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Abstract 35 

We investigated the impact of combining the pedigree- and genomic-based relationship matrices in a multiple-36 

trait individual-tree mixed model (a.k.a., multiple-trait combined approach) on the estimates of heritability and 37 

on the genomic correlations between growth and stem straightness in an open-pollinated Eucalyptus grandis 38 

population. Additionally, the added advantage of incorporating genomic information on the theoretical 39 

accuracies of parents and offspring breeding values was evaluated. Our results suggested that the use of the 40 

combined approach for estimating heritabilities and additive genetic correlations in multiple-trait evaluations is 41 

advantageous and including genomic information increases the expected accuracy of breeding values. 42 

Furthermore, the multiple-trait combined approach was proven to be superior to the single-trait combined 43 

approach in predicting breeding values, in particular for low-heritability traits. Finally, our results advocate the 44 

use of the combined approach in forest tree progeny testing trials, specifically when a multiple-trait individual-45 

tree mixed model is considered. 46 

 47 

Key words: Multiple-trait individual-tree mixed model, combined approach, genetic parameters, accuracy, 48 

Eucalyptus grandis. 49 

 50 

Abbreviations: DBH, diameter at breast height; TH, total height; SS, stem straightness; ST, single-trait mixed 51 

model; DArT, Diversity Arrays Technology; MT, multiple-trait mixed model; 
2ˆ
th heritability for trait t; âr  52 

additive genetic correlation; r, theoretical accuracy of the predicted breeding values; LD, linkage 53 

disequilibrium.  54 
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1. Introduction 55 

The magnitude of genetic gain is affected by several factors, including the accuracy of individuals’ estimated 56 

breeding values and the extent of additive genetic variance present in the breeding population. The inclusion of 57 

genomic information in quantitative genetics analyses has resulted in improving the accuracy of individuals’ 58 

predicted breeding value estimates [1]. Higher breeding values accuracy, through using the marker-based 59 

realized kinship (G matrix) in the mixed model equations (genomic best linear unbiased predictors –GBLUP–; 60 

[2]), have been demonstrated theoretically [3–5] and empirically [6–10] in several forest tree evaluation 61 

scenarios. In forest tree progeny testing trials, the large number of tested individuals makes genotyping the 62 

entire population unmanageable for financial and logistical reasons, thus the option of restricting genotyping to 63 

only a subset of the testing population is favourable [11]. Recently, the single-step approach, which incorporates 64 

genomic information of a reduced set of individuals into the genetic evaluation of a larger un-genotyped 65 

progeny testing trials, was proposed by Misztal et al. [12], Legarra et al. [13], and Christensen and Lund [14], 66 

as a simple and efficient genetic evaluation method. In this approach, the pedigree and genomic information 67 

are combined to enhance individuals’ genetic and genomic relationships information during the implementation 68 

of the individual-tree mixed model [15,16]. The simple combined method involves: 1) constructing the 69 

pedigree-based relationship A matrix of genotyped and non-genotyped individuals, 2) constructing the marker-70 

based relationship G matrix of a sub-set of genotyped individuals, and 3) blending the pedigree and genomic 71 

matrices in the H matrix in the individual tree mixed model. Since the combined/blended approach uses the 72 

traditional BLUP mixed model equations, then extending to more complicated models used to fit the pedigree-73 

based relationship matrices can be immediately implemented [17]. The combined approach has been widely 74 

applied in animal breeding with many successful applications including pigs [18], chickens [19,20], dairy cattle 75 

[21], dairy sheep [22], dairy goat [23], and beef cattle [24]. However, the use of the combined approach in forest 76 

genetic trial is scant [15,16,25] and somewhat limited as the analyses were restricted to single- rather than 77 

multiple-trait models. For instance, in a recent study using the same dataset used in the present study (see 78 

below), Cappa et al. [16] demonstrated that the combined approach is simple to implement in a traditional 79 

single-trait individual-tree mixed model and provided an easy extension to single-trait individual-tree mixed 80 

models with competition effects and/or environmental heterogeneity. However, this analysis did not consider 81 
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the simultaneous evaluation of multiple traits as well as utilizing between the traits phenotypic and genetic 82 

correlations. 83 

Multiple-trait mixed models result in improved prediction accuracies of breeding values as the 84 

information from correlated traits is incorporated in the analyses and traits with lower heritability benefit when 85 

analysed in combination with traits with higher heritabilities [26]. The increase in accuracy is dependent on the 86 

absolute difference between genetic and residual correlations between the traits, i.e., the larger the differences 87 

the greater the gain in accuracy [27]. Multiple-trait GBLUP approach has shown a higher accuracy of predicted 88 

breeding values than single-trait GBLUP in simulated [28,29] and empirical [30] scenarios in animal studies. 89 

