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Abstract A methodological approach for modelling the occurrence patterns of spe-
cies for the purpose of fisheries management is proposed here. The presence/absence
of the species is modelled with a hierarchical Bayesian spatial model using the ge-
ographical and environmental characteristics of each fishing location. Maps of pre-
dicted probabilities of presence are generated using Bayesian kriging. Bayesian infer-
ence on the parameters and prediction of presence/absence in new locations (Bayes-
ian kriging) are made by considering the model as a latent Gaussian model, which al-
lows the use of the integrated nested Laplace approximation (INLA) software (which
has been seen to be quite a bit faster than the well-known MCMC methods). In par-
ticular, the spatial effect has been implemented with the Stochastic Partial Differ-
ential Equation (SPDE) approach. The methodology is evaluated on Mediterranean
horse mackerel (Trachurus mediterraneus) in the Western Mediterranean. The anal-
ysis shows that environmental and geographical factors can play an important role
in directing local distribution and variability in the occurrence of species. Although
this approach is used to recognize the habitat of mackerel, it could also be for other
different species and life stages in order to improve knowledge of fish populations
and communities.
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Departament d’Estadı́stica i Investigació Operativa, Universitat de València
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1 Introduction

Modelling patterns of the presence/absence of the species using local environmental
factors has been a growing problem in Ecology in the last few years (Chakraborty et al
2010). This kind of modelling has been extensively used to address several issues,
including identifying Essential Fish Habitats (EFHs) in order to classify and manage
conservation areas (Pressey et al 2007), and predicting the response of species to
environmental features (Midgley and Thuiller 2007; Loarie et al 2008).

Different approaches and methodologies have been proposed for modelling the
distribution of species (Guisan and Thuiller 2005; Hijman and Graham 2006; Wisz
et al 2008). Generalized linear and additive models (GLM and GAM) (Guisan et al
2002), species envelope models such as BIOCLIM (Busby 1991), neural networks
(Zhang 2007; Zhang et al 2008) and the multivariate adaptive regression splines
(MARS) (Leathwick et al 2005) are some of them.

Most of these applications are only explanatory models that seek to assess the
relationship between the presence of species and a suite of one or more explanatory
variables (e.g. precipitation, bathymetry, etc.) (Guisan et al 2002). Moreover, the the-
ory of these methods is based on the fact that the observations are independent, while
the fishery data are often inclined to spatial autocorrelation (Kneib et al 2008). Spa-
tial autocorrelation should be taken into account in the species distribution models,
even if the data were collected in a standardized sampling, since the observations are
often close and subject to similar environmental features (Underwood 1981; Hurlbert
1984). As a consequence, ignoring spatial correlations in this type of analysis could
lead to misleading results (Kneib et al 2008). Note also that extensive spatiotem-
poral variability, which characterizes dynamic marine ecosystems, presents inherent
difficulties for the development of predictive species-habitat models (Valavanis et al
2008).

Other complications also arise in the modelling of the occurrence of species due
to imperfect survey data such as observer error (Royle et al 2007; Cressie et al 2009),
gaps in the sampling, missing data, and spatial mobility of the species (Gelfand et al
2006).

It is also worth mentioning that only a few studies have been developed for predic-
tive models although these models, in addition to offering an estimate of the processes
that drive the distribution of species, also provide the probability of the occurrence of
species in unsampled areas (Chakraborty et al 2010).

Our interest here is to propose a hierarchical Bayesian model to predict the oc-
currence of species by incorporating the environmental and spatial features of each
fishing location. The Bayesian approach is appropriate to spatial hierarchical model
analysis because it allows both the observed data and model parameters to be random
variables (Banerjee et al 2004), resulting in a more realistic and accurate estimation
of uncertainty (see, for instance, Haining et al 2007, as an example of the advantages
over conventional –non-Bayesian– modelling approaches).

