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Abstract

Public bike-sharing programs have been deployed in hundreds of cities world-

wide, improving mobility in a socially equitable and environmentally sustainable

way. However, the quality of the service is drastically affected by imbalances

in the distribution of bicycles among stations. We address this problem in two

stages. First, we estimate the unsatisfied demand (lack of free lockers or lack of

bicycles) at each station for a given time period in the future and for each possi-

ble number of bicycles at the beginning of the period. In a second stage, we use

these estimates to guide our redistribution algorithms. Computational results

using real data from the bike-sharing system in Palma de Mallorca (Spain) are

reported.
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1. Introduction

A public bike-sharing system consists of a set of stations scattered over the

city and a set of bicycles available to the system users. A user can take a bicycle
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at a station, use it for a short journey, and leave it at the same or any other

station. Since the first system was established in Amsterdam in 1965, there has5

been a rapidly increasing number of cities providing their citizens with this type

of service, which has many advantages of various kinds: it is an environmentally

sustainable and socially equitable mode of transportation, it can be used as

part of an intermodal public transport system, it reduces motorized traffic and

therefore emissions of contaminants, and it promotes a healthier way of life.10

According to the consultancy company MetroBike LCC ([1]), in July 2014 721

cities had a public bike-sharing system, with a total of approximately 814000

bicycles, and 228 were planned or under construction. These systems range

from less than one hundred bicycles in small towns to many thousands in cities

like Paris (20600), Hangzhou (78000), or Wuhan (90000).15

The most important factor for the success of a public bike-sharing system is

its ability to satisfy the varying demands of the users. Underlying the random

variations of everyday demands, there are patterns of demand that have to

be identified and estimated and the system has to be planned and managed

to maximize the level of customer satisfaction. Situations in which the user20

arrives at a station to take a bicycle and finds the station empty, and those

in which he/she arrives at the station to leave the bicycle and the station is

completely full, have to be avoided as far as possible. For the bike-sharing

system to become a sensible alternative to other modes of transportation, it

has to be reliable. The everyday users have to be confident that they will find25

bicycles to start their trips and available lockers to leave them when the trips

are finished wherever and whenever they need them. This can be achieved in

the three phases of design and operation. First, at a strategic level, the number

of stations and their location and size have to be decided. Second, at a tactical

level, the number of bicycles in the system has to be determined. Third, at30

an operational level, a bike-repositioning system has to be adopted for moving

bicycles from stations with an excess to stations with a shortage in order to

satisfy the demands forecast for the next periods.

Repositioning is done by means of light trucks based at one or several depots,
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that pick up bicycles from stations at which there are too many and move them35

to stations where there are too few. Sometimes there are bicycles at the depots,

for instance those that were damaged and have been repaired, and these can

also be used when constructing the repositioning routes.

There are two types of repositioning systems. In the static case, the system

is considered closed, so the users do not interact with it, its initial state is40

considered known and fixed, and the aim of the repositioning is to get the

system to a desired, predefined state. In the dynamic case, the repositioning

system operates while the bike-sharing system is being used. Therefore, users are

continuously taking and leaving bicycles at the stations, modifying their states.

The dynamic repositioning system has to take these changes into account and45

adapt its decisions to the actual state of the stations.

In this study we focus on the static repositioning system at the operational

level. In the city of Palma de Mallorca (Spain), whose bike-sharing system gave

rise to this study, the system operates every day from 07:00 until 24:00. Every

night, when the system closes, the states of the stations do not correspond to the50

desired states for the next morning. Therefore the trucks of the repositioning

system move some bicycles between stations in order to leave the system as close

as possible to the ideal state when it opens in the morning.

There are several features of the Palma system and of our approach that

make this study different from previously published studies. First, the desired55

state of each station is not given but calculated from the system information.

Most of the previous papers on the static repositioning problem consider the

desired or target state of each station as a given constant, assuming implicitly

that these targets are attainable. In our approach, the ideal state of each station

is calculated from the database in which the system has recorded every single60

bicycle move. Using these data, we can estimate the demands (in both direc-

tions, taking and returning bicycles) for every time interval and compute the

unsatisfied demand for each possible station state. Using these estimated unsat-

isfied demands and the number of available bicycles in the system we calculate

the state of each station that minimizes the overall cost of unsatisfied demands.65
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If there are enough bicycles to attain for each station the state that minimizes

its estimated unmet demand, that will be the solution. However, if the number

of available bicycles is lower than the sum of these individual optimal states,

the available bicycles have to be placed at the stations where they minimize the

overall unsatisfied demands.70

A second special characteristic concerns the design of the truck routes. The

city is not split beforehand into as many zones as there are trucks available.

In our proposal, all the trucks work jointly and the routes are constructed

simultaneously, taking into account balance criteria such as the total distance

or total time of each route. There is also flexibility about the initial and final75

points of the truck routes and about the number of bicycles a truck can carry

when it starts its route.

A third distinctive characteristic of our proposal is the management of dam-

aged bicycles. These damaged, out-of-service bicycles are detected by the system

and we were asked to include their collection in the repositioning routes. In our80

system, when the trucks visit the stations these damaged bicycles are collected,

whenever possible, and taken to the depot. In this way, no special collection

routes for damaged bicycles are needed.

2. Previous work

There are a number of existing papers in the literature about the static case85

(Benchimol et al. [2], Chemla et al. [3], Dell’Amico et al. [4], Raviv et al.

[5], Rainer-Harbach et al. [6], Raidl et al. [7], Papazek et al. [8], Schuijbroek

et al. [9], Erdoğan et al. [10] and Ho and Szeto [11]), but very few on the

dynamic case (Nair and Miller-Hooks [12], Contardo et al. [13] and Caggiani and

Ottomanelli [14]). Although all of them deal with the problem of repositioning,90

the objectives, constraints, and solution techniques are different.