Integrating marker information in multiple-trait models is possible in the combined approach [18,31–35], but 90 

has only been recently considered in plants (oil palm, [36]; white spruce, [15]). Ratcliffe et al. [15] used 91 

multiple-trait models but did not make comparisons with the single-trait models. 92 

The objectives of this study are to compare the performance of: 1) the pedigree-based and the combined 93 

approaches using the multiple-trait models and 2) the single- and multiple-trait models using the combined 94 

approach. These comparisons were carried out using two growth attributes and stem straightness data from an 95 

open-pollinated Eucalyptus grandis breeding population. Genetic parameters (i.e., heritability, and additive 96 

genetic correlations) and expected gain in predicted breeding values’ accuracy of parents and offspring were 97 

compared. 98 

 99 

2. Materials and Methods 100 

2.1. Progeny trial data 101 

A total of 164 open-pollinated families originating from native-forest (148) and two local land-race (16) of 102 

Eucalyptus grandis (Hill ex Maiden) growing in a progeny trial located at Gobernador Virasoro (lat. 28° 02´ S, 103 

long. 56° 03´ W alt. 105 m), northern Corrientes province, Argentina, and established by the National Institute 104 

of Agricultural Technology (Instituto Nacional de Tecnología Agropecuaria, INTA), provided the material for 105 

this study (see [37] for details). Briefly, the progeny trial was established as a randomized compete block design 106 

with 20 replications with one tree per plot at each replication. Five years from planting, trees were assessed for 107 

over the bark diameter at breast height (1.3 m above the ground level) (DBH, cm), total height (TH, m), and 108 
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stem straightness (SS) assessed by a four-point subjective score after transformation to normal scores [38]. The 109 

study included phenotypic data (DBH, TH, and SS) from 2,026 trees. A random sample of 187 trees originating 110 

from 131 families were genotyped with a range of 1 to 3 trees per family. The total number of phenotyped trees 111 

with at least one genotyped half-sib was 1,650 (see Table 1 for the summary). 112 

[Insert Table 1 about here] 113 

 114 

2.2. Molecular data 115 

The 187 randomly selected trees were genotyped by 2,816 DArT molecular markers selected from an 116 

operational array with 7,680 [39] (Diversity Arrays Technology Pty Ltd., DArT P/L, Canberra, Australia). The 117 

selected markers showed call rate values > 0.8, reproducibility values > 0.97 (reproducibility of scoring between 118 

replicated target assays), and minor allele frequency (MAF) > 0.05. 119 

 120 

2.3. Statistical models 121 

The three assessed traits were analyzed using the following two individual-tree mixed models: 122 

1) Single-trait mixed model (ST): 123 

= + +y X Z r + Z a eβ r a
     (1) 124 

where the vector y contains the phenotypic data; β is the vector of fixed effects for the nineteen genetic groups 125 

formed according to provenance; r is the vector of random replicate effects, a is the vector of random additive 126 

genetic effects of individual trees (i.e., breeding values); and e is the vector of random residuals; X, Zr and Za 127 

are incidence matrices relating the observations (y) to the model effects β, r and a, respectively. The vector e is 128 

distributed as ( )2
,∼ σe 0 I eN  and 

2σe
 is the error variance. For the pedigree-based approach, the vector a was 129 

assumed distributed as ( )2
,∼ σa 0 A aN   where 

2σa
 is the additive genetic variance and A is the average 130 

numerator relationship matrix derived from the pedigree information and containing the additive relationships 131 

among all trees: 164 mothers without records plus 2,026 offspring with data in y. 132 
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2) Multiple-trait mixed model (MT): 133 

= + + +
             
             