Another advantage of the Bayesian approach is the ease with which prior infor-
mation can be incorporated. Note that prior information can usually be very helpful in
discriminating spatial autocorrelative effects from ordinary non-spatial linear effects
(Gaudard et al 2006). Finally, an important feature of our approach is that maps of
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predicted probabilities of presence in unsampled areas are generated using Bayesian
kriging (Handcock and Stein 1993; Gaudard et al 1999).

As usual with this kind of hierarchical model, there is no closed expression for
the posterior distribution of all the parameters, and so numerical approximations are
needed. In our case, we use the integrated nested Laplace approximations (INLA)
methodology (Rue et al 2009) and software (http://www.r-inla.org) as an
alternative to Markov Chain Monte Carlo (MCMC) methods. The main reason for
this choice is the speed of calculation: MCMC simulations require much more time to
run, and performing prediction has been practically unfeasible. In contrast, INLA pro-
duces almost immediately accurate approximations to posterior distributions even in
complex models. Another advantage of this approach is its generality, which makes it
possible to perform Bayesian analysis in a straightforward way and to compute model
comparison criteria and various predictive measures so that models can be compared
easily (Rue et al 2009). INLA’s performance has been compared with MCMC and
has shown a similar reliability (Held et al 2010)

In particular, we have applied our approach to describing the distribution of Med-
iterranean horse mackerel (Trachurus mediterraneus) in the Western Mediterranean.
We have used the geographical characteristics, such as latitude, longitude and bathy-
metry, of each fishing location. Environmental satellite data, such as the monthly data
on precipitation, sea surface temperature and chlorophyll-a concentration have also
been included in the analysis.

Finally, we would like to mention that this approach could also be employed in
different settings with other species and life stages in order to improve knowledge of
fish populations and communities.

The remainder of this article is organized as follows. After this introduction, in
Section 2, we present a general Bayesian hierarchical spatial model that accounts for
the presence/absence of fish species, allowing both for inference and prediction in
unsampled locations. This is commonly known as Bayesian kriging (Banerjee et al
2004). In Section 3, we describe how to implement this model using INLA. In Section
4, we apply this methodology in a particular setting with fishery data from Southern
Spain in order to provide a realistic view of the methods. Finally, in Section 5, we
present some concluding remarks and future lines of research.

2 Modelling fish presence

This section will describe Bayesian kriging and its application to presence/absence
data in fishing. We also discuss the implementation of this kind of model with INLA
and introduce the SPDE approach to modelling the spatial component.

2.1 Bayesian kriging for a binary response

Point-referenced spatial models (Gelfand et al 2000) are very suitable for situations in
which we have observations made at continuous locations occurring within a defined
spatial domain. This particular case of spatial models also has the appealing charac-
teristic that the spatial domain is unchanging, even though the precise locations will

http://www.r-inla.org
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change over time. In fisheries, this resolves the dimensional control guaranteeing that
the inference is realized in relation to the domain instead of the current observed
positions, which can change over the years.

In these models, the estimation of the response in unsampled locations can be
seen as a statistical prediction problem. When the response is Normal, this is known
as kriging prediction. Using a Bayesian hierarchical model (Banerjee et al 2004) such
as the one we present in this section allows naturally for non-Gaussian responses,
and for taking into account uncertainty in the model parameters. This is known as
Bayesian kriging, and the rest of this section discusses its application to fishery data.

Basically, when analyzing fish species distribution, we can encounter two differ-
ent types of observed data: the amount of catch or just presence/absence data. In the
first case it is possible to calculate the absolute abundance of species by standardiz-
ing the catch with the fishing effort of the studied fleet, and so it is possible to assess
the quantitative spatial distribution of the species within the area of interest. In the
second case, presence/absence information can be used as a measure of the relative
occurrence of species at each precise observed location, thereby giving a different
(but very valid and useful) approximation for the spatial distribution of the species.