Among the different objectives considered, we find minimization of total

traveling cost or time ([2], [3], [4]), total unmet demand ([13]), maximum tour

length ([9]), the sum of travel time and holding cost ([10]), the weighted sum of
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total time of the routes, deviation from the targeted number of bicycles at each95

station, and number of moves between stations ([8], [15, 16]).

The characteristics of the problem considered in each study are also differ-

ent. For example, in some of them only one vehicle is available ([2], [10], [11]).

In others, a limit to the number of visits to the stations is imposed: only one

([4], [11]), or a maximum fixed number ([3]). In some cases, the perfect balance100

requirement is a hard constraint ([2], [3]) but in most of them the imbalances

are penalized. A key question is how the target state for each station is com-

puted. In most of the studies, this quantity is fixed, generally at half the station

capacity, as in Rainer-Harbach et al. [6], Raidl et al. [7], and Papazek et al.

[8]. Schuijbroek et al. [9] compute a lower and upper bound on the service level105

requirement of each station by using a queuing system and Raviv and Kolka [17]

compute a measure of dissatisfaction for different replenishment periods, given

an initial inventory, the station size, and stochastic demand patterns.

Several types of heuristics have been proposed. For instance, a 9.5 approx-

imate algorithm ([2]), a cluster-first, route-second algorithm ([9]), tabu search110

([3], [11]), variable neighborhood search ([6], [7]), PILOT/GRASP ([8]), ant

colony and constraint programming ([15, 16]), and matheuristics ([18]). In three

studies ([4], [5], [19]), MIP formulations and/or relaxations of the problem are

solved. To our knowledge, only four exact methods have been proposed: one

branch-and-prize ([13]) and three branch-and-cut algorithms ([3], [10], [19]).115

3. Description of the problem and data analysis of the Palma system

A bike-sharing system is composed of a set of stations, from which the bi-

cycles are taken and to which they are returned. The registered users can take

a bicycle from any station at any time, use it, and return it to another station.120

Each city has its own rules of usage. In Palma de Mallorca, the first 30 minutes

are free of charge and a small fee is paid for extra time. Each movement is

recorded and stored in the system’s database. The quality of the service can
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be measured as the amount of time a station remains empty or completely full,

and either the withdrawal demands cannot be satisfied or the bicycles cannot125

be returned. Another alternative measure would be to count or estimate the

number of unsatisfied demands of both types at each station. The repositioning

system includes one or several depots to which damaged bicycles are brought

to be repaired and from which repaired or new bicycles are incorporated into

the system, and a set of vehicles that take bicycles from the depots or from the130

stations and carry them to other stations in order to improve the quality of the

service.

The system can be represented by a complete graph G = (V,E), where

V = S ∪D ∪V contains a vertex for each depot, each station, and each vehicle,

representing its initial location.135

For each station i ∈ S (set of stations) we know:

• Ci, capacity (number of lockers),

• bsi, current number of bicycles ready to be used,

• bsdami , current number of damaged bicycles.

For each vehicle l ∈ V (set of repositioning vehicles):140

• Pl, capacity (number of places),

• bvl, number of bicycles in good condition on the vehicle,

• bvdaml , number of damaged bicycles on the vehicle.

For each depot k ∈ D (set of depots):

• bdk, number of bicycles stored in the depot.145

We also know:

• tij , travel time from location i to location j; i, j ∈ S ∪ D ∪ V ,

• tpark, parking time,
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• tload, time to load/unload one bicycle.

As of November 2013, in bicipalma, the bike-sharing system of Palma de150

Mallorca (Spain), there were 28 stations and over 200 bicycles. The capacity of

each station varies from 10 to 30 bicycles. Figure 1 shows the distribution of

the stations on the Palma map.

Figure 1: Map of Palma stations

The usage of each station is neither uniform nor correlated with its capacity.

Figure 2 shows the capacity and the average number of movements on working155

days. The horizontal axis shows the stations’ capacities (10, 15, 20, 30 lockers)

and the vertical axis the average daily movements at each station. A large

variability can be observed. Small stations with 10 lockers may have up to 60

movements, while large stations with 30 lockers may have far fewer, less than one

move per locker. It could be argued that the system is not well designed, but in160

this study we are only concerned with attaining the maximum quality of service

for a system in which the capacity of the stations is fixed. Rather than the total

number of daily moves, we are interested in the distribution of withdrawals and

returns over the course of the day, because the difference between the two types

of moves will produce intervals in which the stations are empty or completely165

full.

Figure 3 shows the average number of withdrawals and returns for each
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Figure 2: Capacity and average daily movements of the stations

hour of the working day at four selected stations. In November 2013, when

the data were taken, withdrawals were only allowed in the Palma system from

07:00 to 22:00 hours on weekdays (07:00 to 24:00 on weekends), while returns170

were possible at any time. The stations have been chosen to show different

behaviors. At Station 111 (top right) withdrawals and returns follow a very

similar pattern and we could say that the station is self-regulating. Station 116

(bottom left) shows an imbalance only at the beginning of the day, which could

easily be offset by having the station full at opening time. Stations 104 and175

122 are more unbalanced. There is one period in the day in which there are

many more returns than withdrawals and another in which the situation is just

the opposite. As these two imbalances are not too different in magnitude, they

can be offset if when the service starts in the morning Station 104 is almost

empty to allow many returns, while Station 122 should be full or almost full180

to satisfy the many withdrawal demands. Note that if we define the netflow as

the difference between the number of withdrawals and the number of returns,

there is an initial state in which all unsatisfied demands would be avoided if the

difference between the maximum and the minimum netflow values is lower than

or equal to the station capacity. In the cases in Figure 3, if instead of average185
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values they represented the values for a specific day, as the differences between

minimum and maximum values of the netflow at each station were lower than

the station capacities (10 lockers at Stations 104 and 116; 20 lockers at Stations

111 and 122), it would be possible to find an initial state for which there would

not be any unsatisfied demand.190

Figures 2 and 3 clearly indicate that each station works in a different way

and the analysis has to be done separately for each of them.
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Figure 3: Withdrawals and returns over the course of the day for selected stations

Figure 4 indicates another source of variability between working and weekend

days. For each station the corresponding line in the figure shows the average

number of withdrawals and returns for each day of the week. The behavior of195

the users at each station is very similar on weekdays, while it is clearly different

on Saturdays and on Sundays. Therefore, the analysis has to separate these

three types of day.