             

y X 0 r a eZ 0 Z 0

y 0 X r a e0 Z 0 X

β

β
i i

j j

i i i i ir a

j j j j jr a

i

j
  (2) 134 

where ��  and ��  are the vectors of individual tree observation for traits i and j. The matrices ⊕X Xi j
, 135 

⊕Z Z
i jr r

, and ⊕Z Z
i ja a

related the observation to the means of the genetic groups in
´ ´ 

 β βi j , the replicate 136 

effects in 
´ ´ 

 r r
i j , and the individual breeding value in 

´ ´ 
 a a

i j  for trait t = i, j. The vector 
´ ´ 

 e e
i j  is the 137 

residual vector. The symbols ⊕  and ' indicate the direct sum of matrices and the transpose operation, 138 

respectively. The vector of individual breeding values was assumed distributed as: 139 

2

2
,∼ ⊗

     
           

a 0
A

a 0

ii ij

ji jj

i a a

a a

N
j

σ σ

σ σ
 140 

where 
2

iiaσ  and 
2

jja
σ  are the additive genetic variances of traits i and j, respectively; and 

ijaσ  is the additive 141 

genetic covariance between traits i and j. The residual vector is distributed as: 142 

2

2
,∼ ⊗

     
           

e 0
I

e 0

ii ij

ji jj

i e e

e e

N
j

σ σ

σ σ
 143 

where 
2

iieσ  and 
2

jjeσ  are the residual variance of trait i and j, respectively; and 
ijeσ  is the residual covariance 144 

between traits i and j. 145 

In the combined approach, the A matrix of the previous mixed models (1), and (2) was replaced by the 146 

combined pedigree- and marker-based pairwise relationship H matrix of the same dimension as the pedigree-147 

based matrix.  148 

The inverse of the relationship matrix that combines pedigree and genomic information (H-1) was 149 

derived by Misztal et al. [12], Legarra et al. [13], Aguilar et al. [21], and Christensen and Lund [14], and 150 

calculated following closely to Cappa et al. [16] as: 151 
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( )
1 1

1 1

22

=
-

− −
− −+

λ

 
 
  

0 0

H A
0 G  A

 152 

where λ scales differences between genomic and pedigree-based information, G-1 is the inverse of the genomic-153 

based relationship matrix and 
1

22

−
A  is the inverse of the pedigree-based relationship matrix for the genotyped 154 

individuals (A22). The weighting factor λ was set to 1.0 for all models [16]. 155 

The genomic relationship matrix G was constructed from the dominant DArT markers following the 156 

formula suggested by Resende et al. [40]: 157 

( )( )
( )

=
1

′− −

−∑

M P M P
G

k k kp p
 158 

where pk is the frequency of the code 1 at locus k, M is a n × m matrix (n = number of genotyped trees, m = 159 

number of DArT markers) that specifies the genotypes expressed as 0/1 denoting the absence/presence of the 160 

DArT marker, and P is a matrix containing pk in the kth column. The G matrix was scaled to have the same 161 

diagonal and off-diagonal averages as the corresponding A matrix following closely the work of Christensen et 162 

al. [18]. See further details about the scale of G matrix in Cappa et al. [16]. 163 

Restricted maximum likelihood (REML, [41]) was used to estimate variances and covariances and to 164 

predict the breeding values and their corresponding standard errors in the mixed models Eqs. [1] and [2], and 165 

were obtained with the ASReml program [42], which uses the average information algorithm described by 166 

Gilmour et al. [43]. 167 

Two genetic parameters were compared: 1) heritability for each trait; and 2) genetic correlations 168 

between traits. The heritability of trait t (for t = DBH, TH or SS) was estimated as 
2 2 2 2ˆ ˆ ˆ ˆ= +

tt tt ttt a a eh σ σ σ , where 169 

2
ˆ

ttaσ  is the estimated additive genetic variance of trait t, and 
2

ˆ
tteσ  is the estimated residual variance of trait t. 170 

Meanwhile, the additive genetic correlation between trait i and j was calculated as 
2 2

