostatis-
tical techniques are prediction values and prediction error estimates
for each of the prediction locations. These values are to be returned
to the GIS as two new attributes of the prediction location layer.
Recall that each prediction location originated as the centroid of a
polygon, which was part of a tessellation of the predictable area. So
it is sensible to assign those resulting values to each of the corre-
sponding polygons, and to paint each polygon according to them,
based on a common color scale. Again, both steps are easily per-
formed on any GIS software.
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4 Computing Cost-Based Geostatistics

4.1 Overview of geostatistical theory

Geostatistics is a branch of statistics that encompasses the tech-
niques that apply to geographical analysis. It is said to have orig-
inated in the early 50’s from the work of the South African mine
engineer D. G. Krige [9], and developed and systematized by the
work of Georges Matheron [10]. A classical reference on the field
is [11].

There is a number of applications for geostatistical methods. The
common underlying characteristic is that observations can be un-
derstood as a (partial) realization of a Stochastic Process over a
continuous spatial region D ⊆ R

2.

{Z(s) : s ∈ D}

This process is commonly assumed to be Gaussian, isotropic

and intrinsically stationary. That is, for any collection of loca-
tions s1, . . . , sn, with each si ∈ D, the joint distribution of Z =
{Z(s1), . . . , Z(sn)} is multivariate normal, and the variance of the
value differences between two locations depends only on the dis-
tance separating them. This variance is twice that known as the
semivariogram function γ(r).

Var [Z(s1) − Z(s2)] = 2γ(r), r = ‖s1 − s2‖

In order to define a legitimate model, the semivariogram function
γ(r) must be negative-definite. This condition imposes non-obvious
constraints so as to ensure that, for any integer m, set of locations
si and real constants λi, the linear combination

∑m

i=1 λiZ(si) will
have non-negative variance. In practice, this is usually ensured by
working within one of several standard classes of parametric models
for γ(r).

Estimation of the correlation structure is usually accomplished in
terms of the semivariogram function by fitting the empirical semivar-
iogram computed from observed data. There are a variety of meth-
ods for estimating the semivariogram function parameters. Our ap-
proach here is to use maximum likelihood methods, simultaneously
fitting the mean function µ(s), possibly depending on additional
covariates, and the parameters of the semivariogram function γ(r).

Once a model is fitted to data, we are interested in prediction.
There are many geostatistical approaches to this problem, but the
most commonly used spatial prediction method is known as kriging.
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Most methods use a weighted average of the sample values to gener-
ate the prediction; sample points near the prediction’s location are
given larger weights than those far away. Kriging determines these
weights based on the semivariogram function.

Its popularity owes much to some nice properties of the kriging
predictor. Being the Best Linear Unbiased Predictor (BLUP, in
terms of quadratic error), it is remarkably robust to violations of
model assumptions [12], and provides standard error predictions.

Kriging assumes that the observation vector Z is generated by
an isotropic, intrinsically stationary Gaussian process with mean
function µ(s) = β0 +β1f1(s)+ . . .+βpfp(s) and a known variogram
function γ(r), where the fi(·) are functions of the spatial location s

or explanatory variables associated to the locations.
The kriging predictor at a given site s0 is written as a linear

combination of the data at the sampled sites s1, . . . , sn:

Ẑ(s0) =
n

∑

i=1

λiZ(si)

where λ1, . . . , λn are chosen to minimize the mean squared pre-
diction error

E
[(

Ẑ(s0) − Z(s0)
)2]

subject to the unbiasedness constraint that E
[

Ẑ(s0)
]

= E
[

Z(s0)
]

.
This optimization problem leads to a constrained system of equa-

tions, with solution (see [11], or [13]):

Ẑ(s0) =
[

γ + X(X′Γ−1X)−1(x − X′Γ−1γ)
]

′

Γ−1Z

and prediction variance:

σ2(s0) = γ ′Γ−1γ −
(

1′Γ−1γ − 1
)2

/
(

1′Γ−11
)

where γ = (γ(‖s1−s0‖), . . . , γ(‖sn−s0‖))
′, x = (f0(s0), f1(s0), . . . , fp(s0))

′,
Γ =

(

γ(‖si − sj‖)
)

, and X =
(

fj−1(si)
)

, being f0(s) = 1 ∀s.

4.2 Use of non-Euclidean distances

Geostatistics assumes that locations which are close together are
more similar than locations that are far apart. The kriging predic-
tor uses weights that are calculated according to the value of the
variogram, which is a function of Euclidean distance. As was ex-
plained in Section 2, there are many situations where the argument
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r of the variogram function is represented more naturally by the
Cost-Based distance.

Various researchers have come to this conclusion since the work
of Little et al. and Rathbun in the mid-90’s in the field of geostatis-
tical analysis in estuaries, where they found it natural to use ”wa-
ter distances”. [14] and [15] followed them. Curriero showed that
most traditional parametric covariance models are not valid for non-
Euclidean distances. Hence, such distances cannot be used without
proof of validity of the model. Other authors like [16], [17], [18],
and recently [19] have explored different approaches such as moving
window kernels or Multidimensional Scaling.