For most species, especially for those which are not targeted, information about
the absolute abundance of the species is not available. In these situations, the spatial
distribution can be obtained by using presence/absence as a response variable of in-
terest instead of absolute abundance. Then, assuming that the probability of catching
a species is related to its presence, we model presence/absence by using a point-
referenced spatial hierarchical model in line with Diggle et al (1998).

Specifically, ifZi represents presence (1) or absence (0) at location i (i = 1, . . . , n)
and πi is the probability of presence, then:

Zi ∼ Ber(πi)
logit(πi) = Xiβ +Wi

(1)

where Xiβ represents the linear predictor for observation i;Wi represent the spatially
structured random effect; and the relation between πi and the covariates of interest
and random effects is the usual logit link. Wi is assumed to be Gaussian with a given
covariance matrix σ2

WH(φ), depending on the distance between locations, and with
hyperparameters σ2

W and φ representing respectively the variance (partial sill in krig-
ing terminology) and the range of the spatial effect:

W ∼ N (0, σ2
WH(φ)) . (2)

This modelling could be augmented by incorporating an additional pure error term
(usually Gaussian distributed with variance called nugget effect in kriging terminol-
ogy) describing the “noise” associated with replication of measurement at each loca-
tion. Nevertheless, as in this case we are dealing with Bernoulli response, sensitivity
to prior assumptions on those random effects precision parameters should be dealt
carefully (Roos and Held 2011).

Once the model is determined, the next step is to estimate its parameters. As we
are using the Bayesian paradigm, we have to specify the prior distributions for each
parameter involved in the model (β, σ2

W , φ). In this context, the usual choice (see, for
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instance, Banerjee et al 2004) is to deal with independent priors for the parameters,
i.e.

p(β, σ2
W , φ) = p(β)p(σ2

W )p(φ) . (3)

When there is an aim of expressing initial vague knowledge about the parameters,
useful (but not the only) candidates are non-informative Gaussian prior distributions
for β and inverse gamma distributions for σ2

W . Specification of p(φ) will depend
on the choice of the correlation function which determines the covariance matrix H .
Note that the final choice for the priors will also depend on the type of modelling and
parameterization chosen. We will return to this topic later on.

As mentioned above, expressions from (1) to (3) contain all our knowledge about
the spatial occurrence but do not yield closed expressions for the posterior distribu-
tions of all the parameters. And so in order to make inference about them, numer-
ical approximations are needed. One possible choice for doing this would be using
Markov Chain Monte Carlo (MCMC) methods. This could be done using WinBUGS
(Spiegelhalter et al 1999), flexible software for performing the Bayesian analysis of
complex statistical models (see Banerjee et al 2004) for examples of how to imple-
ment spatial hierarchical Bayesian models with WinBUGS). Nevertheless, this option
turns out to be very slow when interest is focused on prediction (as in our case), so
we have to resort to another approach.

2.2 Implementing Bayesian kriging with INLA

The key idea underlying what follows is to realize that these hierarchical models can
be seen as Structured Additive Regression (STAR) models (see, for instance Fahrmeir
and Tutz 2001 for a detailed description of them and Chien and Bangdiwala 2012 for
an applied example of their use). In other words, models in which the mean of the
response variable Zi is linked to a structured predictor that accounts for the effects of
various covariates in an additive way. But, more specifically, point referenced spatial
hierarchical Bayesian models can also be seen as a particular case of STAR models
called Latent Gaussian models (Rue et al 2009), namely those assigning Gaussian
priors to all the components of the additive predictor. In this framework, all the latent
Gaussian variables can be seen as components of a vector which is the latent Gaussian
field.

The great bonus here is that for Latent Gaussian models, we can directly com-
pute very accurate approximations of the posterior marginals using INLA (Rue et al
2009). In spite of its wide acceptance and its good behaviour in many Latent Gaus-
sian models (see for instance, Schrödle and Held 2011, for a description of how to
use INLA in spatio-temporal disease mapping), until now it has not been feasible
to fit the particular case of continuously indexed Gaussian Fields with INLA, as is
the case with our spatial component W. The underlying reason is that a parametric
covariance function needs to be specified and fitted based on the data, which deter-
mines the covariance matrix H and enables prediction in unsampled locations. But
from the computational perspective, the cost of factorizing these (dense) matrices is
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cubic in their dimension. Despite computational power today, this problem is still a
computational bottleneck in many situations.

