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Resource-constrained project scheduling for timely

project completion with stochastic activity durations

We investigate resource-constrained project scheduling with stochastic activity durations.
Various objective functions related to timely project completion are examined, as well
as the correlation between these objectives. We develop a GRASP-heuristic to produce
high-quality solutions, using so-called descriptive sampling. The algorithm outperforms
other existing algorithms for expected-makespan minimization. The distribution of the
possible makespan realizations for a given scheduling policy is studied, and problem
difficulty is explored as a function of problem parameters.
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1. Introduction

The larger part of the scientific literature on resource-constrained project scheduling focuses
on the minimization of the project duration in a deterministic setting. The goal of the
resource-constrained project scheduling problem (RCPSP) is to minimize the duration of a
project subject to finish-start precedence constraints and renewable resource constraints. It
is shown in Blazewicz et al. (1983) that the RCPSP, as a job-shop generalization, is NP-hard
in the strong sense. A lot of exact and heuristic procedures have been proposed to con-
struct workable baseline schedules that solve this deterministic RCPSP, see Demeulemeester
and Herroelen (2002), Kolisch and Padman (2001) and Neumann et al. (2002) for recent
overviews.

During project execution, however, project activities are often subject to considerable
uncertainty, which results from many different possible sources: activities may take more or
less time than originally estimated, resources may become unavailable, material may arrive
behind schedule, workers may be absent, etc. In this article we examine the case where this
uncertainty is important enough to be incorporated into the planning phase. The sources
of variability in processing times are manifold; nevertheless, the main scheduling objectives
are mostly functions of the activity starting- (or ending-)times, the project makespan being
the single most-studied objective, next to other such as weighted earliness-tardiness and
net present value of the project. This justifies a restriction to the study of uncertainty in
processing times only, although many different sources may be at the basis of this variabil-

ity. The stochastic resource-constrained project scheduling problem (stochastic RCPSP or



SRCPSP) is the stochastic equivalent of the RCPSP, where the durations of the activities
are not known in advance but are represented as random variables. The probability distri-
butions can be either objective (a risk situation) or result from subjective judgment (in the
case of decision-theoretic uncertainty or even ignorance).

The SRCPSP usually aims at minimizing the expected makespan over a limited set of
possible decisions to be taken during project execution. As coherently described by Stork
(2001), an important new aspect comes into play on moving from the deterministic to the
stochastic case: what is a solution to an SRCPSP-instance? A deterministic schedule does
not necessarily contain enough information to make decisions during the execution of the
project. Hence, a solution should define for each possible event that occurs within the
execution of the project an appropriate action, typically the start of new activities. To
make such decisions, one may want to exploit the information given by the current state of
the project. In line with Igelmund and Radermacher (1983), among others, we call such a
solution a (scheduling) policy.

A vast amount of literature exists on the so-called (generalized) PERT-problem, where
no resource constraints are taken into consideration. These studies are usually concerned
with the computation of certain characteristics of the project makespan (earliest project
completion), mainly with exact computation, approximation and bounding of the distribu-
tion function and the expected value. Note that in this case, no real scheduling effort is
required: all activities can be started when their predecessors are completed. For a review
of research up until 1987, we refer to Adlakha and Kulkarni (1989). A recent computational
study on bounding the makespan distribution, in which the most promising algorithms are
compared, is given by Ludwig et al. (2001).

The work on the SRCPSP, however, has remained rather limited until now. There are
only few computational publications on this problem: Igelmund and Radermacher (1983)
and Stork (2001) report on experiments with branch-and-bound algorithms, while Golenko-
Ginzburg and Gonik (1997) and Tsai and Gemmill (1998) develop greedy and local-search
heuristics. Time/resource trade-offs with stochastic activity durations, in which the resource
allocation influences the mean and/or the variance of the durations, are investigated in
Gerchak (2000), Gutjahr et al. (2000) and Wollmer (1985).

The contributions of this article are sixfold: (1) we examine multiple possible objective
functions for project scheduling with stochastic activity durations; (2) we show by computa-

tional experiments that these different objective functions are closely connected and that for



most practical purposes, it suffices to focus on the minimization of the expected makespan;
(3) we develop a GRASP-heuristic that produces high-quality solutions, outperforming ex-
isting algorithms for expected-makespan minimization; (4) the variance-reduction technique
of descriptive sampling is applied and its benefits assessed; (5) the distribution of makespan
realizations for a given scheduling policy is studied; and (6) problem difficulty is explored as
a function of problem parameters.

The remainder of this article is organized as follows. Definitions and a detailed problem
statement are provided in Section 2, followed by a discussion of the computational setup
(Section 3). Section 4 presents the basic ingredients of our GRASP-algorithm. Our main
computational results for the expected-makespan objective can be found in Section 5; the
relationship between the expected makespan and some other objective functions is treated in
Section 6. The distribution of makespan realizations is the subject of Section 7, and we try
to characterize problem difficulty as a function of problem parameters in Section 8. Finally,

a summary is given in Section 9.

2. Definitions and problem statement

This section contains a number of definitions (Section 2.1), a discussion of scheduling policies

(Section 2.2), and a statement of the problems that we wish to solve (Section 2.3).

2.1 Definitions

A project consists of a set of activities N = {0, 1,...,n}, which are to be processed without
interruption on a number K of renewable resource types with availability ay, k =1,..., K;
each activity ¢ requires r;; € N units of resource type k. The duration D; of activity ¢
is a random variable (r.v.); the vector (Dy, Dy,...,D,) is denoted by D. A is a (strict)
partial order on N, i.e. an irreflexive and transitive relation, which represents technological
precedence constraints. (Dummy) activities 0 and n represent start and end of the project,
respectively, and are the (unique) least and greatest element of the partially ordered set
(N, A). Activities 0 and n have zero resource usage and Pr[D; = 0] = 1 for i = 0,n; for
the remaining activities i € N\{0,n} we assume that Pr[D; < 0] = 0 (Pr[e] represents the
probability of event e). We associate the directed acyclic graph G(N, A) with the partially
ordered set (N, A).



We use lowercase vector d = (dy,ds, ...,d,) to represent one particular realization (or
sample, or scenario) of D. Alternatively, when each duration D; is a constant, we use the
same notation d. In the (deterministic) RCPSP, each duration D; is a constant integer value.
A solution for the RCPSP is a schedule s, i.e., a vector of starting times (s, s1,. .., s,) with
s; > 0 for all ¢ € N, that is both time-feasible and resource-feasible. Schedule s is called
time-feasible if s; +d; < s; for all (i,j) € A; s is said to be resource-feasible if, at any time ¢
and for each resource type k, it holds that ZieA(s’t) rie < ay, where the active set A(s,t) =
{i € N|s; <t < s; +d;} contains the activities in N\{0,n} that are in progress at time ¢.