In this study we address the static repositioning problem and divide it into

two phases. In the first phase, described in Section 4, using the data stored200

in the system’s database, we estimate the demands for bicycles and lockers at

every station for each hour of each day of the week and use them to calculate the

expected costs of the unsatisfied demands for each initial state of each station.

In a second phase, described in Section 5, we decide first which is the best set

of initial states attainable with the available bicycles and then we construct the205
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Figure 4: Average number of movements for each station and each day of the week

routes for the repositioning vehicles. In Section 6 we present the computational

experience and Section 7 contains the conclusions.

4. Forecasting unsatisfied demand

The measure of service quality of the bike-sharing system considered in this

study is a measure of cost that combines the two possible situations of unsatisfied210

demand, namely:

(a) A user wishing to withdraw a bicycle finds the station empty.

(b) A user returning a bicycle finds the station full.

Let ηw and ηr be the unknown number of thwarted withdrawals and returns

within a temporal window (t0, t0 + H), respectively. We define the measure of

service-quality of the bike-sharing system in that time interval as:

κ = ηw + ληr
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where λ is a weighting parameter to balance the relative importance assigned

to the undesired situations (a) and (b). In what follows we have used λ = 1,215

but the methodology allows for any λ ≥ 0.

Note that the measure of service-quality of the system as defined above is

in fact the sum of the service-quality measures of each station in the system.

Note also that the number of thwarted withdrawals and returns in any given

station, i ∈ S, are random variables whose distributions depend on the number220

of available bicycles j at time t0; i.e., the initial state of the station. Therefore,

we will denote this stochastic cost by κij .

The goal of this first phase of the study is to compute, for any given initial

time t0 and any temporal horizon H, a two-way table giving a forecast κ̂ij of the

measure of service-quality for station i assuming there are j bicycles available225

at the initial time. This table can then be used by the routing algorithm to

evaluate each of the possible repositioning schemes.

The number of thwarted withdrawals and returns is predicted by fitting

a statistical model, described below, using historical records of withdrawals

and returns. The parameters of that model can be estimated and updated230

periodically, in order to feed the predictive algorithm. Using these estimated

parameters we can simulate the probabilistic process of withdrawals and returns,

and derive the expected number of failures-of-service as the mean of the thwarted

withdrawals and returns across a sufficiently large number of simulations. As

this is computationally demanding, we also propose a very accurate approximate235

iterative algorithm that reduces the computation time by an order of magnitude.

4.1. Statistical inference on withdrawal and return rates

We conducted an exploratory analysis of the historical records in order to

identify the factors that drive the behavior of users. We found very clear dif-

ferences between the dynamics of different stations, with some working mostly240

as either providers or receivers at different times of day. We also found clear

differences with respect to the days of the week; we distinguish three day types:
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weekdays, Saturdays, and Sundays. So we fit independent models to each sta-

tion i ∈ S and each type of day d.

We assume that the withdrawals and returns at a station i for all days of

type d are realizations of the same stochastic processes

W(id)
t and R(id)

t ,

respectively. These are assumed to be independent and inhomogeneous Poisson245

Processes with rate parameters ωid(t) and ρid(t), respectively. Inhomogeneous

Poisson processes are widely used for modeling nonstationary demands ([20]).

In what follows, we omit the notation (id) on the understanding that everything

will depend on the specific station i and the type of day d.

For practical computational purposes, we discretize the operational temporal250

window (t0, t0+H) into M small intervals of length s minutes, assuming that the

rate parameter functions ω(t) and ρ(t) are constant in those intervals; i.e., ω(t) =

ωm and ρ(t) = ρm if t0+(m−1)s < t < t0+ms, for m = 1, . . . ,M , where ωm and

ρm are the mean of the functions ω(t) and ρ(t) in the corresponding interval m.

This is equivalent to assuming that the number of withdrawals and returns, both255

satisfied and unsatisfied, in the mth interval follow two independent Poisson

distributions with parameters sωm and sρm, respectively.

The parameter ωm can be estimated by maximum likelihood from the his-

torical records. Let n be the number of days in the historical records of the

same type we are considering, let Wlm be the observed number of withdrawals

during interval m of day l = 1, . . . , n, and let Tlm be the time in minutes the

station was available for withdrawals (i.e. not empty) within interval m of day

l. Then, the maximum likelihood estimator of ωm is given by:

ω̂m =

∑n
l=1Wlm∑n
l=1 Tlm

.

The maximum likelihood estimator of the parameter ρm, ρ̂m, is obtained in

a similar way.
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4.2. Predictive algorithm of unsatisfied demand260

For any given station i and day type d we will compute a point forecast of the

number of thwarted withdrawals and returns in a temporal window (t0, t0 +H),

assuming that the station begins with j available bicycles. Our forecasts are

based on the previous inhomogeneous Poisson processes using the estimated

mean rates of withdrawals and returns: ω̂m and ρ̂m, m = 1, . . . ,M .265

4.2.1. Simulation approach

The most straightforward approach to this computation is by simulating the

processes of withdrawals and returns during the time span H while keeping

track of the number of available bicycles and lockers in the station. For this,

we use the fact that the time between arrivals in a Poisson process follows an270

Exponential distribution with the same rate. Thus we can simulate every single

arrival and update the station status in continuous time. We can then simply

count the number of thwarted withdrawals and returns in that period for each

one of the realizations. Their average values give a Monte Carlo approximation

to the point forecast of thwarted withdrawals and returns ηw and ηr, which we275

then combine linearly to calculate the forecasted cost κ̂ij of having j available

bicycles at station i.