ˆ ˆ ˆ ˆ=
ij ii jja a a ar σ σ σ . 171 

Further model comparison was provided by the theoretical accuracy (r) of the predicted breeding 172 

values, which was calculated using the following expression: ( )( )2
ˆ= 1- PEV 1 + σr aFi . The acronym PEV 173 
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stands for ‘prediction error variance’ of predicted breeding values, and are calculated as the square of the 174 

standard error, and Fi is the inbreeding coefficients of tree i. After that, we estimated the expected gain in 175 

accuracy of a tree's breeding value for an individual using a linear regression on the trait (DBH, TH or SS), the 176 

model (ST or MT), the approach (pedigree-based A or combined H), and the group to which the tree belongs 177 

(parents or offspring). 178 

 179 

3. Results 180 

3.1. Additive genetic relationship matrices 181 

The pairwise relationship coefficients for the genotyped trees derived from the pedigree- (A22) and the genomic-182 

based (G) relationship matrix and for genotyped and non-genotyped trees derived from the pedigree- (A) and 183 

combined pedigree-genomic (H) relationship matrix, are presented in Fig. S1. When relationships were 184 

estimated from the pedigree (A22 and A), expected relationships between individuals from this breeding 185 

population were very sparse with only three relationship classes: 0, 0.25, and 0.50. As expected, a large number 186 

of pairwise relatedness coefficients from pedigree were zero. On the contrary, realized relationships obtained 187 

from the DArT markers (G and H) showed a continuous distribution with relationship values from -0.04 to 0.13 188 

between mothers, from -0.15 to 0.38 between offspring, and from -0.09 to 0.75 between mother and offspring. 189 

Moreover, as noted early Cappa et al. [16] using the same dataset, the combined relationship matrix H diffused 190 

the information from genomic markers to non-genotyped offspring and mothers, while, as expected, offspring 191 

from mothers with non-genotyped offspring did not produce any additional information. For example, several 192 

pairs of mothers assumed unrelated in A, with a coefficient equal to zero, while appeared as related in the 193 

combined matrix H, with coefficients that varying from -0.04 to 0.13. 194 

 195 

3.2. Heritability estimates and additive genetic correlations between traits 196 

Heritability estimates and additive genetic correlations from the pedigree- (A matrix) and combined (H matrix) 197 

approaches are presented in Table 2. The combined approach yielded higher heritability estimates (0.161 vs. 198 

0.152 for TH and 0.337 vs. 0.317 for DBH), except for SS (0.230 vs. 0.199). The additive genetic correlations 199 
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based on the A matrix were strongly positives between the two growth traits (0.892, DBH-TH), and negative 200 

and weak between the two growth traits and stem straightness (-0.146 for DBH-SS, and -0.077 for TH-SS). 201 

However, last two estimates had large high standard errors, and were did not significantly different from zero. 202 

The genetic correlations based on the H matrix were 0.913, -0.228, and -0.140 for DBH-TH, DBH-SS, and TH-203 

SS, respectively. However, only the correlation between TH and SS did not differ significantly from zero, thus, 204 

including genomic information produced stronger (positive or negative) genetic correlations and reduced the 205 

standard errors in two out of the three correlations estimates. 206 

 [Insert Table 2 about here] 207 

 208 

3.3. Accuracy of predicted breeding values 209 

The impact of including genomic information in a combined approach and leveraging other correlated traits in 210 

a multiple-trait analysis on the prediction accuracy of breeding values was also evaluated (Table 3). The 211 

percentages of the expected difference in accuracies for mother and offspring between the pedigree-based and 212 

combined approaches for single- and multiple-trait models, and between single-trait and multiple-trait models 213 

for the pedigree-based and combined approaches are summarized in Fig. 1. 214 

The low-heritable trait (TH; h2_A = 0.152 and h2_H = 0.161) displayed the highest expected gains in 215 

accuracy of breeding values when using the multiple-trait combined (H) rather the pedigree-based (A) approach, 216 

even higher than those from the single-trait approach (Fig. 1; Table 3). The improvements for the most heritable 217 

trait (DBH; h2_A = 0.317 and h2_H = 0.337) were smaller, albeit the largest gains were under a single-trait 218 

model. However, these improvements were not observed for the trait SS (h2_A = 0.230 and h2_H = 0.199) where 219 

the accuracy of predicted breeding values from the combined approach was lower than from the pedigree-based 220 

approach. This reduction in accuracy was a consequence of the reduced estimation of the additive-genetic 221 

variance under the combined approach, most likely due to the underlying quantitative nature of the trait. In 222 

summary, the expected accuracies of breeding values were marginally higher for DBH and TH, and lower for 223 