The objective function in RCPSP is the project makespan s,, (which is to be minimized).

2.2 Scheduling policies

The execution of a project in the context of SRCPSP can best be seen as a dynamic decision
process. A solution is now a policy II, which defines actions at decision times. Decision
times are typically ¢ = 0 (the start of the project) and the completion times of activities.
An action can entail the start of a set of activities that is precedence- and resource-feasible.
A schedule is thus constructed gradually through time. A decision at time ¢ may only
use information that has become available before or at time ¢; this requirement is often
referred to as the non-anticipativity constraint. As soon as all activities are completed, the
activity durations are known, yielding a realization d of D. Consequently, every policy II
may alternatively be interpreted (cfr. Igelmund and Radermacher, 1983; Stork, 2001) as a
function RY — RZ that maps given samples d of activity durations to vectors s(d;II) € R"
of feasible activity starting times (schedules); if no misinterpretation is possible we usually
omit the identification of the policy and write s(d). For a given scenario d and policy II,
$n(d; II) denotes the makespan of the schedule. The most-studied objective for the SRCPSP
is to select a policy II* within a specific class that minimizes E[s,(D;II)], with E[-] the
expectation operator with respect to D.

A well-known class of scheduling policies is the class of priority policies, which order all
activities according to a priority list and, at every decision point ¢, start as many activities as
possible in the order dictated by the list (in line with the parallel schedule generation scheme
— parallel SGS — see Kolisch and Hartmann, 1999). These list-scheduling policies present a
number of drawbacks. First of all, priority policies cannot guarantee an optimal schedule.
Moreover, the change of activity durations may lead to so-called Graham anomalies (Graham,

1966) such as increasing project duration due to decreasing activity durations. Stork (2001)
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describes how, if we consider the interpretation of a policy as a function, these anomalies
lead us to conclude that priority policies are neither monotone nor continuous.

Several other classes of policies have been examined by Stork (2001), most of which
exhibit severe computational limitations; he concludes that, for larger instances, the only
remaining alternative is to use the class of so-called activity-based policies, which is also the
class that will be studied in this paper. An activity-based policy II(L) is also represented
by a priority list L of the activities and, for a given sample d, computes starting times by
starting each activity in the order imposed by L as early as possible, with the side constraint
that s;(d) < s;(d) if ¢ <, j. Elimination of this side constraint would yield a simple priority
policy that suffers from the Graham anomalies, but the ‘activity-based’ point of view, rather
than greedy ‘resource-based’; does away with this problem. Since these activity-based policies

perform activity-incrementation rather than time-incrementation, they can alternatively be

referred to as ‘(stochastic) serial SGS’ (Ballestin, 2007).

2.3 Problem statement

The literature on project management abounds with motivations for reducing project lead
times, including various first-mover advantages in new-product development (see, for in-
stance, Smith and Reinertsen, 1991), advantages during the bidding process (Kerzner, 1998;
Newbold, 1998; Xie et al., 2006), and incentive contracts that foresee a penalty for delayed
completion or a bonus for early delivery (Bayiz and Corbett, 2005). Our focus on timely
project completion by using some characterization of the makespan (which is a stochastic
variable) as objective function, is therefore evident. We elaborate on this choice in the

paragraphs below.

2.3.1 Individual projects

French (1988) describes four criteria for decision making under uncertainty, which for a
minimization problem amount to (1) minimaz (minimize the worst makespan realization that
can occur), (2) minimin (minimize the best outcome that can occur, which is an optimistic
approach, as opposed to the pessimistic minimax), (3) minimax regret (minimize the largest
possible difference in makespan between the policy to be selected, and the optimal makespan
for a given realization), and (4) minimize the objective in ezpectation. Scheduling with
objectives (1) and (3) is studied in Kouvelis and Yu (1997); we do not adopt these objectives

because (a) one normally needs discrete scenarios instead of continuous distributions, and



(b) the evaluation of the optimal objective function for constant durations should be easy in
order to be able to produce computational results for average-size instances (in the case of
Kouvelis and Yu: single-machine scheduling with total-flow-time objective and two-machine
flow-shop with makespan objective). Since a practical decision maker is usually risk-averse,
we also do not investigate objective (2).

In conclusion, when a project is to be executed in isolation (e.g. for internal clients),
expected makespan is the most logical objective of the foregoing. Actually, it is well-known
that the expectation criterion is most appropriate for a risk-neutral decision maker, and
in order to account for possible risk averseness, rather than work with utility functions
(with their inherent difficulty of estimation), one may put forward the use of constraints
of the form Pr[s,(D) > 4] < p, for given probability p and deadline §, as an approximate
representation of risk averseness, which represents the undesirability of exceptionally high
makespan realizations, and which is comparable with downside-risk or Value-at-Risk (VaR)
constraints in Finance (Ang et al., 2006; Jorion, 2000). Likewise, Schuyler (2001) also
advocates conservatism when large potential gains and losses are associated with individual
decisions.

A second way to account for risk averseness is to investigate the trade-off between the
expected makespan E[s,(D)] and the makespan variance var[s,(D)]. This is in line with
Portougal and Trietsch (1998) who suggest that “variance reduction should be introduced
explicitly in the objective, while retaining the expected completion time as well”. Similarly,
Elmaghraby et al. (1999) also distinguish both mean and variance of the project duration as
the two prime performance measures of concern. In Gutierrez and Paul (2001) the impact is
examined of variability in activity durations on mean project duration, while Cho and Yum
(1997) focus more on the sensitivity of makespan variability. Finally, knowledge of the entire
distribution function of makespan realizations for a given policy is obviously also highly

informative to the decision maker; we investigate this in a separate section (Section 7).

2.3.2 External clients

The foregoing discussion looked into the execution of a project in isolation. When a project
deadline has been negotiated beforehand with external clients, however, it may be more useful
to adapt the scheduling objective function in order to reflect possible applicable penalty
structures (we do not focus on bonuses for early completion), which take the form either of

a fixed charge, so that the objective function becomes max Pr(s,, < d] for a given deadline §,



or of a fixed charge per unit-time overrun, leading to min E[max{0; s, — §}] (see Gutjahr et

al. (2000) for a model in a slightly different context that uses more general loss functions).