Geostatistical computations are better carried out within a pow-
erful statistical environment, such as R. Instead of programming
ad-hoc geostatistical algorithms, we adapted the geoR package by
adding flexibility and enhancing it.

There are three major stages in classical geostatistical analysis
computation that need to be adapted: empirical variogram com-
putation, variogram model parameter fitting and the actual kriging
prediction. Apart from observation data and prediction locations
needed for standard kriging, we also need the two Cost-Based dis-
tance matrices previously computed, as explained in Section 2.

The empirical variogram is computed from the observation data
only. It classifies pairs of observations into groups according to their
distance, and then computes an estimator of the theoretical vari-
ogram value for that distance based on the differences between the
observed values. In order to make a Cost-Based empirical variogram
it is enough to make the initial classification based on the Cost-Based
distance values given in the corresponding matrix, rather than cal-
culating Euclidean distances. Note that this modification produces
a different grouping of observation pairs. Therefore, variogram esti-
mates will be different.

The variogram model parameter fitting is also made based on ob-
servation data only. It is typically accomplished through maximum
likelihood methods, basically trying out many possible combinations
iteratively and keeping the best. This implies computation of the
covariance matrix for each combination being tested. All we need is
to make sure that the covariance matrix is computed based on the
Cost-Based distances provided by our previously computed matrix.

Finally, there is the kriging prediction. At this point, the covari-
ance model is assumed to be known. But here again, we need to
make sure that the covariance matrix of the observations is com-
puted with the Cost-Based distances. In addition, the covariance
between observation points and prediction locations are to be com-
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puted in order to make predictions. So this is when the second of
the Cost-Based distance matrices is to be used.

5 Process Overview

One of the goals of the present study was to develop a computa-
tional tool to perform Cost-Based geostatistics with minimal user
intervention. The whole process is outlined next for the particular
case of absolute barriers.

GIS analysis
Inputs: geographical environment, barriers map, prediction res-
olution parameter.

1. Create a regular vector grid covering the whole working
region with the specified resolution.

2. Crop the areas where barriers exists. The result is a tes-
sellation of the prediction region.

3. Extract as points the centroids of each polygon from the
tessellation.

4. Incorporating additional information as covariates: Cost-
Based distance to relevant entities. Iterate over each one
of the entities of interest.
Inputs: entity and prediction region maps, observation and
prediction location maps, cost computation resolution and
maximum cost parameters.

(a) Rasterization of the entity map with the given resolu-
tion.

(b) Rasterization of the prediction region with the given
resolution and with a raster value equal to the resolu-
tion size.

(c) Computation of the distance map from the entity up
to the maximum cost.

(d) Pick up Cost-Based distances for both observation and
prediction points.

5. Computing Cost-Based distance matrices: observations-
observations and observations-locations
Inputs: observation and location maps, Cost surface (bar-
riers map).

(a) Computation of the distance maps for each of the ob-
servation points.
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(b) Pick up Cost-Based distances for both observation and
prediction points and for each distance map.

Statistical prediction
Inputs: observations and prediction location maps, with at-
tribute tables containing covariate values and Cost-distance
matrices.

1. Selection of the regression model. Transformation and se-
lection of covariates, interactions, etc.

2. Cost-Based empirical variogram computation.

3. Variogram model family selection and Cost-Based param-
eter estimation.

4. Cost-Based kriging prediction.

5. Return the prediction location map to the GIS with the
attributes of prediction values and error estimates added.

Presentation of results
Inputs: prediction location maps with attribute tables contain-
ing prediction values and error estimates, tesselated prediction
region, and everything else required for representation.

1. Transfer the attributes of prediction values and error esti-
mates from the locations to the corresponding polygon of
the tessellated prediction region map.

2. Configure thematic map options and show results.

6 Acoustic maps in the presence of barriers

6.1 Sample data

As a pilot application, we wanted to make a noise map of the Malilla
neighborhood in the city of Valencia. We have made a set of 52 noise
measurements in various points distributed over the neighborhood.
A subset of measurements was taken very close to each other along
two blocks: one of them situated on an avenue, the other on a small
street. This was done to enable the estimation of the variogram in
short-range distances.

The neighborhood is not homogeneous. In fact it has great con-
trasts, having big avenues very close to small and quiet streets. Traf-
fic density explains much of the noise difference between locations,
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so every street in the neighborhood was classified according to its
traffic density. Avenues are category 1 roads, medium traffic den-
sity roads are category 2, and quiet streets are category 3 roads.
Fig. 5 shows the neighborhood with the observation locations and
road classification.