SS when the H matrix was used in both multiple- and single-trait models (Table 3). 224 

The expected gains in accuracy for the three studied traits were higher (from 0.06 to 3.78%) when we 225 

compared the single- and multiple-trait models with H matrix (and A matrix), especially for TH, the trait with 226 
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the lowest heritability (h2_H = 0.161) (Fig. 1; Table 3). Moreover, higher correlations between traits showed 227 

higher gains in accuracies for the multiple-trait combined approach as compared to the accuracies from the 228 

single-trait model. For example, with a correlation of 0.913 (between TH-DBH, Table 2) the average accuracy 229 

of breeding values for TH was 0.781 using the combined approach (Table 3); while with a correlation of -0.140 230 

(between TH-SS, Table 2) the average accuracy decreased to 0.762, only marginally higher than the average 231 

accuracy under the single-trait model; (0.761; Table 3). In contrast, for the high-heritable trait (DBH), the 232 

differences in accuracies were marginal, decreasing from 0.796 to 0.795 (Table 3) when the correlation 233 

decreased from 0.913 (between DBH-TH) to -0.228 (between DBH-SS) (Table 2). 234 

The results from the multiple-trait vs. single-trait for the pedigree-based approach were similar to those 235 

from the combined approach in terms of accuracy of predicted breeding values (Fig. 1; Table 3). 236 

[Insert Fig. 1 about here] 237 

[Insert Table 3 about here] 238 

 239 

4. Discussion 240 

Traditionally, the BLUP-predicted breeding values for the E. grandis INTA improvement program are obtained 241 

through the use of the classical pedigree-based single- or multiple-trait approach based on joint phenotypic and 242 

pedigree data [37,44]. This study demonstrated the utility of the joint use of a multiple-trait mixed model with 243 

phenotyping, and blending both pedigree and genomic information for the analysis of correlated traits. The joint 244 

use of multiple-trait models and genomic information by means of the combined approach is a simple and 245 

effective tool for estimating heritabilities and genetic and environmental correlations in forestry progeny testing 246 

trials. Our results suggest that the benefit of using the multiple-trait combined approach will be greater for data 247 

sets with traits with larger differences in heritability and genetic correlations between traits than in the one used 248 

herein. The multiple-trait combined models would also be advantageous to predict a trait when trees have been 249 

measured for other traits, especially in situations where missing information occurs due to, for example, tree 250 

damage or, practical and technical problems with data recollection. 251 

 252 
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4.1. Genetic parameters 253 

Knowledge of genetic parameters is required to formulate breeding strategies as well as predicting parents and 254 

offspring breeding values, and estimating gains from selection. Certainly, a key objective trait for eucalypts 255 

breeding is fast growth, typically measured by diameter and/or height. The present study’s DBH and TH 256 

heritability estimates (Table 2) are similar to those previously reported for the same E. grandis population using 257 

the single-trait model with the A and H matrices [16] and to those reported by Marcó & White [37], Gapare et 258 

al. [45] and Harrand et al. [44] using the classical pedigree-based approach. However, heritability estimates for 259 

SS were higher than those reported by Marcó & White [37] using the A matrix and based on the categorical 260 

observed scale, possibly attributed to the normal score transformation used in our study. Cappa and Varona [46] 261 

observed that heritability estimates based on a transformation of categorical data to normal score are often 262 

higher than those based on the categorical observed scale.  263 

 Strong genetic correlations were observed between growth traits (DBH and TH), indicating that 264 

selection for anyone would give a high correlated response to the other. These high and positive correlations 265 

confirm previous observations on Eucalyptus species (e.g. [45,47,48]) using the pedigree-based approach. 266 

However, low and negative genetic correlations were found between growth and stem straightness, an 267 

unfavorable state for breeding purposes. Although the precision of these estimates was somewhat low, the 268 

literature showed variable results for this relationship. For instance, in E. grandis and Eucalyptus viminalis 269 