2.3.3 Problem statement: conclusion

In conclusion, we are left with three objective functions to investigate: max Pr[s, < J],
henceforth, in line with Portougal and Trietsch (1998), referred to as the service-level objec-
tive due to its similarity with inventory management (see, for instance, Silver et al., 1998);
min Fs,] (the ezpectation objective), and min E[max{0;s, — d}| (the (expected) overrun
objective). For the benefit of risk averseness, a lower bound may be imposed on the service
level, or an upper bound on the makespan variance. In the remainder of this text, we use
the term statistic to refer to any function of s,. Obviously, a decision maker may also be
interested in possible trade-offs between the different suggested statistics. The correlation

between the statistics will be studied in Section 6.

3. Computational setup

The analyses in the next sections are based on computational experiments using randomly
generated datasets. The coding was performed in C using the Microsoft Visual C++ 6.0
programming environment, and the experiments were run on a Samsung X15 Plus portable
computer with Pentium M processor with 1,400 MHz clock speed and 512 MB RAM,
equipped with Windows XP. Our tests are performed on instances from the benchmark
library PSPLIB, which contains instances of different size and with different characteristics
of the deterministic RCPSP, and which were generated by the problem generator ProGen
(Kolisch and Sprecher, 1996); the number of resource types K < 4. We only use the dataset
containing 600 instances with 120 activities (commonly named ‘j120’). The deterministic
duration df for each activity ¢ # 0,n is an integer randomly chosen from {1,2,...,10}.

We generate the probability distributions of the stochastic job processing times D; (which
are not created by the ProGen instance generator) in line with Stork (2001): we take the
given deterministic processing time d; of each job as expectation and we construct uniform,
exponential and beta distributions. More specifically, we examine five distributions: (contin-
uous) uniform on [df — \/d_;* ;df 4+ \/d;] (subsequently referred to as case ‘U1’); (continuous)
uniform on [0;2d}] (‘U2’); exponentlal with expectation df (‘Exp’); beta distribution with
support [df/2; 2d}] and variance = d}/3 (‘B1’); and beta distribution with support [d}/2; 2d;]



and variance = d;?/3 (‘B2’). These five distributions have variances of d} /3, d%/3, d}?, d}/3
and d;?/3, respectively. The distributions have been created so that Ul and B1 on the one
hand and U2 and B2 on the other hand share the same variance.

Exact evaluation of the statistics of our interest (expectation, variance, ...) is overly
time-consuming (for the expected makespan, for instance, this amounts to the PERT prob-
lem, which is well-known to constitute a formidable computational challenge, see Hagstrom
(1988)), which is why we approximate these values by means of simulation. Similar decisions
in the context of scheduling under uncertainty have been made by Ballestin (2007), Leus
and Herroelen (2004), Mohring and Radermacher (1989) and Stork (2001), among others. A
solution in this article is an activity-based policy II(L), which is represented by an activity
list L. An approximation of any statistic g(L) associated with II(L) is based on sampling
a number of realizations from D; the number of replications is a parameter. Stork (2001),
for instance, states that, for the expected makespan, 200 samples turn out to provide a
reasonable trade-off between precision and computational effort.

For our computational experiments we have examined the standard deviation of the
percentage deviation of simulated versus ‘true’ makespan (the last one obtained from a high
number (25000) of runs) over the dataset. For a justification of the standard deviation
as an accuracy measure, and for a discussion of the convergence of the estimate towards
the true value as the number of samples increases, see Kleywegt et al. (2001). Leus and
Herroelen (2004) note that the number of simulation runs corresponding with the same
standard deviation decreases with the number of activities; this approach has the advantage
of reducing (relative) simulation effort for larger problem instances. For instances with 120
activities (the only project size we work with), our observations are summarized in Figure 1,
where the accuracy of our estimate of the expectation and standard deviation of makespan
is depicted; the corresponding graph for the service level is very similar to Figure 1(a), the
graph for the expected overrun is close to Figure 1(b). Especially in Figure 1(a) we see
that the same number of replications leads to less accurate results for distributions with
higher variability. We conclude that 1000 replications lead to a (lack of) accuracy of below
1% for the expected makespan. For 1000 replications, Figure 2 shows the quality of the
approximation of the due dates corresponding with different service levels (estimated based
on the order statistics). We learn from the U-shaped graphs that it is easier to approximate
due dates corresponding with service levels in the middle of the interval [0; 100%)] than in

the tails; we come back to this in Section 6.
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Figure 1: Accuracy, measured using the standard deviation of the percentage error, as a
function of the number of replications.

Ballestin (2007) shows that using fewer scenarios to calculate the approximation of each
activity list during the algorithm favors the calculation of more policies and leads to bet-
ter solutions at the end of the procedure. Those scenarios were calculated using random
sampling, as is common in most algorithms that work with scenarios. In this paper we
use the so-called descriptive sampling (Saliby, 1990, 1997), which is one particular variance-
reduction technique. Concretely, 1000 replications is the default number we work with for
computing correlations and fitting distributions (Sections 6, 7 and 8). When our focus is
on the highest-quality solutions obtainable with a given computational effort, on the other
hand, we consider the number of replications as a parameter of the algorithm. In our com-
putational results in Section 5, we opt for 10 replications (which was the best tested number

in Ballestin, 2007), and we provide empirical evidence that such a low number is preferable.
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4. GRASP

Below, we discuss GRASP a a general heuristic procedure (Section 4.1) and we describe the

overall structure of our search procedure for SRCPSP-solutions (Section 4.2).

4.1 GRASP as a general-purpose metaheuristic

A greedy randomized adaptive search procedure (GRASP) is a multi-start or iterative process
(Feo and Resende, 1995, 2000; Aiex et al., 2002). Each GRASP-iteration consists of two
phases: in a construction phase, a feasible solution is produced and in a local-search phase,
a local optimum in the neighborhood of the constructed solution is sought. The best overall
solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at
a time. The basic construction phase in GRASP is similar to the semi-greedy heuristic
proposed independently by Hart and Shogan (1987). At each construction iteration, the
choice of the next element to be added is determined by ordering all candidate elements
(i.e. those that can be added to the solution) in a candidate list C with respect to a greedy
function C — R. This function measures the (myopic) benefit of selecting each element.
The heuristic is adaptive because the benefits associated with every element are updated at
each iteration of the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP resides in the fact that
we choose one of the best candidates in the list, but not necessarily the top candidate; the
list of best candidates is called the restricted candidate list. It is almost always beneficial to

apply a local-search procedure to attempt to improve each constructed solution.