This approximation can be made as accurate as desired by increasing the

number of simulations. However, the computational burden increases rapidly.

4.2.2. Approximate approach280

To speed up the forecasting computation we propose an approximate method

for which we need a finer partition of the temporal window (t0, t0 + H) than

the partition used for the inference process. Let K be the number of time

subintervals in this new partition, each of length r ≤ s, r being a divisor of s.

As this new partition is finer than the one used in the inference process, the285

subinterval k, for k = 1, . . . ,K, will be included in one of the intervals used

for the inference process, say interval m; hence, the number of withdrawals and

returns in subinterval k are Poisson variables with estimated intensities rω̂m and
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rρ̂m, respectively. Therefore, the number Xk of additional bicycles in the station

at the final point of subinterval k could be approached by the difference between290

the two independent Poisson variables, which follows a Skellam distribution [21],

Xk ∼ Sk(rρ̂m, rω̂m).

The Skellam distribution allows us to compute analytically the probability

of each possible outcome after interval k in a given station of capacity C. Let j

be the number of available bicycles at the beginning of subinterval k. There are295

three different scenarios at the final point of the subinterval: in case Xk < −j

the station empties and there were −Xk−j thwarted withdrawals; if −j ≤ Xk ≤

C − j the station ends with Xk + j bicycles, and there was no unmet demand;

finally, in case Xk > C − j the station fills and there were Xk −C + j thwarted

returns. In summary, the station may end up in any state from empty to full300

with conditional probabilities given by:

pk(0, j) = Pr(Xk ≤ −j)

pk(j′, j) = Pr(Xk = j′ − j) j′ = 1, . . . , C − 1

pk(C, j) = Pr(Xk ≥ C − j)

where pk(h, j) is the probability that the station changes its state from j to h

bicycles during interval k.

Similarly, the conditional expected numbers of thwarted withdrawals and

returns during interval k are:305

E(ηwk |j) =
∞∑
h=1

hPr(Xk = −(j + h))

E(ηrk|j) =
∞∑
h=1

hPr(Xk = h+ C − j)

Using those results, the marginal expected numbers of thwarted withdrawals

and returns during each interval k, from 1 to K, can be computed iteratively

with the following algorithm. Initialize p0(l) = 1 for l = j and p0(l) = 0 for

14



l 6= j. Then, for k = 1, . . . ,K do:

E(ηwk ) =
C∑
l=0

E(ηwk |l) pk−1(l)

E(ηrk) =
C∑
l=0

E(ηrk|l) pk−1(l)

pk(l′) =
C∑
l=0

pk−1(l′, l)pk−1(l) for l′ = 1, . . . , C

Afterwards, the approximations η̂w and η̂r for the expected total numbers

of thwarted withdrawals and returns with an initial state of j available bicycles

are given by:

η̂w =
K∑

k=1

E(ηwk ); η̂r =
K∑

k=1

E(ηrk)

Finally, we combine these results into the final cost κ̂ij for station i with310

initial configuration j.

With this approach we miss the cases where Xk is the result of combined

withdrawals and returns, such that, considered continuously, the station would

have been either filled or emptied with possibly some more losses. However,

this approximation error is negligible if we take sufficiently small intervals. How315

small depends on the intensities of the underlying processes. In any case, it is

possible to calibrate the method empirically using the simulation approach as a

gold standard, and find a good compromise between speed and error.

5. Routing Algorithms

We present here the algorithms designed for the static repositioning problem.320

This repositioning is done when the usage rate of the system is negligible over

the whole time planning horizon, typically at night. Our algorithm consists of

two phases:

1. Calculating the target number of bicycles per station.

2. Constructing the repositioning routes for the vehicles.325
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5.1. Calculating the target number of bicycles per station

Let Tb be the total number of available bicycles, i.e. Tb =
∑

i∈S bsi +∑
l∈V bvl +

∑
k∈D bdk. For each station i ∈ S , bopti will denote the number of

bicycles that minimizes the expected unsatisfied demand, more precisely, bopti is

defined as the minimum j∗ such that κij∗ = minj=0,...,Ci
{κij}, where Ci is the330

capacity of station i. If possible, this is the number of bicycles at each station

that must be attained by the repositioning system. Nevertheless, it may happen

that there are not enough bicycles to attain this level because Tb <
∑

i∈S b
opt
i .

In this case, it is impossible to achieve the optimal level, so the first decision we

take is to determine the number of bicycles that each station should have after335

the repositioning is done so that the global expected dissatisfaction is minimal

for the number of bicycles that are really available. We determine these numbers

bti, called target numbers, by solving an integer program that is formulated as

follows. Let xij = 1 if station i has a target number of bicycles equal to j, and

0 otherwise; and let yi be the number of bicycles that have to be moved to or340

from station i.

min
∑
i∈S

Ci∑
j=0

κijxij + α
∑
i∈S

yi (1)

s.t.

Ci∑
j=0

xij = 1 i ∈ S (2)

∑
i∈S

Ci∑
j=0

j xij ≤ Tb (3)

bsi − yi ≤
Ci∑
j=0

j xij ≤ yi + bsi (4)

xij ∈ {0, 1}, yi ≥ 0, i ∈ S , j ∈ {0, . . . Ci} (5)

Constraints (2) mean that each station must be assigned to one target level,

constraints (3) require that the sum of target levels cannot be greater than the

total number of available bicycles, and constraints (4) force that yi ≥ |bsi −∑Ci

j=0 j xij |. The first term in the objective function (1) is obviously the total345
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unsatisfied demand that has to be minimized as the first objective. The second

term is weighted by a small number α and counts the number of bicycles that

should be moved by the repositioning system, that is, the sum of the absolute

differences between the current number, bsi, and the target number of bicycles

for each station. It has been observed that, generally, there are several values of350

j for which κij is very near to Min{κij : j = 0, . . . , Ci} (see Table 1 in Section

6.2). Therefore, there are several target levels that produce optimal or near-

optimal solutions in terms of the total unsatisfied demand. As it is clear that a

solution involving a lower number of movements is preferable, we include, as a

secondary objective, the total number of bicycles that have to be transported.355

We set α = 0.01.