Lindgren et al (2011) have proposed an alternative approach by using an approxi-
mate stochastic weak solution to a Stochastic Partial Differential Equation (SPDE) as
a Gaussian Markov Random Field (GMRF, Rue and Held 2005; Rue et al 2009) ap-
proximation to continuous Gaussian Fields with Matérn covariance structure. Specifi-
cally, they use the fact that a Gaussian Field x(u) with Matérn covariance is a solution
to the linear fractional SPDE

(κ2 −∆)α/2x(u) =W(u), u ∈ Rd, α = ν + d/2, κ > 0, ν > 0, (4)

where (κ2 − ∆)α/2 is a pseudo-differential operator defined in terms of its spectral
properties (see Lindgren et al 2011). They then use a finite-elements method on a
triangulation of the region (see Figure 1) to construct an approximate GMRF rep-
resentation of the Matérn Field with parameters κ and ν = 1. They fix ν to 1 for
identifiability reasons. An additional parameter τ is used to adjust the scale of the
field.

Some important features arise here. Firstly, a GMRF is a discretely indexed Gaus-
sian field x = (x1, . . . , xn), where the full conditionals π(xi|x−i), i = 1, . . . , n
depend only on a set of neighbours of each site i. This Markov property makes their
precision matrix sparse, enabling the use of efficient (and faster) numerical algo-
rithms.

Secondly, the Matérn covariance function is a really flexible and general family of
functions generalizing many of the most-used covariance models in spatial statistics.
Its expression, giving the covariance between the values of a random field at locations
separated by a distance d > 0, can be parameterized as

C(d) =
σ2

2ν−1Γ (ν)
(κd)νKν(κd),

where Kν is the modified Bessel function of the second kind and order ν > 0
(Abramowitz and Stegun 1972, §9.6), κ > 0 is a scaling parameter and σ2 is the
marginal variance. The parameter ν is a smoothness parameter determining the mean-
square differentiability of the underlying process, although it is fixed in the SPDE
approach since it is poorly identified in typical applications. For more information on
the Matérn covariance model see Handcock and Stein (1993); Stein (1999); Guttorp
and Gneiting (2006). Finally, GMRFs fit seamlessly with the INLA approach, which
requires the latent field to be a GMRF.
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Under this perspective, for each vertex i = 1, . . . , n, the full model can be stated
as follows:

Zi|πi
iid∼Ber(πi)

logitπi =β0 + Xiβ +Wi

π(β0) ∝1

βj
iid∼N (0, 1e-05)

W ∼N (0,Q(κ, τ))

2 log κ ∼N (mκ, q
2
κ)

log τ ∼N (mτ , q
2
τ ) .

(5)

In contrast with the previous specification, when using the SPDE approach the
correlation function is not modelled directly. Instead, the Gaussian field W is found
numerically as a (weak) solution of the SPDE (4), depending now on two different
parameters κ and τ which determine the range of the effect and the total variance, re-
spectively. More precisely, the range is approximately φ ≈

√
8/κ while the variance

is σ2
W = 1/(4πκ2τ2).
Consequently, we have to specify the prior distributions for the parameters in-

volved in this approach (β0,β, κ, τ ). We set the intercept apart because INLA by
default specifies a flat improper prior on the intercept, and independent zero-mean
Gaussian priors with a fixed vague precision (1e-05) a priori on the fixed effects in
β. The priors for κ and τ are specified over the reparameterizations log τ and 2 log κ
as independent Gaussian distributions. We also used the default values for their pa-
rameters. Specifically, mκ is chosen automatically such that the range of the field is
about 20% of the diameter of the region, while mτ is chosen so that the correspond-
ing variance of the field is 1. For instance, in the dataset described in Section 4, this
gives mκ = −16.8 and mτ = 7.16. Finally, the default a priori precisions for log τ
and 2 log κ distributions are q2κ = q2τ = 0.1.