4.2 Adapting GRASP to our setting

The global structure of our GRASP-implementation is represented as Algorithm 1. Our
basic algorithm maintains a set EliteSet of elite solutions (activity lists), containing the best
solutions so far encountered. At each iteration of the algorithm, the solutions in EliteSet are
used to create a new activity list with the procedure BuildActList. Subsequently, a schedule
s* is built by applying a job-based policy with the mean durations d* to this list. After a
local-search procedure that attempts to improve this deterministic schedule, we re-translate

*

schedule s* into an activity list by means of function ScheduleTolList, ordering activities by

starting times. This yields the representation of a new activity-based policy, whose objective
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Algorithm 1 GRASP: global algorithmic structure
EliteSet = o
while TerminationCriterion not met do
L = BuildActList(EliteSet)
s* = s(d*, II(L))
s* = LocalSearch(s*)
L = ScheduleToList(s*)
Evaluate the activity-based policy I1(L)
if L is better than the worst solution L’ in EliteSet then
EliteSet = (EliteSet \ L") UL
end if
end while
Return the best solution found

function is then evaluated (using simulation). If it is better than the worst solution in the
elite set, we erase that solution and include the new one.

We have implemented a local-search procedure based on the concept of justification. The
(double) justification of a schedule consists in first scheduling the activities as late as possible
in non-increasing order of their finish times and then scheduling the activities of the obtained
solution as soon as possible in non-decreasing order of their start times. In the RCPSP and
some of its generalizations, justification has proved to be very efficient: the makespan of
a solution is never worse after justification, and often lower. The technique is based on
principles described in Li and Willis (1992) and Ozdamar and Ulusoy (1996), and Valls et
al. (2005) show that incorporating this technique in several different heuristic algorithms for
the RCPSP could improve their quality without an increase in the computation times; this
implementation is referred to as ‘L.S1’. Additionally, in order to further improve the quality
of the solution, we also investigate the application of a two-point crossover with as input the
schedules before and after justification (the resulting method is called ‘LS2’).

At each iteration of BuildActList (see Algorithm 2) an eligible activity is selected, until
we obtain a complete activity list. An activity is called eligible when all its predecessors
have been selected. A greedy way to choose the activity could be to use the best solution
found so far as the reference for this selection — that is, to select the eligible activity that
comes first in that activity list. In order to randomize the selection, we will randomly choose
among the elite set the solution that will serve as the reference. An elite solution remains
the reference in the following nit € [nitmin ; nitmax| iterations (randomly chosen).

To add more randomness, we also include the possibility that the eligible activity is

11



Algorithm 2 BuildActList
i = 0; EligibleSet = {0}; nit =0
while 7 < n do
if nit =0 then
reference = SelectSolution
if reference # “LFT”, “random” then
nit € [nitmin ; nitmax]
end if
else
nit = nit —1
end if
Select an activity j from EligibleSet according to the reference
Li@)=j;i=1i+1
end while
Return the activity list L

chosen according to its latest finish time or that it is chosen randomly; these latter two
options are only applied in a small fraction pLFT and pRandom, respectively; in this case nit
= 0 (other values have been examined but lead to worse results). In the first iterations of
our GRASP, when the elite set is not full, we set the values of pLFT and pRandom to 95%
and 5%, respectively.

In order to introduce diversity in the procedure, we have included the possibility of a
yet different reference solution in the function SelectSolution (see Algorithm 3), namely the
inverse of a list in EliteSet, with probability plnverse, denoted as inv(). In this case, a list
L from EliteSet is chosen, and the next activity in BuildActList is an eligible activity with
highest position in L.

Algorithm 3 SelectSolution

Draw p € [0;1]

if p < pLFT then
reference = “LFT”

else if p < pLFT + pRandom then
reference = “random”

else
A reference solution is randomly drawn from EliteSet
if p < pLFT 4 pRandom -+ plnverse then

reference = inv(reference)

end if

end if

Return reference solution
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5. Computational results for the expected makespan

In this section we compare different versions of our GRASP-implementation with expected-
makespan objective in order to evaluate the quality of the overall algorithm and its individual
elements (Section 5.1), and we provide a comparison of our algorithmic performance with

other recently proposed algorithms (Section 5.2).

5.1 Details of our GRASP-implementation

The quality of an algorithm is measured by the percentage distance of E[s,(D;II(L))] (ap-
proximated using 1000 replications, independent from the ones used in the optimization
phase) from the critical-path length of the project with deterministic mean durations d;.
These percentages are averaged over all the instances of the set j120. In the literature on
heuristics for the deterministic RCPSP, it is common (see, e.g., Hartmann and Kolisch, 2000)
to impose a limit on the number of generated schedules, for ease of comparison of different
algorithms regardless of the computer infrastructure. We work with two limits on the num-
ber of schedules: 5000 and 25000. Due to the particularities of job-based policies (an activity
cannot be scheduled before an already scheduled activity), it turns out (see Ballestin, 2007)
that job-based policies are about twice as fast as the deterministic serial SGS. Consequently,
we count one scheduling pass of a job-based policy as 0.5.

The first line of Table 1 shows the results of the final version of our algorithm, simply
called ‘GRASP’, where plnverse = 0, pRandom = 0.05 and LS2 is used. The second line,

labelled ‘Basic’, pertains to an implementation without local search and without descriptive

Distribution U1l U2 Exp Bl B2

# schedules | 5000 25000 | 5000 25000 5000 25000 | 5000 25000 | 5000 25000
GRASP 46.84 4521 | 72.58 70.95 | 114.42 112.37 | 47.17 45.60 | 75.97 74.17
Basic 50.57 48.68 | 76.55 74.78 | 118.72 117.20 | 50.70  48.99 | 79.49 77.64
Basic+DS 50.12  48.33 | 75.76  73.83 | 117.36 115.34 | 50.49 48.61 | 78.96 77.04
GRASP-LS1 | 49.17 47.73 | 76.68 74.93 | 121.07 119.02 | 49.75 48.14 | 80.50 78.62
Inverse 46.93 45.35 | 72.67 70.97 | 114.40 11246 | 47.25 45.58 | 76.00 74.22
100 iter 49.81 46.73 | 75.36  71.76 | 116.76 112.36 | 50.20 47.18 | 78.63  75.00
500 iter 53.04 49.53 | 79.59 75.05 | 122.69 116.16 | 53.40 49.89 | 83.06 78.26
1000 iter 53.79  51.15 | 80.50 76.95 | 123.70 118.77 | 54.15 51.51 | 83.97 80.28

Table 1: Percentage distance of E[s,(D;II(L))] (approximated using 1000 replications)

from the critical-path length of the project with deterministic mean durations d.
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Figure 3: Computational results for descriptive sampling.

sampling. ‘Basic+DS’ refers to the inclusion of descriptive sampling (DS) in Basic. ‘GRASP-
LS1’ is GRASP with LS1 instead of LS2. In ‘Inverse’ we set plnverse = 0.05 and pRandom
= 0, to study whether the use of solutions in EliteSet to attain diversity is useful. Finally,
the last three lines of the table give the computational performance of GRASP with 100,
500 and 1000 replications rather than just 10.