Let x̄ij represent the solution of the above integer program. We define the

target value for each i ∈ S as bti = j for the unique value j such that x̄ij = 1.

Obviously, as mentioned before, if Tb ≥
∑

i∈S b
opt
i , the integer program is not

solved and the target value is defined as bti = bopti for each i ∈ S .360

5.2. Constructing the repositioning routes for the vehicles

Once the target values bti for each station i ∈ S have been determined, the

next step is to design the routes for the repositioning vehicles that will transport

the bicycles.

This is a pure routing problem that is very difficult by itself. We summarize365

now the main characteristics of the routing problem we face and put it in the

context of routing problems.

Our routing problem can be defined on the graph that was introduced in

Section 3 whose set of vertices V represents the stations, the depots, and the

initial vehicle locations. Data of each station include its capacity and current370

numbers of ready and damaged bicycles, respectively. For each vehicle we know

its capacity and initial numbers of ready and damaged bicycles on the vehicle.

For each depot we know the number of ready bicycles stored initially in the

depot. We are also given the parking time of each vehicle, the unit time for
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loading/unloading a bicycle and the travel time between any pair of vertices.375

The goal, as said before, consists of finding a set of routes for the vehicles. Each

route consists of a sequence of visits to stations/depots as well as the loading

instructions for each visit. The following conditions have to be considered:

• the final number of bicycles in each station must be equal to its target

value,380

• all the damaged bicycles must be transported to a depot,

• the route of each vehicle starts at its initial location and ends at a station

or depot,

• multiple visits to a station or depot are allowed (even by the same vehicle),

• the capacity of the vehicles and the stations is never exceeded,385

• the final number of bicycles in each vehicle is zero.

The set of routes should minimize a weighted combination of the total time

needed to operate all the routes and the coefficient of variation of the different

duration of the routes. Thus, we seek routes that are as short as possible, but

also balanced.390

As far as we know there is no paper in the literature that deals with exactly

this problem; nevertheless there are an increasing number of studies devoted to

similar pickup and delivery problems, which appear in many different real-life

situations ([22], [23], [24], [25]). Mathematically, our problem can be considered

as a variant of the multi-commodity pickup and delivery problem, introduced395

by Hernández-Pérez and Salazar-González [26]. They propose a branch-and-cut

procedure, for the case where only one vehicle is available, based on a mixed

integer linear programming model. In our case the number of commodities is

two (ready and damaged bicycles), but unfortunately their procedure cannot

be easily adapted to our problem which considers, among other characteristics,400

multiple vehicles with different capacities, several depots, multiple visits at each

station, etc.
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We have implemented a heuristic algorithm to solve this problem, consisting

mainly of two phases. In the first phase we solve a Minimum Cost Flow Problem

(MCFP) whose solution is used to guide the second phase, where an insertion405

algorithm is used to iteratively construct the routes. Given that certain stations

have a deficit of ready bicycles while others have a surplus, the MCFP is used

to find an estimate of the number of ready bicycles that should be transported

from stations with surplus to stations with deficit. Damaged bicycles are not

considered in this problem as it is clear that all damaged bicycles must be410

transported from the station to the depots.

We say that a station i ∈ S is a supply node if bsi− bti > 0 and its supply is

defined as O(si) = bsi − bti. Similarly, we say that a station i ∈ S is a demand

node if bsi−bti < 0 and its demand is defined as D(si) = bti−bsi. The Minimum

Cost Flow Problem (MCFP) is defined as follows. Let G = (N,A) be a directed415

graph. The nodes in N and their corresponding supply/demands are:

• A node si for each i ∈ S that is either a supply node with supply O(si)

or a demand node with demand D(si),

• A supply node vl for each vehicle l ∈ V such that bvl > 0, with supply

O(vl) = bvl,420

• A supply node dk for each depot k ∈ D such that bdk > 0, with supply

O(dk) = bdk,

• An extra node d′k for each depot k ∈ D with zero demand and also a

dummy demand node U with demand D(U) = Tb −
∑

i∈S b
t
i if Tb >∑

i∈S b
t
i.425

Note that, if Tb >
∑

i∈S b
t
i, the optimal state for the stations involves a

number of bicycles that is less than Tb, so some bicycles should be stored in

the depots. The set of arcs A contains an arc from each supply node to each

demand node (including those depots with zero demand) with a cost equal to

the travel time between the corresponding locations. Furthermore, if U exists,430

arcs with zero cost are added from each node d′k to U .
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The solution of the MCFP defined on this graph provides a set of arcs with

positive flows. By discarding the arcs entering the dummy node U we obtain a

set of arcs F = {(uj , wj) : j = 1, . . . nf}, each arc associated with a flow fj . If

we are able to transport fj bicycles from the supply station (or vehicle) uj to435

the demand station (or depot) wj , we will have obtained a solution that leaves

each station at its target level. Thus, the solution of the MCFP is used as a

guide to construct the routes for the vehicles: the nodes from where bicycles

should be taken, the nodes where they have to be left and how many bicycles

have to be transported between each origin and each destination.440

In Figure 5 we represent an example with eight stations, one depot, and two

vehicles. The numbers above each station are the current number of bicycles

in the station, the number of damaged bicycles (between parentheses), and its

target value. The number above each vehicle or depot represents the number of

bicycles that are initially in that vehicle or depot. Figure 6 shows a solution of445

the corresponding MCFP. The supplies (demands) in this MCFP are depicted

above each node (demands are represented as negative numbers); thus, for in-

stance, station s1 has demand 1 and station s5 has supply 4. Note that the

number of available bicycles (27) is equal to the sum of target values in this

example, so the dummy demand nodes are not needed. The arcs depicted in450

Figure 6 represent a solution of the MCFP, where the number beside each arc

indicates the number of bicycles to be moved; thus the MCFP solution suggests

that the bicycle on vehicle 1 should be left at station s1, four bicycles should be

transported from station s5 to station s4, and so on.