The INLA program can be used through the R (R Development Core Team 2010)
package of the same name. It is worth noting that the SPDE module of INLA is still
under development and enhancement, but a fully-functional version is readily avail-
able by upgrading INLA from Rwith the command inla.upgrade(testing=TRUE).
As there is still a lack of documentation, there is a downloadable worked-out case
study in http://www.r-inla.org/examples/case-studies/lindgren-
rue-and-lindstrom-rss-paper-2011 that demonstrates the functionality
of the module.

3 Estimation and prediction using INLA

In what follows we present the basis of how to perform the fitting and prediction
in unobserved locations for the Latent Gaussian model in (5) using INLA’s SPDE
module and a brief guide to its syntaxis. It is worth saying that both model fitting and
prediction are done simultaneously. Moreover, the fact that INLA can be used through
R provides a familiar interface with the model specification, which is accomplished

http://www.r-inla.org/examples/case-studies/lindgren-rue-and-lindstrom-rss-paper-2011
http://www.r-inla.org/examples/case-studies/lindgren-rue-and-lindstrom-rss-paper-2011
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through the R’s formula approach. However, INLA provides some additional syntaxis
for the definition of random effects, namely the f() terms.

Using this syntaxis, the latent field in model (5) can be specified as

formula = Y ˜ 1 + X + f(W, model=spde)

where 1 stands for the intercept term, X is a fixed linear effect and W represents a
smooth spatial effect. More terms could be added in the same way if additional co-
variates were available (for instance, + X2 + X3) or if a noise term were required
( + f(U, model=’iid’)). It is worth noting that while X is a variable contain-
ing the covariate values at each observation, W is only a numeric vector linking each
observation with a spatial location.

INLA provides different approximation strategies for the posterior marginal dis-
tributions. In this study we have used the default ones: the simplified Laplace approx-
imation for the marginalization, and the Central Composite Design for the numerical
integration of the hyperparameters. These are the default and recommended settings
providing reasonable accuracy with maximum computational efficiency (Held et al
2010).

The standard output of a run returns the marginal posterior distributions for all the
parameters in the model as well as summary statistics, together with several model
selection and predictive measures. Specifically, the Deviance Information Criterion
(DIC) is a well-known Bayesian model-choice criterion for comparing complex hi-
erarchical models (Spiegelhalter et al 2002). Additionally, the Conditional Predictive
Ordinate (CPO, Geisser 1993) is defined as the cross-validated predictive density at
a given observation, and can be used to compute predictive measures such as the log-
arithmic score (Gneiting and Raftery 2007) or the cross-validated mean Brier Score
(Schmid and Griffith 2005). The latter is more adequate for a binary response, mea-
suring the degree to which the fitted probabilities of fish presence at location i coin-
cide with the observed binary outcomes Zi (Roos and Held 2011).

As mentioned above, along with the inferential results about the parameters in
(5), INLA’s SPDE module can be used simultaneously to perform prediction in un-
observed locations, which constitutes the real interest in this problem. The basic idea
is to deal with the species’ occurrence at a new location as a random variable with a
certain probability of success and to calculate a point estimation of this probability,
and even its full predictive density.