We observe that the biggest improvement comes from changing from LS1 to LS2. The
straightforward use of justification improves the quality of Basic+DS only when activity-
duration variability is low (U1-B1), but worsens it in the other cases. However, LS2 manages
to improve the results in all cases. The use of elite solutions in an inverse manner to introduce
diversity does not add anything to the results. It is our opinion nevertheless that it is a good
way to diversify the search and we will in the future try to look for other ways to implement
this idea. A low number of replications also turns out to perform considerably better (as
was hinted at at the end of Section 3).

Finally, the inclusion of the DS also (slightly) improves the results of the basic algorithm.
We have computed the improvement in the average deviation from the critical-path length
that is obtained by the incorporation of DS (compared to random sampling) when we work
with 5, 10 and 20 replications; the results for a schedule limit of 5000 and 25000 schedules
can be found in Figure 3. The gain obtained by DS tends to decrease as the number of
replications increases, both for 5000 and 25000 schedules, and this trend is independent of
the duration distribution. Specifically, the gain is up to 2% with five replications for some
distributions, making the incorporation of DS clearly worthwhile. Perhaps more important
than the technique of DS itself is the fact that this opens a new area of research in heuristic

algorithms with replications, namely regarding the implementation of the sampling: to the
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best of our knowledge, up until now only random sampling has been used. Based on the
foregoing data, we can recommend the use of descriptive rather than random sampling in
heuristic search especially when the number of replications is low, in which case the potential

improvement appears to be significant.

5.2 Comparison with state-of-the-art algorithms

We are now ready to compare our GRASP-algorithm with other SRCPSP-algorithms from
the literature. First of all, we consider the genetic algorithm (GA) of Ballestin (2007), where
the same dataset and schedule limit are used, with distributions U1, U2 and Exp. Table 2
provides a comparison; we can see that GRASP outperforms the GA in all cases. If we look
back to Table 1, even our Basic algorithm does better than the GA, which emphasizes the
improvement obtained by adding the descriptive sampling and LS2.

Secondly, we consider the tabu search (TS) and simulated annealing (SA) of Tsai and
Gemmill (1998), where algorithmic performance is evaluated on the Patterson dataset (Pat-
terson, 1984), with adaptations for obtaining stochastic (beta) activity durations. As a
measure of the quality of their algorithms, the authors report the deviation from an ap-
proximate lower bound. Table 3 shows their results obtained on a personal computer with
166 MHz; SA2 and TS2 differ from SA1 and TS1 only in the parameters settings; the two
final columns contain the results of our GRASP-algorithm on the same problem set. The
GRASP-algorithm with a limit of 5000 schedules outperforms both the SA and the TS in

quality and in time, even if we take into account the difference in computer infrastructure.

Distribution Ul U2 Exp

# schedules 5000 25000 5000 25000 5000 25000
GA 51.94% 49.63% | 78.65% 75.38% | 120.22% 116.83%
GRASP 46.84% 45.21% | 72.58% 70.95% | 114.42% 112.37%

Table 2: Comparison between GRASP and GA.

Algorithm SA1 SA2 TS1 TS2 | GRASP GRASP

(5000)  (25000)
Above approximate lower bound | 3.40% 2.27% | 3.71% 2.54% 2.01% 1.96
Average time (s) 10.804 21.414 | 5.834 11.290 0.92 4.24

Table 3: Comparison between GRASP (with 5000 and 25000 schedules) and the algorithms
of Tsai and Gemmil (1998).
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Distribution beta uniform normal
Heuristic 1 433.88 448.49  448.85
Heuristic 2 44798  461.35 461.58
GRASP (5000) | 408.75  427.64 422.04
GRASP (25000) | 403.16  424.28  415.40

Table 4: Expected makespan for the instance from Golenko-Ginzburg and Gonik (1997).

The small difference between 5000 and 25000 schedules might be due to the fact that the
solutions found are near-optimal.

Golenko-Ginzburg and Gonik (1997) test their algorithms only on one instance with 36
activities and a single resource type; Table 4 contains their and our results for this instance for
three duration distributions. The authors do not report on running times for the procedures
but only point out that the algorithm that uses an exact procedure to solve consecutive
multi-dimensional knapsack problems (Heuristic 1) needs much more time than the algorithm
that solves these problems heuristically (Heuristic 2). Obviously, no strong conclusions can
be drawn based on only one instance, but the difference between the algorithms is quite
large, especially with Heuristic 2. Stork (2001) also tests his exact algorithm (branch-and-
bound) on the same instance, but only for the uniform distribution. He obtains an expected

makespan of (rounded) 434 when the branch-and-bound is truncated.

6. Correlations and trade-offs

In this section we investigate how the different statistics (expected makespan, probability
of meeting a due date, ...) behave relatively to one another. To this aim we examine
1500 solutions per project instance, generated by the GA from Ballestin (2007). We do not
use the GRASP-algorithm that is the subject of this paper in order to guarantee that we
do not influence the outcome of the results and because the GA is a good algorithm (for

expected-makespan minimization), outperforming other state-of-the-art algorithms.

6.1 Expected makespan versus service level

The first relationship to be examined is that between service level and expected makespan,
the first being a probability, the second a measure of schedule length. It is tempting to simply
investigate the correlation between Els,| and Pr[s, < ¢], for given values of 6. This approach

has some disadvantages, however. First of all, it is difficult to choose appropriate due dates ¢
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probability U1l U2 Exp B1 B2

50% 99.91% 99.60% 97.66% 99.89% 99.45%
0.11 0.37 1.67 0.12 0.45
75% 99.84% 99.35% 96.94% 99.83% 99.22%
0.18 0.60 1.96 0.19 0.58
90% 99.62% 98.41% 93.81% 99.61% 98.21%
0.42 1.74 4.38 0.35 1.33
99% 98.21% 94.07% 73.91% 97.89% 92.62%
1.96 5.11 13.72 1.92 5.00

Table 5: Coefficients of determination for the relationship between due date and expected
makespan, for four service levels (in the first column): average (first value) and standard
deviation (second value) over the dataset. The columns correspond with the five duration
distributions.

for an entire dataset: it may be more appropriate to have (a) different value(s) per instance.
Second, since the service level is expressed as a percentage, it is not the most convenient
quantity to compute correlations with, because quite a number of solutions may have 0% or
100% service level. Therefore we calculate for each instance the due date ¢ associated with
given service levels and investigate the correlation between § and El[s,]. Table 5 contains
the coefficient of determination, which characterizes the linear relation between the two
quantities (note that this coefficient is the square of the correlation coefficient).