Labill ssp. viminalis estimates of 0.37 to 0.80 and -0.09 to 0.70 were reported by Gapare et al. [45] and  Cappa 270 

et al. [49], respectively. 271 

In theory, genetic correlation from the classical pedigree-based analysis is expected to capture the 272 

expected genetic correlation, whereas marker-based analysis captures the realized genetic covariation that is 273 

traced by the markers [34]. Stem straightness appeared to be independent from height growth when the A matrix 274 

was fitted; however, a small and negative correlation is noted when the H matrix was implemented. Slightly 275 

higher and negative correlations were observed between DBH and SS when the A or H matrices were fitted 276 

(Table 2). Such differences in the genetic correlation between traits could be due to the different source from 277 

which the genetic correlation arises. In a recent study using the multiple-trait combined approach, Momen et 278 

al. [34] examined the impact of combining A and G matrices varying the weight assigned to each source of 279 
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information from 0 (only A) to 1 (only G) on the genetic correlations between three traits measured in broiler 280 

chickens. These authors concluded that estimates of genetic correlations were affected by the weight placed on 281 

the source of information used to build the H matrix; however, the scaling was trait-dependent. When the 282 

pedigree-based method is used, the genetic correlation between traits arises mainly due to either a single gene 283 

or closely linked block of functionally related genes that have an effect on both traits (pleiotropy), or due to 284 

linkage disequilibrium (LD) between genes that affecting different traits [50]. Meanwhile, when marker-based 285 

methods are used, marker-QTL LD and LD relationships among markers intervene in the genomic correlation. 286 

According to Momen et al. [34] these estimates may also differ due to chance or other reasons, such as the 287 

extent of LD between markers and the unknown QTL, or LD between QTLs. 288 

The observed lower standard errors for the genetic correlations obtained from the combined approach 289 

is in accordance with previous findings in animal breeding [33,51]. More precise genetic correlations may be 290 

explained by the fact that the relationship between relatives from pedigree and marker information are described 291 

more precisely than pedigree-based matrices, given that the former reflects the actual relationships that may 292 

deviate from their expectation because of Mendelian sampling (e.g. [52,53]). 293 

 294 

4.2. Multiple-trait models comparison between pedigree-based and the combined approach 295 

The difference between the pedigree-based and combined approach concerning the predicted accuracy of 296 

breeding values was evaluated in the context of a multiple-trait model. In general, the combination of the 297 

pedigree- and genomic-based matrices in a multiple-trait mixed model yielded higher expected accuracy than 298 

the pedigree-based approach (Table 3). Earlier studies using empirical data in animals [18,31,33,34] and forest 299 

trees [15] have also demonstrated the superiority of the multiple-trait combined prediction over the pedigree-300 

based alternative. Aguilar et al. [31] indicated that the inclusion of genomic information using the combined 301 

approach resulted in approximately doubling the accuracy. In a recent study on white spruce, Ratcliffe et al. 302 

[15] found higher accuracies in offspring breeding values for increased genotyping efforts (0, 25, 50, 75, 100%) 303 

using a multiple-trait combined approach which ranged from 0.474 to 0.536 and 0.605 to 0.661 for height and 304 

wood density, respectively. Marker-based methods could achieve higher breeding values accuracies given that 305 
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they are not only contributed by the expected genetic relationship between trees (as in the pedigree-based 306 

approach), but also by linkage disequilibrium (LD) and co-segregation to capture relationship at QTL [50]. 307 

 308 

4.3. Combined approach comparison between single- and multiple-trait models  309 

Bivariate genomic selection models have been already used in tree breeding populations [9,15]. However, this 310 

is the first study to investigate the benefit of using multiple-trait genomic models in forest tree breeding. 311 