The SPDE module has a handful of functions to create prediction locations. It al-
lows the construction of a Delaunay triangulation (Hjelle and Dæhlen 2006) covering
the region. As opposed to a regular grid, a triangulation is a partition of the region
into triangles, satisfying constraints on their size and shape in order to ensure smooth
transitions between large and small triangles. Initially, observations are treated as
initial vertices for the triangulation, and extra vertices are added heuristically to min-
imize the number of triangles needed to cover the region subject to the triangulation
constraints. These extra vertices are used as prediction locations. This has at least two
advantages over a regular grid. First, the triangulation is denser in regions where there
are more observations and consequently there is more information, and more detail is
needed. Second, it saves computing time, because prediction locations are typically
much lower in number than those in a regular grid. This partition is usually called
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10KM

Mediterranean Sea

Almería

Fig. 1 Sampling locations for the presence (•) and the absence (◦) of the Mediterranean horse Mackerel
in the bay of Almerı́a; each mesh vertex is either an observed point or a prediction point

mesh and an example (the one obtained using the data introduced in the following
section) can be appreciated in Figure 1.

Once the prediction is performed in the selected location, there are additional
functions that linearly interpolate the results within each triangle into a finer regu-
lar grid. As a result of the process, a faceted surface prediction is obtained which
approximates to the true predictive surface.

The prediction in INLA is performed simultaneously with the inference, consid-
ering the prediction locations as points where the response is missing.

Please refer to http://www.r-inla.org and references therein for direc-
tions on how to use INLA for inference and prediction.

4 Presence of Mediterranean horse mackerel in the bay of Almerı́a

In order to show the usefulness of the approach presented, we have applied it to
analyze the distribution of Mediterranean horse mackerel (Trachurus mediterraneus)
in the bay of Almerı́a, Spain (see Figure 1 for a map of the region). The observed area
is a transition zone between the Mediterranean and Atlantic sea, containing a mix of
fish species and characteristics (Tintore et al 1991). It is worth noting that, in spite
of its low commercial value, this species plays an important role in the ecosystem
being a food source for other commercially important predators (Froese and Pauly
2011). But more importantly, this is not a targeted species for commercial fishing, so
its occurrence is an unbiased indicator of its presence/absence pattern. Moreover, it
also means that the selection of the sampling locations does not depend on the values
of the spatial variable and so these are stochastically independent of the field process.
This is an important issue as it allows us to predict in all the locations of the bay,
including those in which there is no information about the presence/absence of the
species.

The reference fleet for this study was the purseine fleet with landings in the south-
western Spanish ports. This fleet operates in waters on the continental shelf around
200 m. isobaths. The fishing time for each haul lasts around one hour. The data set

http://www.r-inla.org
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(a) Bathymetry (b) Chlorophyll-a

Fig. 2 Maps of the covariates in the bay of Almerı́a. The bathymetry map is presented as it was obtained
via the Andalucian Goverment, while the Chlorophyll-a is the result of the IEO processing of satellite data.

includes 147 hauls of 15 different purseine vessels and has been provided by the In-
stituto Español de Oceanografı́a (IEO, Spanish Oceanographic Institute). The IEO
provides the national input of the European Plan for collecting fishery data. In par-
ticular, they collect samples from the commercial fleet with observers on board. This
sampling has been carried out for six years, usually involving about 2-3 observa-
tions every month. From this database we have used the geographical location and
occurence of the mackerel for each haul.

With respect to the enviromental covariates used in this analysis, we have in-
cluded those we had information about and those we thought were potentially rele-
vant for a pelagic species like Mediterranean horse mackerel. In particular, the two
covariates used were chlorophyll-a (an environmental covariate that usually provides
great spatial and temporal coverage Valavanis et al 2004) and bathymetry (see Fig-
ure 2 for two maps of both covariates in the region analyzed). The chlorophyll-a data
were obtained from satellite data provided by the IEO, while the bathymetry data
were obtained from the WFS service of the Spatial Data Infraestruture of the Junta
de Andalucı́a (Andalucian Local Goverment). It is worth noting that if we had had
information about other factors such as precipitation, sea surface temperature, etc.,
they could have been included in the analysis via the linear predictor.

All the resulting models obtained from combining those two covariates and the
logarithm of the bathymetry were fitted and compared. DIC was used as a measure
for goodness-of-fit, while the logarithmic score (LCPO) and the cross-validated mean
Brier Score (BS) measure the predictive quality of the models. As shown in Table 1,
all measures agree on the same model, with a reasonable predictive quality. In partic-
ular, the model comparison indicates that (apart from the spatial effect) the logarithm
of the bathymetry and the chlorophyll-a concentration play a determining role in
Mediterranean horse mackerel distribution.