6.2 Geostatistical setup

Buildings are considered non-transparent barriers for noise. Traf-
fic noise spreads around the neighborhood between the buildings
through open areas only. For this reason, we believe that Cost-Based
distance to roads of higher traffic density are relevant explanatory
variables. We consequently computed the Cost-Based distances to
the closest road of each type in order to use them, once properly
scaled, as covariates in a regression model. Figure 6 shows the dis-
tance maps (up to 100 m.) for each of the three road types.

We emphasize the use of Cost-Based distance instead of Eu-
clidean distance for explanatory variables, since there are config-
urations where a point is very close to an avenue, though it is lo-
cated behind a building that prevents the noise from reaching it.
In addition, as explained in Section 2, Cost-Based distance explains
the correlation between locations better than Euclidean distance. A
natural question to ask is how different the values from the two types
of distances are. Figure 7 shows the Cost-Based distance between
all pairs of observations versus their Euclidean distance.

Note the step at approximately 95 metres. Pairs of observa-
tions under this distance threshold are those located along the same
block, without any obstacle. Thus, there are no practical differences
between the two types of distance. In contrast, from 95 metres on-
wards, there is a variety of relative configurations and consequently
the relation between the types of distance is much more variable.
This variability remains approximately constant as distances in-
crease. Finally, note that Cost-Based distances progressively sep-
arate from Euclidean distances.

6.3 Prediction results

Figure 8 shows the final output of the whole process: the map with
the prediction for each location and the map with the standard error
for that prediction, which is a measure of the uncertainty for that
prediction.

It is interesting to compare these results with those that arise
if Euclidean distances are used. The map looks almost the same,
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Figure 5: Initial setup. Malilla neighborhood with observation points and the
classification of roads according to traffic density. Red lines represent avenues
with high traffic density, while yellow and green are medium and low traffic
density roads respectively. Red circles represent the locations were observations
were measured.

Figure 6: Distance maps to the closest road of each type.
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Figure 7: Cost-Based vs. Euclidean distances for all pairs of observations.
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(a) noise prediction (dBA) (b) prediction error (dBA)

Figure 8: Cost-Based kriging results. Sites of observations are lightly marked
for reference.

so we should focus on the differences in the predictions and in the
prediction errors.

However, note that both approaches are built over the same re-
gression model, with Cost-Based distances to the closest roads of
each type as covariates. This means that the Euclidean approach
results here are not fully Euclidean. Thus, the differences that are
analyzed in this section are due to the different approaches in cor-
relation structure only.

The prediction differences between Cost-Based and Euclidean
kriging for this pilot example range from −1.655 dBA to 1.876 dBA
in absolute terms, and from −2.7% to 3.1% in relative terms. On av-
erage, differences are very close to zero, and in 95% of the locations,
less than ±1%.

With regard to uncertainty, the differences in standard error
range from −0.25 dBA to 0.65 dBA. In relative terms, these dif-
ferences span the much more relevant and wider range of −5.8%
to 27.1%. In 77% of the locations, Cost-Based prediction is more
accurate than Euclidean prediction, but there are a few locations
where uncertainty is much higher, reaching up to 27% more error
(see Fig. 9).

What is more interesting is the spatial distribution of these dif-
ferences, in order to interpret in which situations and configurations
the two approaches diverge (see Fig. 10).

Note that the greatest difference occurs in the enclosed area in
the upper section, where the Cost-Based approach predicts a higher
noise level with the greatest difference. For the Euclidean approach,
the enclose do not exist; hence, the observations from the ”quiet”
road have more influence than they should because of the buildings.
In contrast, the Cost-Based approach understands that the region
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Figure 9: Distribution kernel estimates of differences between Cost-Based and
Euclidean predictions and prediction errors, and sample summary values.

(a) noise prediction differences (dBA) (b) error relative differences (%)

Figure 10: Differences between Cost-Based and Euclidean kriging results. Sites
of observations are lightly marked for reference.

is much more influenced by the noise from the avenue, therefore it
predicts a higher noise level.

The map with relative differences in prediction error is mostly in
tones of blue, which means that the Cost-Based approach is gener-
ally more accurate. An exception is located in the same area men-
tioned before, which is easy to explain, since the Euclidean method
”thinks” that there are lots of observations very close around, so
it assigns great precision to its prediction. On the other hand, the
Cost-Based method ”knows” that observations are not that close,
therefore the uncertainty is larger.

7 Conclusions

The most interesting aspect of this work lies in the general methodol-
ogy for overcoming the geostatistical restriction on the homogeneity
of the prediction region. Also, the combination with Geographical
Information Systems enables the use of distances to relevant objects
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as covariates, which provide valuable information that could not be
exploited otherwise.

Noise mapping in urban areas benefits from this methodology
since buildings and other urban infrastructure are relevant restric-
tions in the noise flow. The possibility of applying geostatistical
methods enables us to obtain results based on statistical models,
providing reliable predictions together with estimations of uncer-
tainty, which commonly used deterministic methods cannot provide.
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