We observe that the more variance the distribution has, the less correlation is present: the
distribution with smallest correlation is clearly Exp, followed by U2 and B2. The correlation
is smallest in the tail and larger in the ‘middle’ of the domain. We conclude that, for
most practical purposes, it is not necessary to work with service levels: optimal (or good)
expected-makespan solutions automatically perform very well on the service-level objective.
Only perhaps in some extreme cases will it be interesting to optimize the service level instead
of the expected makespan, namely for very high levels (> 99%) and large duration variability.
One should also take into account that the lesser correlations in these cases may be due in
part to the difficulty in estimating the service levels (simulation of rare events) (cfr. Section
5, especially Figure 2).

As a result of the foregoing conclusion, we will also not spend attention anymore to
service-level bounds as a representation of risk averseness: assuming near-perfect correla-
tion, either the (unconstrained) solution with minimum expected makespan respects the
service-level bound, or no solution exists that offers a service level above the threshold. One

additional remark is in order here: we noted in Section 3 that for comparable precision, one
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Figure 4: The trade-off of due date (abscissa) versus service level (ordinate). Five due
dates are considered, namely min — (2/8)(max — min), min — (1/8)(max — min), min, min +
(1/8)(max — min) and min 4 (2/8)(max — min), where ‘min’ and ‘max’ are the lowest and
highest makespan realization of a good GA-solution (for a high number of replications).

needs a considerably higher number of replications for the service level than for the expected
makespan, so we can anticipate that, ceteris paribus, the same number of replications will
tend to favor the selection of better solutions in the case of the makespan objective.

We are now ready investigate the trade-off of due date versus service level. The results are
displayed in Figure 4; in line with the previous paragraphs, optimal (or at least high-quality)
service levels are set via expected-makespan optimization. We observe close similarities
between the distributions with similar variance (U1-B1 and U2-B2). We can also see how
the graphs ‘flatten out’ as the variability increases. Specifically, the service level changes
drastically when the deadline changes for Ul and B1. For these low-variability distributions
a clear ‘S’-shape is discerned, which shows that both for very high and very low service levels,
the necessary improvement in average makespan to obtain a given service-level improvement
is higher than in the ‘bulk’ of the makespan spread; we presume that this is so because less
solutions correspond with very high and low makespans. The trend is almost linear for U2,
B2 and Exp, with shallowest slope for Exp. We point out that these figures are averages

over 600 instances, so the behavior may be different for individual instances.

6.2 Expected makespan versus variance

We first include a discussion on delivery dates (Section 6.2.1) and then present computational

results (Section 6.2.2).
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6.2.1 Delivery dates

For the benefit of risk averseness, one of the options envisaged is to impose lower bounds
on the makespan variance. In principle we can simply eliminate a solution if it does not
respect the constraint. A problem that may occur is that, since our search procedure looks

for objective-function improvements, it may generate only non-permissible solutions. We

alt

therefore proceed as follows: the altered makespan s

corresponding with an activity list L
is obtained as
sp' (D TI(L)) = max{s,(D; II(L)); A} (1)

where A is an artificial delivery date for the schedule; higher A leads to higher expected
makespan but lower variance. For a given upper bound on the variance we find the lowest
value of A such that the bound is respected (via binary search). Since we evaluate the
performance measures by means of sampling, the computations corresponding with Equation
(1) are straightforward (the max-operator is applied to known numbers for each sample). As

an example, for four makespan realizations s,, = 100, 101, 103 and 104, Table 6 contains the

alt
n

alt
n

quantities s%(d, II(L)). One activity list leads to multiple pairs (E[s%], var[s¥]), dependent
on A. For a given threshold (upper bound) on the variance, however, only one of those pairs

comes out best, namely the pair with lowest E[s%] such that var[s®] does not exceed the

threshold.

6.2.2 Computational results for the relationship variance/expected makespan

In this section we investigate the relationship between the expected makespan and the
makespan variance. For the same dataset as in Section 6.1, we obtain results quite dif-
ferent than before: average coefficients of determination are between 62% and 69% (see
Table 7). Interestingly, the highest values occur for the exponential, while these were lowest

for the service level (see Table 5). This latter phenomenon might be due in part to the fact

A= 99 100 101 106

s, = 100 100 100 101 106
101 101 101 101 106
103 103 103 103 106
104 104 104 104 106

Table 6: Altered makespan s corresponding with four different values for the delivery
date A. Fach column contains one sample of altered makespans.
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U1 U2 Exp B1 B2
62.12% 63.43% 68.67% 64.19% 65.50%
17.36 17.17 14.08 15.94 16.60

Table 7: Coeflicients of determination for the relationship between standard deviation and
expected makespan: average (first value) and standard deviation (second value) over the
dataset. The columns correspond with the five duration distributions.

that the expectation of an exponential variable is equal to its standard deviation, so that for
a given longest path of activities in the schedule, higher expectation will also imply higher
variance (although the same is true, but to a lesser extent, for the other distributions; in the
context of resource-constrained scheduling, one should also generally avoid to overly focus
the attention on paths).

From the foregoing we conclude that these correlations are not satisfactorily high for
us to neglect the variance, and we anticipate that an actual expectation/variance trade-off
exists. This trade-off is examined in Figure 5, where the expected makespan obtained by
the GRASP-algorithm is plotted as a function of an upper bound imposed on the variance
(actually on the standard deviation). Seven such bounds are enforced. Let ‘min’ represent
the minimum standard deviation over all solutions that were examined by the GA in a
search for the minimum expected makespan (unconstrained). The bounds are determined
as k x min, with £ = 0, %, %, %, %,g and 1. The graphs are very similar in shape for all
five distributions, but there are differences, mainly in the ‘jumps’ in the expected makespan
corresponding with a step from one k-value to the next. For example, the jump in Ul is five

units of expected makespan from k£ = ;11 to k = 1, while it is 45 for Exp. Consequently, the
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Figure 5: The trade-off of variance (abscissa) versus expected makespan (ordinate).
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decision maker needs to ‘sacrifice’ a considerable increase in makespan expectation if he/she
wants to restrict the makespan variance in the cases where the variances of the individual
activity durations are high (especially Exp, also U2 and B2). However, this loss is not
very important when the variances of the D; are low (Ul and B1), unless the restriction is
severe (k =0, %, i) This observation was to be expected intuitively; in this section we have
been able to show the existence of this phenomenon numerically. Also, and contrary to the

due-date/service-level trade-off, the experimental trade-off curves for this case are convex.