The routes for the vehicles are incrementally constructed with an insertion455

algorithm. At each state of the insertion algorithm, the route for vehicle l is

a sequence of stops il0, . . . i
l
d, where il0 is the initial location of the vehicle and

ild is the location at which the vehicle will finish its task. Recall that multiple

(non-consecutive) visits to the same station or depot are allowed.

Let Tl be the total time of the route assigned to vehicle l. Our algorithm460

assumes that the routes to be built must leave each station at its target inventory

level, all the damaged bicycles must be taken to the depots, and the total
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Figure 5: Example of an initial setting
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Figure 6: Solution of the Minimum Cost Flow Problem
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duration of the routes has to be minimized while keeping the routes as balanced

as possible. Thus the objective function to be minimized is:

β
∑
l∈V

Tl + (1− β)CV (6)

where CV is the coefficient of variation of the duration of the routes (standard465

deviation of the routes’ duration divided by the average duration).

The insertion algorithm works as follows. At each iteration, an arc of the

solution provided by the MCFP is selected and inserted in an appropriate route.

Let (uj , wj) ∈ F , with flow fj , be the arc to be inserted, and let l ∈ V be

a candidate route (the routes are indexed the same as the vehicles) for the470

insertion. Insertion is in fact a double insertion: uj is inserted after a given

stop on the current route, say ilr, and wj is inserted after a subsequent stop, say

ils, where s ≥ r. The resulting route after the double insertion has been carried

out is il0, . . . , i
l
r, uj , i

l
r+1, . . . , i

l
s, wj , i

l
s+1, . . . , i

l
d. Note that fj more bicycles have

to be on the vehicle between visits ilr+1 and ils, so we must check that the475

capacity of the vehicle is not exceeded. On the other hand, it may happen that

uj = ilr or uj = ilr+1, in which case the route would be simplified by removing

the duplicated visits and accumulating the loading/unloading operations at uj

(similarly for wj). It may happen that the flow of an arc fj is greater than

the remaining capacity of the vehicle; in this case the number of bicycles to480

move is set equal to the capacity of the vehicle and, once it has been inserted,

the arc is maintained in the list of arcs and its corresponding flow is reduced

by a quantity equal to the number of bicycles inserted. Each iteration of the

insertion algorithm consists of the following steps:

• A flow arc (uj , wj) with flow fj is selected.485

• For every vehicle, all possible insertion positions are checked for feasibil-

ity and the ones producing the minimum increment in the weighted cost

(according to (6)) are determined.

• The flow arc is inserted in the vehicle (and positions) that produce the

minimum increase in the weighted cost. The flow fj is reduced by a490
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quantity equal to the number of bicycles inserted and, if it becomes zero,

the flow arc (uj , wj) is removed from the list.

Depending on the type of flow arcs the above insertion steps are applied

differently. A list of types of flow arcs and the ways they have to be managed

follows:495

1. uj and wj correspond to the same depot. Therefore the corresponding

bicycles do not have to be moved. The arc is discarded in the insertion

algorithm.

2. uj and wj are both stations, or uj is a depot and wj is an station. The

steps are applied normally.500

3. uj corresponds to a vehicle. In this case the arc must be inserted in the

route corresponding to that vehicle.

4. wj corresponds to a depot. This means that fj bicycles have to be trans-

ported to a depot. This case is managed normally except for the fact that

the bicycles can be transported to any depot, not necessarily to wj , and505

this must be taken into account when considering all possible insertion

positions and their costs.

Arcs where uj corresponds to a vehicle are first managed by the algorithm

and inserted in the route of the corresponding vehicle. Note that several arcs of

this type may exist for the same vehicle (the number of bicycles on the vehicle510

may initially be large) and all of them are inserted before the other arcs. After

these arcs have been inserted, the vehicle route will consist of a sequence of

stations (and eventually a depot) where bicycles are unloaded, so the vehicle

will be empty after the last visit. This strategy implies that any arc of the other

types can always be feasibly inserted after the last visit.515

There may also be some arcs that cannot be inserted in the usual way because

the destination station contains a number of damaged bicycles that make it

impossible to leave all the bicycles that have to be unloaded unless the damaged

bicycles are picked up. We call them conflict arcs. Conflict arcs are inserted
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when all the other flow arcs have been inserted and they are managed with520

triple insertions. If (uj , wj) with flow fj is such an arc, then inserting it into a

route involves inserting visit uj to take fj bicycles, inserting visit wj to unload

fj bicycles and pick up the necessary number of damaged bicycles from the

station, and finally inserting a third visit to a depot to unload the damaged

bicycles.525

After all the flow arcs have been inserted in the vehicle routes, a similar

insertion is performed to manage the damaged bicycles that remain in the sta-

tions. This operation can also be viewed as inserting an arc (uj , wj) with flow

fj where uj is the station with damaged bicycles, wj is any depot, and fj is the

number of damaged bicycles in uj .530

Overall, the insertion algorithm considers the insertion arcs in the following

order.

1. Flow arcs (uj , wj) for which uj corresponds to a vehicle,

2. The remaining flow arcs, except those that are conflict arcs, in any order,

3. Conflict arcs, for which triple insertion is used, and535

4. Arcs associated with the damaged bicycles that remain in the stations.

Figure 7 illustrates the application of the insertion algorithm for the MCFP

solution of Figure 6. It shows the routes obtained after each flow arc is inserted.