As can be seen in Table 2 and Figure 3, both covariates have a significant influence
on driving the mackerel distribution. Table 2 shows a numerical summary of the pos-
terior distribution of the effects, shown in Figure 3. In both cases, they show that depth
affects the distribution of the species studied negatively, while the chlorophyll-a con-
centration has a positive relationship. Results therefore indicate that the occurrence
of Mediterranean horse mackerel is greater in shallow waters (near the coast) where
the concentration of the chlorophyll-a is higher with to respect to deeper waters. The
underlying reason may be that Mediterranean horse mackerel is a pelagic migratory
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Table 1 Model comparison

Model LCPO BS DIC
1 1 0.69 0.25 202.77
2 1 + Depth 0.69 0.24 200.87
3 1 + logDepth 0.67 0.24 197.03
4 1 + Chlorophill-a 0.67 0.24 197.60
5 1 + θ 0.66 0.23 195.59
6 1 + Depth + Chlorophill-a 0.67 0.23 196.19
7 1 + Depth + θ 0.67 0.23 195.13
8 1 + logDepth + Chlorophill-a 0.66 0.23 192.18
9 1 + logDepth + θ 0.65 0.23 191.21

10 1 + Chlorophill-a + θ 0.65 0.23 192.18
11 1 + Depth + Chlorophill-a + θ 0.66 0.23 191.48
12 1 + logDepth + Chlorophill-a + θ 0.64 0.22 187.83

Table 2 Numerical summary of the posterior distributions of the fixed effects.

mean sd Q0.025 Q0.5 Q0.975

(Intercept) 0.80 1.56 -2.31 0.78 3.99
log Depth -0.67 0.29 -1.29 -0.66 -0.14

chlorophyll-a 3.69 1.52 0.79 3.66 6.75

-6 -4 -2 0 2 4 6 8

(a) Intercept

-2.0 -1.5 -1.0 -0.5 0.0 0.5

(b) log(Depth)

-2 0 2 4 6 8 10

(c) Chlorophill-a

Fig. 3 Posterior distributions of the fixed effects

fish occurring at a depth of between 40 and 500 m., usually in surface waters, but at
times near the bottom (Ragonese et al 2003).

In Ecology, chlorophyll-a can be used as an indicator of the primary production
of an ecosystem. The spatial variability of the primary production modifies trophic
conditions (Katara et al 2008) of the examined area and thus the distribution of the
marine species. Coastal waters are usually zones of high productivity while in surface
waters away from coastlines, there is generally plenty of sun but insufficient nutrients.
In our case, although captures were scanty in the upper part of the slope (down to 300
m. depth, see Figure 1), mackerel was caught on the shelf over practically all the area
investigated.

Figure 4 displays the posterior mean and standard deviation of the spatial compo-
nent. This component shows a strong effect with positive values in the western part
of the bay of Almerı́a, with values around zero in the middle and with negative val-
ues in the eastern part of the area. This results in a clear dependence with respect to
longitude in Mediterranean horse mackerel distribution. The western area of the bay
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Fig. 4 The posterior mean (left) and standard deviation (right) of the spatial effect
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Fig. 5 Posterior mean of the lineal predictor

of Almerı́a is a protected coastline, the Punta Entinas-Sabinar Natural Park, made up
of sand dunes interspersed with a series of freshwater and saline lakes. Its size and
development are directly associated with groundwater flows that, jointly with strong
hydrochemical variability and an anthropogenic influence due to intensive agricul-
ture, produce a significant concentration of nutrients in the coastal waters. All these
factors make this a highly productive area that is the ideal habitat for Mediterranean
horse mackerel.