6.3 Expected makespan versus expected overrun

We investigate the minimization of the expected overrun E[max{0; s, —0}] once the manager

has fixed a deadline §. We are obviously mainly interested in d-values such that
mdin{sn(d; I} <é< mgxx{sn(d; 1)}, (2)

where optimization in the first and third term is performed over all possible duration-
realization vectors d in the sample we work with, and II is any job-based policy (otherwise,
either we have an optimal objective of zero, or we simply minimize expected makespan).
In order to examine these cases, we compute ‘minmin’ as the minimum of the minimiza-
tion term in Equation (2) taken over all policies IT examined by the GA, and similarly
‘minmax’ as the minimum of the maximization term in (2). We wish to investigate especially
d €]minmin; minmax([; other values often turn out to admit policies with all makespan realiza-
tions either higher or lower than the deadline. More specifically, we work with three values
for §, namely d; = minmin 4+ (minmax — minmin)/2, d5 = minmin 4+ 5(minmax — minmin)/8
and 03 = minmin + 3(minmax — minmin) /4.

We find that, dependent on the value of the deadline, two types of relation between the
expected makespan and the expected overrun can be encountered, either linear or quadratic;
this is illustrated in Figure 6. A high determination coefficient in a linear or in a quadratic
relationship between E[s,| and E[max{0; s,, —d}] would imply that for all practical purposes,
we can suffice with optimization of the first quantity in order to optimize also the second. It
turns out that on fitting a quadratic equation to the data (which obviously includes a linear
relationship), the determination coefficients are above 95% in all cases, and the majority

even above 99%; for the sake of brevity, we omit the table displaying all coefficients.
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Figure 6: Expected makespan (abscissa) versus expected overrun (ordinate).

7. The distribution of the makespan realizations of a
given policy

In a deterministic setting, the decision maker knows exactly when the project will finish
and can make decisions based on this information. In a stochastic environment, he/she dis-
poses only of the expected makespan, which is a very limited piece of information knowing
that many different makespan realizations can actually occur. Clearly, knowledge of the
entire distribution of possible makespan realizations G(t;II(L)) : R — [0;1] : G(t;1I(L)) =
Pr[s,(D;II(L)) < t] is much more informative. Our goal in this section is to better un-
derstand the shape of this distribution. We provide two paragraphs, one with the detailed

computations (Section 7.1) and one with some conclusions (Section 7.2).

7.1 A detailed study of the distribution of makespan realization
of a given policy

Our first step is to calculate two descriptive measures for the shape and symmetry of the
makespan distribution of a policy, its skewness and its kurtosis. Approximations for these
values are collected in Table 8. The first (second) line shows the average of the (absolute)
skewness of the different instances. The third line represents the fraction of the instances
with positive skewness. The remaining lines display the same results for the kurtosis.

The data coming from both uniforms are very symmetric, and even the number of in-
stances with positive and negative skewness is around 50%. The absolute value of the kurtosis
is small, although there are more instances in which the kurtosis is negative. At any rate,

if we pay attention to the absolute values, the data could come from a normal distribution
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Distribution U1l U2 Exp B1 B2
skewness 0.006 —0.009 0.492 0.143 0.014
|skewness| 0.067 0.069 0.492 0.148 0.074
% inst.> 0 51.33% 43.67% 100.00% 92.00% 52.67%
kurtosis —0.030 —0.037 0.440 0.023 —0.051
|kurtosis| 0.128 0.122 0.450 0.130 0.133
% inst.> 0 36.50% 35.67%  92.67% 49.33% 33.00%

Table 8: Skewness and kurtosis for the different distributions.

(which has zero skewness and kurtosis). Interestingly, the increase in the variability from
Ul to U2 hardly affects the measures. The situation is slightly different for the beta distri-
butions. The figures of B2 are very similar to those of Ul and U2, but for B1 we observe
data that are less symmetric (long right-sided tail), yet more unbiased in the case of positive
and negative skewness. We can still consider the normal distribution as a possible model
for these data. Finally, data coming from the exponential have a long right-sided tail (posi-
tive skewness) and a prominent peak (positive kurtosis). The normal should not be able to
capture these data.

The next step in our attempt to characterize the distribution of the makespan realizations
is to find a known distribution that adequately fits the obtained data, for which many choices
are possible. Based on the previous measures and histograms of the data (e.g. Figure 7 for
instance j1201_1 if the durations stem from Ul), we have tried to fit a normal distribution

N (1, 0?) to the data, with p the average of the makespan realizations and o2 the (sample)
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Figure 7: Histogram of the different makespan realizations of a solution for j1201_1.
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Distribution Ul U2 Exp B1 B2
% A-D < 5% crit. val. | 92.67% 92.67%  1.00% 70.00% 90.67%

Average A-D stat. 0.404 0.413 3.032 0.648 0.433
Maximum A-D stat. 1.41 1.82 7.868  3.065  2.409
% inst. A-D > 1 2.33%  2.00% 96.00% 15.00%  3.33%

Table 9: A-D values and hypothesis tests for the different distributions.

variance. One method to determine whether a certain distribution appropriately fits the

data is a hypothesis contrast or test:

Hy: G =N, o) (null hypothesis)
Hy : G # N(u,0%) (alternative hypothesis)

The way to contrast the hypothesis is by calculating a statistic of a sample of G. We will
use the Anderson-Darling (A-D) statistic A? (D’Agostino, 1986; Linnet, 1988):

N

A2 =N = 322 (G () ~ (Gl i),

i=1
where {y;}}¥, are N (not necessarily different) makespan realizations obtained from N repli-
cations. This test can be applied for any distribution, although critical values of the A-D
statistic under the null hypothesis have only been tabulated for a limited number of dis-
tributions. Table 9 shows for which fraction of instances (out of the 600) the A-D value
is smaller than the 5% critical value, together with the average and the maximum of the
statistic, and the percentage of instances in which it is larger than 1. According to the table,
the normal distribution can be used to model the distribution of the makespan realizations
of the solution given by the GRASP, at least in most instances of Ul, U2 and B2, and also
in many instances (but quite fewer than in B2) of B1. We should add that the average of
the A-D statistic in Ul, U2 and B2 corresponds to a significance level larger than 0.2 and
that many instances lead to a A-D statistic associated with levels over 0.5 (some are 0.8 and
0.9). The table also states that the normal is of no use at all in the case of Exp.
When data do not pass a normality test, it is common practice to transform them and
apply the test to the transformed data. We have applied the Box-Cox transformation, given

by R
e=n={ 1,7 7
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Distribution Ul U2 Exp B1 B2
% A-D < 5% crit. val. | 94.00% 94.67% 95.67% 95.00% 94.50%

Average A-D stat. 0.324 0.327 0.316 0.322 0.327
Maximum A-D stat. 1.105 1.106 0.956 1.782 1.304
% inst. A-D > 1 0.17%  0.33%  0.00% 0.50%  0.50%

Table 10: A-D values and hypothesis tests for the different distributions, for the trans-
formed data.