Therefore, our second objective to quantifying the improvement that can be attained by the multiple- vs. single-312 

trait model using a combined approach has been fulfilled. From our empirical E. grandis data, we found that 313 

the expected accuracy of breeding values was higher in a multiple-trait combined approach than in single-trait 314 

models, with a particularly high gain for low-heritability traits. Similar to the classical pedigree-based multiple-315 

trait approach, traits with low-heritability can borrow/utilize information from correlated and high-heritability 316 

traits, achieving higher prediction accuracy [30]. Using the multiple-trait combined approach produced better 317 

breeding values prediction accuracies for several traits in a US Holstein [32], Danish Duroc pigs [17], Holstein 318 

dairy cattle [31], and oil palm [36] populations. 319 

Our results indicated that higher correlations between traits produced improved accuracies for the 320 

multiple-trait combined approach when compared to the single-trait model (Table 2), confirming the importance 321 

of the absolute differences in the genetic correlation between traits in accuracy gain. In a simulation study, 322 

where the prediction accuracy was calculated as the correlation between observed and the predicted phenotype, 323 

Jia and Jannink [30] showed that for low-heritability (h2= 0.1) the multiple-trait genomic selection approach 324 

greatly increased the prediction accuracy, but only when the genetic correlation between the related traits was 325 

higher than 0.7. Meanwhile, for a high heritable trait (h2= 0.5), these accuracies remain stable across a range of 326 

genetic correlation of 0.1 to 0.9. Our findings are also in agreement with Calus and Veerkamp [54], who 327 

reported for an animal simulation study that the magnitude of accuracy increase was higher when the genetic 328 

correlation was higher than 0.5. 329 

On average and across the three studied traits, the multiple-trait combined model produced higher gain 330 

in accuracy than those from the single-trait combined approach. However, these gains in accuracy were lower 331 

when we compared to the combined and pedigree-based approaches for the multiple-trait models. Therefore, 332 
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the gain obtained by using the multiple-trait models was higher than those from the use of the genomic 333 

information. This may be due to the small number of genotyped trees (187 out of 2,026) and the relatively low 334 

number of marker assayed (2,816 DArT markers). Nonetheless, this empirical data set clearly demonstrated the 335 

benefits of multiple-trait combined approach in increasing the accuracy of breeding values. 336 

Across single- and multi-trait models, the average accuracy of prediction of breeding values based on 337 

the pedigree and combined approaches were higher for mothers than the corresponding values for offspring 338 

(Table 3). However, there were a lower expected gain in accuracy for mothers than that for offspring (Fig. 1); 339 

i.e., the additional information generated by including the genomic information in the combined approach have 340 

a higher impact on the accuracies of the predicted breeding values of offspring than that of the mothers. These 341 

results are expected, given that mothers with numerous offspring generally have sufficient information from 342 

the phenotypic and pedigree data to achieve acceptable accuracies. 343 

 344 

5. Conclusion 345 

To our knowledge, this is the first study to investigate the potential benefit of the multiple-trait model that 346 

simultaneously makes full use of the pedigree and genomic information in forest breeding data. Our empirical 347 

study using E. grandis population suggests that it is possible to use the combined approach for estimating 348 

heritability and additive genetic correlation estimates in forest trees multiple-trait evaluations. Moreover, the 349 

results from this study highlighted the potential benefit in terms of gain in accuracy by implementing multiple-350 

trait combined approach, even though the genotyping efforts used was low (less than 10% of the trees) and 351 

dominant bi-allelic DArT markers are less informative than the widely used co-dominant single-nucleotide 352 

polymorphisms (SNP) markers. As noted in earlier studies, the benefit of using multiple-trait combined analysis 353 

has been found to be more relevant for traits with low-heritability and high genetic correlations between traits. 354 

Here we considered a bivariate multiple-trait mixed model, but the method could easily be extended to a higher 355 

number of traits. 356 
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Figure Legend: 518 

 519 

Fig. 1 Expected average percent increases of the accuracy of breeding values for mothers and offspring from a) 520 

the combined approach (H matrix) with respect to the pedigree-based approach (A matrix) by single-trait (ST) 521 

and multiple-trait (MT) individual-tree mixed model, and from b) the MT model with respect to the ST model 522 

by approach (A and H). In both cases, results are further classified by trait: diameter at breast height (DBH), 523 

total height (TH), and normal score of stem straightness (SS).  524 
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Table 1. Summary statistics of the studied Eucalyptus grandis open-pollinated families including the number 525 

of genotyped and non-genotyped individuals and traits (diameter at breast height: DBH, total height: TH, stem 526 

straightness: SS) means and standard deviations. 527 

 

N° of records 

Mean (SDa) 

 
DBH 

(cm) 