We can also obtain a precise estimation of the complete linear predictor by calcu-
lating the corresponding combination of the means of the different effects, as shown
in Figure 5. The posterior mean of the linear predictor confirms that depth plays a
key role in the distribution of Mediterranean horse mackerel, along with the concen-
tration of chlorophyll-a. Along the coast, mean values of the linear predictor show
positive values, where the concentration of chlorophyll-a is higher, and as we move
away from the coast to the offshore area the mean values become negative.

In order to make the results more understandable, we have also generated maps
of predicted probabilities of occurrence using the distribution of the parameter πi. In
this specific case, it is not a linear transformation from the linear predictor, so it is not
possible to compute the posterior distribution of the parameter πi. However, we can
obtain any quantile using the corresponding quantiles of the linear predictor.
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Fig. 7 Variability for πi|Z

Figure 6 shows the median posterior probability of occurrence, while Figure 7
shows the first (a) and third (b) quartiles for this probability. In this way we get not
only a point estimate for the probability of occurrence, but also an assessment of the
uncertainty of this estimation. Figure 6 confirms that the probability of finding this
species is greater in areas near the coast at a shallow depth and where the chlorophyll-
a concentration is higher. In deeper waters the occurence probability is lower where
the nutrient concentration is less. Also, the western part of the bay of Almerı́a shows
a higher probability of occurence with respect to the eastern zone due to the presence
of the Natural Park and the intensive agriculture that releases a high concentration of
organic material into the sea.

5 Concluding remarks

The main advantage of the Bayesian model formulation is the computational ease in
model fit and prediction compared to classical geostatistical methods. Both the sta-
tionary and especially the non-stationary models have a large number of parameters.
Also, in classical geostatistical applications, the full range of uncertainties that are al-
ways associated with species distribution models is not correctly measured, as many



14 Facundo Muñoz et al.

parameters that are considered to be “known” are actually estimated through the sta-
tistical model (Diggle and Ribeiro 2007), a potential cause of optimistic assessments
of predictive accuracy. Using Bayesian kriging, we have incorporated parameter un-
certainty into the prediction process.

The main goal of this study has been to predict the occurrence of the species
in unsampled areas. To do so, instead of MCMC we have used the novel integrated
nested Laplace approximation approach. More precisely, we have applied the work of
Lindgren et al (2011), which provides an explicit link between Gaussian Fields and
Gaussian Markov Random Fields through the Stochastic Partial Differential Equa-
tion approach. Thanks to the R INLA library, the SPDE approach can be easily im-
plemented providing results in reasonable computing time (in contrast to MCMC
algorithms). The simplicity of the SPDE parameter specifications provides a new
modelling approach that allows an easy construction of non-stationary models that
provides a good, computationally very efficient, local interpretation. For these rea-
sons, the SPDE approach has proved to be a powerful strategy for modelling and
mapping complex spatial occurence phenomena.

This modelling could be expanded to the spatiotemporal domain by incorporat-
ing an extra term for the temporal effect, using parametric or semiparametric con-
structions to reflect linear, nonlinear, autoregressive or more complex behaviours. Al-
though the inclusion of independent effects on spatial and temporal domains would
be straightforward (for instance using a non-structured random effect), it must be
taken into account that introducing non-separable spatiotemporal structures could be
much more difficult. A first analysis in this line can be seen in Andrianakis and Chal-
lenor (2012). Nevertheless, in our case, the information available did not include a
reasonable enough number of years for performing any temporal analyses.

To conclude, we would like to mention that we have described an application
to a set of fishery data of Mediterranean horse mackerel from the bay of Almerı́a,
western Spain, to illustrate this approach. The results have shown that the distribution
of Mediterranean horse mackerel is influenced by a spatial effect, as well as the depth
and the concentration of chlorophyll-a.

Finally, we would also like to mention that the analytical approach we used here
to document the spatial patterns in the distribution of Mediterranean horse mackerel
can be extended to different species and life stages to improve knowledge of the role
of habitat for populations and communities.
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