Each route is represented as a sequence of visits: the number above each visited

node indicates the number of bicycles picked up (+) or delivered (−), and the540

number above each arc represents the number of bicycles on the vehicle when

it travels from one node to another.

This solution does not take into account the damaged bicycles that have to be

picked up at the stations and transported to a depot. In this example, stations

s1 and s2 had one damaged bicycle each. The arcs associated with damaged545

bicycles are inserted in route 1, producing the route depicted in Figure 8 (a). In

this figure, the operations that involve damaged bicycles appear in parentheses.

We have used a simple procedure to improve the final solution given by the

insertion algorithm. It consists of removing a visit from a route and inserting it
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Figure 8: Improvement move

at a different position in the same route. We try to avoid, if possible, multiple550

visits to the same node. For instance, route 1 in the example includes two visits

to the depot. If we remove the first visit to station s6 and insert it after the

visit to s1, the result would be two consecutive visits to the depot, which can

obviously be merged into only one visit to unload two damaged bicycles. The

route obtained after this improvement is depicted in Figure 8 (b).555

Finally, the insertion and improvement procedures have been embedded in a

multistart algorithm. At each iteration of the multistart algorithm, arcs of the

same type are used in random order by the insertion procedure, thus producing

different solutions. The best solution in terms of total time of the routes and

balance between them is then selected.560

6. Computational results

6.1. Expected unsatisfied demands

We followed the process described in Section 4 using the data from the Palma

bike-sharing system. The aim was to obtain tables of the expected measure of

service quality of the system for the third week of November 2013, from Sunday565

17th to Saturday 23rd, that will be used as cost tables in order to compute the
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repositioning routes. To avoid seasonal oscillations or long-term trends, we used

historical records from only the three-month interval previous to that week.

The estimation of the rate parameters of withdrawals and returns, ωm and

ρm, was done using intervals of length s = 60 minutes. Once these estimates of570

the rate parameters were obtained for each type of day of the target week, start-

ing at 7.00 a.m., we performed 1600 realizations of the withdrawal and return

processes for each type of day and station i, for a time span of 6 hours. From

each realization, we directly computed the number of thwarted withdrawals and

returns for each initial state j, and therefore the corresponding realized cost.575

Finally, the tables of expected costs κ̂ij for each type of day and for three differ-

ent time spans H = 2, 4, and 6 hours are computed as the average realized cost

over each scenario. The simulation process took about 8 minutes for each type

of day on a standard personal computer. We used these results as a reference

to validate and tune the approximate (and faster) method described at the end580

of Section 4.

The running time of the forecast approximate approach is linear with respect

to the number of prediction subintervals (Fig. 9). We obtain essentially the same

expected cost matrices as with the simulation approach in 0.87 minutes, using

prediction subintervals of 30 minutes. Specifically, the Mean Absolute Error of585

the cost, calculated across all the stations, initial states, and time spans was

under 0.1.

The matrix corresponding to a weekday and H = 2 hours appears in Table

1. Some stations have some initial states with cost 0, meaning that if the station

was in one of these states at 7.00 AM no unsatisfied demand is expected for the590

next two hours. For some other stations there are expected unsatisfied demands

for any possible initial state, though the expected numbers vary widely and there

are states clearly preferable to others. Looking at each station, the unsatisfied

demands typically have asymmetric U-shapes. For initial states close to zero,

the unsatisfied demands would be thwarted withdrawals, while for states close595

to the station capacity they would be thwarted returns.
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Figure 9: Computing time and Mean Absolute Error of the approximate approach as a function

of the number of prediction sub-intervals

6.2. Results for the initial configuration of the repositioning system

In the initial configuration the company wanted to study, there were two

vehicles with capacity 15 and one depot with 10 available bicycles. The data

corresponded to the third week of November 2013, from Sunday 17th to Satur-600

day 23rd. The costs corresponding to Tuesday 19th appear in Table 1. If we

add up the number of bicycles corresponding to the minimum cost state at each

station (taking the lowest value in the event of a tie), the required number of

bicycles was 214. However, on this day there were only 211 available bicycles.

Therefore not all the optimal states could be attained. In order to decide the605

optimal attainable state for each station minimizing the total cost, we solved

the integer linear program described in Section 5. Its solution gave us the target

number of bicycles each station should have after the repositioning moves.

Using this target number and the current state of the stations and the depot,

we constructed two routes, one for each vehicle, that performed all the required610

moves to achieve the target state for each station. A time of 60 seconds was

included for each loading or unloading move of a bicycle and for the parking

maneuver. The main objective when designing the routes was to minimize the

total time, while keeping the routes as balanced as possible. The two routes

are shown in Figure 10. Both routes start at the depot, but they finish at the615

station where the last move was made. The company considered that that was
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the end of the service and did not want to make the vehicles return to the depot.

Note that not all the stations are visited. The routes have to alternate stations

with surplus and stations with shortage. Vehicle 1 (continuous lines) takes 3

bicycles from the depot and finishes empty, while Vehicle 2 (dotted line) takes620

the remaining 7 bicycles and finishes its route empty.

Figure 10: Repositioning routes for two vehicles

The effect of the repositioning can be observed in Figure 11, which shows

the number of available bicycles at Station 127 over the course of Tuesday 19th

if the initial state was 7 (solid red line), as it was at the end of the previous

day, or 9, the optimal initial state to which the repositioning system would625

bring the station (dashed blue line). The figure shows at level 0 the intervals

during which the station would be empty in the two cases. In particular, this

station was empty that day for 40 minutes between 7:00 and 9:00 a.m., with an

expected number of thwarted withdrawals of 4.9 during that two-hour period.

If the station had been repositioned at night to its optimal initial state of 9630

bicycles, the first two unsatisfied demands would have been met, but, after
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that, the evolution of the station would coincide with what is actually observed.