TH 

(m) 

SSb 

(Scale 1-4) 

Total of offspring in the pedigree 2026 18.85 (4.27) 18.87 (2.68) 2.30 (0.69) 
Number of trees from mothers with genotyped 
offspring 

1650 18.87 (4.24) 18.87 (2.65) 2.31 (0.69) 

Number of offspring with genotype 187 20.81 (3.07) 20.57 (1.67) 2.16 (0.66) 
a Standard deviation. 528 

b based on original scale assessment data.  529 
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Table 2. Heritability and genetic correlation estimates from the multiple-trait model determined by pedigree-530 

based relationship matrix (A) (above diagonal) and the combined genomic and pedigree-based relationship 531 

matrix (H) (below diagonal). Approximate standard errors are in parenthesis. 532 

Trait h2_Aa h2_Ha DBHb THb SSb 

DBHb 0.317 (0.071) 0.337 (0.073) - 0.892 (0.057) -0.146 (0.175) 
THb 0.152 (0.053) 0.161 (0.055) 0.913 (0.051) - -0.077 (0.219) 
SSb 0.230 (0.062) 0.199 (0.058) -0.228 (0.174) -0.140 (0.222) - 

a The heritability estimates for each trait and approach are the average of the corresponding estimates from the 533 

two bivariate models in which the trait participates. 534 

b See text for traits´ abbreviations   535 
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Table 3. Means and standard deviations of estimated theoretical accuracies for the predicted breeding values of mother and offspring based on the pedigree-based 536 

and combined approaches for diameter at breast height (DBH), total height (TH), and normal score of stem straightness (SS) in Eucalyptus grandis using single-537 

trait (ST) and multiple-trait (MT) individual-tree mixed models. See text for models´ abbreviations. 538 

Method of 

genetic  

evaluation 

DBH TH SS 

ST MTTH MTSS ST MTDBH MTSS ST MTTH MTDBH 

Pedigree          

     Mothers 0.851 ± 0.029 0.852 ± 0.029 0.851 ± 0.029 0.807 ± 0.023 0.827 ± 0.025 0.808 ± 0.023 0.828 ± 0.026 0.829 ± 0.024 0.828 ± 0.026 
     Offspring 0.788 ± 0.044 0.790 ± 0.045 0.789 ± 0.045 0.757 ± 0.026 0.773 ± 0.036 0.758 ± 0.027 0.771 ± 0.034 0.772 ± 0.031 0.771 ± 0.034 
Average 0.791 ± 0.045 0.793 ± 0.046 0.792 ± 0.046 0.759 ± 0.028 0.776 ± 0.037 0.760 ± 0.029 0.773 ± 0.036 0.775 ± 0.032 0.774 ± 0.036 

Combined          
     Mothers 0.855 ± 0.029 0.855 ± 0.029 0.855 ± 0.029 0.810  ± 0.023 0.833 ± 0.025 0.810 ± 0.023 0.818 ± 0.025 0.818 ± 0.026 0.819 ± 0.025 
     Offspring 0.792 ± 0.047 0.793 ± 0.047 0.793 ± 0.047 0.759 ± 0.027 0.779 ± 0.039 0.760 ± 0.028 0.765 ± 0.031 0.765 ± 0.035 0.765 ± 0.031 
Average 0.795 ± 0.048 0.796 ± 0.048 0.795 ± 0.048 0.761 ± 0.029 0.781 ± 0.040 0.762 ± 0.030 0.767 ± 0.032 0.767 ± 0.037 0.767 ± 0.032 

 539 
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Fig. 1 Expected average percent increases of the accuracy of breeding values for mothers and offspring from a) 540 

the combined approach (H matrix) with respect to the pedigree-based approach (A matrix) by single-trait (ST) 541 

and multiple-trait (MT) individual-tree mixed model, and from b) the MT model with respect to the ST model 542 

by approach (A and H). In both cases, results are further classified by trait: diameter at breast height (DBH), 543 

total height (TH), and normal score of stem straightness (SS). 544 

(a) Comparison of H and A approaches 
         ST                           MT 

(b) Comparison of MT and ST models 
     A                               H 

* Significant expected percent increment with t-test (p < 0.05). 545 
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