The parameter \ is found via maximum likelihood. Table 10 contains the same information
as Table 9 but with respect to the transformed data (note that the critical values are lower
than in the original test, which is not always taken into account in statistical packages).
We see from the table that via this transformation we are able to adequately fit most of
the instances for all five the duration distributions: all averages of the A-D statistic are
very similar and correspond to significance levels larger than 0.2. Obviously, the optimal
A associated to many instances in the uniforms and betas correspond to values around 1
(A = 1 corresponds with no transformation).

Our intention is not to perform an exhaustive search of the one distribution that best
fits the data obtained by the solution of the GRASP, because the result may change if we
alter the parameters of the GRASP (especially the number of replications or the limit on the
number of schedules). Our goal has been to show that it is generally possible to find known

distributions that fit reasonably well the makespan realizations of a given solution (a given

policy).

7.2 Conclusions

Knowledge of an approximate distribution of the makespan realizations of an implemented
policy provides the decision maker with the possibility to compute values such as Pria < s,, < b]
for any a,b, and therefore constitutes a valuable piece of managerial information. In a
study of the stochastic flow shop, Dodin (1996) uses Monte-Carlo sampling to determine the
makespan distribution of a given sequence. He argues that, for different duration distribu-
tions, the makespan of a given sequence becomes approximately normal when a large number
of jobs are involved (and positively skewed in case of large variance), but only based on a
visual observation of the shape of the sample distributions, so without hypothesis testing.

A number of cautionary remarks are in order in interpreting our results. Firstly, we

have performed many tests and therefore we can expect to find contrasts where the test
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fails even when Hj is true: if we produce a large number of random samples of the same
size from the same N (i, 0%), around 5% of them would fail the A-D contrast with a critical
value of 5%. Secondly, if a sample passes a test, this does not mean that H, is correct,
only that the available information is not useful to reject it. However, in our cases we have
other information that supports our choice of distribution, like the histograms and the small
averages of the A-D statistic. In conclusion, we cannot with certainty state that the data
stem from (transformed) normal distributions, but these latter do seem to provide good
approximations.

Under the foregoing caveat, and with a reasonable amount of certainty, we can say that
the solutions obtained by the GRASP in the Exp-case do not follow a normal distribution
and that their distributions are therefore quite different from those in the case of e.g. Ul,

which can be mostly modeled by a normal distribution.

8. Phase transitions

In an article published in 1999, Herroelen and De Reyck, following recent work in artificial
intelligence (Hayes, 1997; Huberman and Hogg, 1987), study so called phase transitions,
where they observe the varying difficulty of project scheduling as a function of a number of
problem parameters. More specifically, the difficulty of problems is expressed in terms of the
running time needed by an exact algorithm, and they obtain ‘bell-shaped’ curves with an
‘easy-hard-easy’ pattern for some of the problem parameters, and a steady hard-easy pattern
for other parameters. In a similar way as Herroelen and De Reyck, we will investigate in
this section whether an instance is easy or hard and try to explain this difficulty in terms of
some parameters.

In determining the difficulty of an instance, however, we cannot just use the running
time of our algorithm to measure whether an instance is easy or hard, because our heuristic
spends more or less the same time for each instance, since it uses a limit on the number of
schedules created during the computations. We therefore look for other ways to evaluate the
difficulty of an instance. Our measure will be the percentage improvement from the average
objective-function value of the initial population to the best (GRASP-)solution, with which
we effectively obtain a measure for the spread of the objective-function values.

The first explanatory variable that we investigate is the resource strength RS (Cooper,

1976), which is a measure for the distribution of the resource requirements among the activ-
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Figure 8: Problem difficulty as a function of RS.

ities; our results are illustrated in the box plots in Figure 8. For Ul, we obtain a hard-easy
transition, which is in concordance to what has been observed in the RCPSP; a similar graph
results for B1. When we work with the rest of the duration distributions, however, which
have a larger variance (U2, B2 and Exp), the pattern is somewhat different: the hard-easy
transition only occurs after a ‘level” hard interval.

Secondly, we turn our attention to order strength OS (Mastor, 1970), which is a measure
for the density of the precedence network. In the deterministic RCPSP, lower OS corresponds
with higher computational effort, which is rather intuitive since more sequencing decisions
remain to be made. The difficulty of the instances is depicted as a function of OS for all the
problem instances in Figure 9, for distribution Ul (the plots are very similar for the other
distributions). To our surprise, no clear relationship can be distinguished. We conjecture

that this is so because in the SRCPSP the prime source of difficulty resides in the stochasticity
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Figure 9: Problem difficulty as a function of OS for Ul.
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of the activity durations rather than in the ex-ante sequencing part of the computations.
One might argue that the spread in the objective-function values (our measure of difficulty)
need not be 100% proportional to the difficulty of the problem; we have therefore tried other
measures of difficulty, including an attempt to quantify the curvature of the plot of the
objective-function value as a function of the iteration count, but this has not led to different
results. Finally, other explanatory variables such as resource factor RF, network complexity
NC' (Pascoe, 1966; Kolisch and Sprecher, 1996) and variability of the activities’ durations

have also been examined but did not yield interesting outcomes either.

9. Summary

This article has investigated the incorporation of explicit recognition of variability into
project planning by developing activity-based scheduling policies for the stochastic RCPSP.
We have examined multiple possible objective functions for project scheduling with stochas-
tic activity durations, and we have shown by means of computational experiments that
these different objective functions are closely connected and that for most practical pur-
poses, it suffices to focus on the minimization of the expected makespan. We have proposed
a GRASP-heuristic that produces high-quality solutions, outperforming the currently avail-
able procedures. The variance-reduction technique of descriptive sampling is applied and
its benefits assessed. Finally, we have also studied the distribution of the makespan realiza-
tions for a given scheduling policy, and we have explored problem difficulty as a function of

problem parameters, this latter topic under the header of ‘phase transitions’.
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