A dynamic repositioning system throughout the day would be necessary to

eliminate later unsatisfied demands.
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Figure 11: Evolution of Station 127 with and without repositioning

The results obtained for the seven days of the week are summarized in Ta-635

ble 2, which shows the number of bicycles moved, the total distance, and the

total service time for each day and each vehicle. A perfect balance in service

time cannot be obtained, but the routes never differ by more than 15 minutes.

The routes also include the removal of damaged bicycles, as was explained in

Section 5.640

6.3. Exploring alternative configurations for the repositioning system

The procedures we have developed can be used to explore alternative config-

urations of the repositioning system. For instance, what would happen if instead

of having two vehicles the system had one or three. The results for these cases

appear in Tables 3 and 4 and the comparison of the maximum service time in645

each case is shown in Figure 12. This information could be used by the man-

agers of the system to decide the most appropriate number of vehicles. In Table
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Table 2: Repositioning routes for the seven days of the week

Distance Damaged Time

Day Vehicle (meters) Bicycles bicycles (seconds)

Sunday, 11-17-2013 1 3234 2 0 592

2 949 6 0 908

Monday, 11-18-2013 1 10056 30 0 5284

2 9127 28 0 4977

Tuesday, 11-19-2013 1 7357 18 0 3409

2 9295 22 0 4149

Wednesday, 11-20-2013 1 7979 26 0 4534

2 11827 26 4 5331

Thursday, 11-21-2013 1 9690 34 0 5497

2 11867 26 4 5334

Friday, 11-22-2013 1 10618 24 0 4484

2 9204 24 0 4262

Saturday, 11-23-2013 1 6461 4 4 1785

2 6273 6 2 1771

Table 3: Repositioning routes using one vehicle

Distance Damaged Time

Day Vehicle (meters) Bicycles bicycles (seconds)

Sunday, 11-17-2013 1 3234 8 0 1432

Monday, 11-18-2013 1 14545 58 0 9927

Tuesday, 11-19-2013 1 13742 40 0 7349

Wednesday, 11-20-2013 1 15169 52 4 9732

Thursday, 11-21-2013 1 14739 60 4 10541

Friday, 11-22-2013 1 16383 48 0 8499

Saturday, 11-23-2013 1 9804 10 6 3345

4 the number of bicycles to be moved on Sunday is so small that there is no

need to design a third route. Figure 12 shows the maximum time for the routes

with 1, 2, and 3 vehicles. It can be observed that the maximum service time650

decreases dramatically when the number of vehicles is increased from one to

two, but the decrease is very small when we change from two to three vehicles.

If this element is important - if, for instance, the available time to provide the

service is strictly limited - using two vehicles seems a much better alternative

than using only one. However, using three instead of two would not add any655

significant advantage.
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Table 4: Repositioning routes using three vehicles

Distance Damaged Time

Day Vehicle (meters) Bicycles bicycles (seconds)

Sunday, 11-17-2013 1 3234 2 0 592

2 949 6 0 908

3

Monday, 11-18-2013 1 9361 16 0 3313

2 6737 20 0 3365

3 6841 22 0 3852

Tuesday, 11-19-2013 1 8166 14 0 2867

2 5398 12 0 2308

3 4495 14 0 2483

Wednesday, 11-20-2013 1 6514 20 0 3349

2 4449 18 0 3080

3 11412 14 4 3821

Thursday, 11-21-2013 1 4215 28 0 4263

2 10840 16 4 3900

3 8915 16 0 3041

Friday, 11-22-2013 1 5308 16 0 2782

2 4723 18 0 2860

3 10774 14 0 3175

Saturday, 11-23-2013 1 5780 2 2 1136

2 5220 4 2 1335

3 4219 4 2 1263
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Figure 12: Comparing the maximum service time for different numbers of vehicles

Another element of the repositioning system that could be interesting to

study is the capacity of the vehicles. Initially this was set at 15, but we could

explore other alternatives, for instance, vehicles of capacity 10 and capacity 20.

Figure 13 shows the maximum service time for these three possible capacities.660

It can be observed there are no significant differences between them. For this

system, in which a relatively small number of bicycles are moved every day, the

capacity of the vehicles is not an issue. Small vehicles can give as good a service

as larger vehicles.

7. Conclusions665

The repositioning system is a key factor in the quality of the service provided

by the bike-sharing systems appearing and growing everywhere in the world. It

is, therefore, not surprising that intense research effort has been devoted to

it in recent years. Although each system has its special characteristics, all of

them share two basic components, the prediction part, forecasting a stochastic670

demand, and the routing part, in which the forecast demands have to be met
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Figure 13: Comparing the maximum service time for different capacities of vehicles

to ensure the satisfaction of the users. In our proposal, developed in this study,

we have considered both components jointly and designed a procedure that

automatically reads the information in the system, and uses this information,

past and present, to predict the demands for withdrawals and returns at each675

station for each time period. Combining these predictions with the current state

of the system, the procedure designs the most appropriate repositioning routes

for the available vehicles.

The proposed procedure has been tested on a real bike-sharing system in

Spain and the results show its usefulness for solving the daily problem and also680

as a planning tool that allows the user to evaluate alternative configurations.

Although the tests have been made on a relatively small system, all the predic-

tion and routing procedures can be used for much larger systems. Most of the

prediction part can be done off-line and the heuristic algorithms of the routing

part are extremely fast and can be applied to large numbers of stations, vehicles,685

and bicycles.

The next step in this line of research will be to tackle the dynamic reposi-
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tioning problem, in which the procedures developed here must be dynamically

adapted to the actual state of the stations served by the vehicles. In the static

case, when a vehicle arrives at a stations, it knows which state it is going to find,690

but this is no longer true in the dynamic case, in which, while the repositioning

vehicle is en route to a station, the state of this station is changing with new

withdrawals and returns. The dynamic problem is clearly more complex and

will require new strategies and algorithms to give fast answers to continuously

changing conditions.695
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