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Resource-constrained project scheduling for timely

project completion with stochastic activity durations

We investigate resource-constrained project scheduling with stochastic activity durations.
Various objective functions related to timely project completion are examined, as well
as the correlation between these objectives. We develop a GRASP-heuristic to produce
high-quality solutions, using so-called descriptive sampling. The algorithm outperforms
other existing algorithms for expected-makespan minimization. The distribution of the
possible makespan realizations for a given scheduling policy is studied, and problem
difficulty is explored as a function of problem parameters.

Keywords: project scheduling; uncertainty; GRASP.

1. Introduction

The larger part of the scientific literature on resource-constrained project scheduling focuses

on the minimization of the project duration in a deterministic setting. The goal of the

resource-constrained project scheduling problem (RCPSP) is to minimize the duration of a

project subject to finish-start precedence constraints and renewable resource constraints. It

is shown in Blazewicz et al. (1983) that the RCPSP, as a job-shop generalization, is NP-hard

in the strong sense. A lot of exact and heuristic procedures have been proposed to con-

struct workable baseline schedules that solve this deterministic RCPSP, see Demeulemeester

and Herroelen (2002), Kolisch and Padman (2001) and Neumann et al. (2002) for recent

overviews.

During project execution, however, project activities are often subject to considerable

uncertainty, which results from many different possible sources: activities may take more or

less time than originally estimated, resources may become unavailable, material may arrive

behind schedule, workers may be absent, etc. In this article we examine the case where this

uncertainty is important enough to be incorporated into the planning phase. The sources

of variability in processing times are manifold; nevertheless, the main scheduling objectives

are mostly functions of the activity starting- (or ending-)times, the project makespan being

the single most-studied objective, next to other such as weighted earliness-tardiness and

net present value of the project. This justifies a restriction to the study of uncertainty in

processing times only, although many different sources may be at the basis of this variabil-

ity. The stochastic resource-constrained project scheduling problem (stochastic RCPSP or
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SRCPSP) is the stochastic equivalent of the RCPSP, where the durations of the activities

are not known in advance but are represented as random variables. The probability distri-

butions can be either objective (a risk situation) or result from subjective judgment (in the

case of decision-theoretic uncertainty or even ignorance).

The SRCPSP usually aims at minimizing the expected makespan over a limited set of

possible decisions to be taken during project execution. As coherently described by Stork

(2001), an important new aspect comes into play on moving from the deterministic to the

stochastic case: what is a solution to an SRCPSP-instance? A deterministic schedule does

not necessarily contain enough information to make decisions during the execution of the

project. Hence, a solution should define for each possible event that occurs within the

execution of the project an appropriate action, typically the start of new activities. To

make such decisions, one may want to exploit the information given by the current state of

the project. In line with Igelmund and Radermacher (1983), among others, we call such a

solution a (scheduling) policy.

A vast amount of literature exists on the so-called (generalized) PERT-problem, where

no resource constraints are taken into consideration. These studies are usually concerned

with the computation of certain characteristics of the project makespan (earliest project

completion), mainly with exact computation, approximation and bounding of the distribu-

tion function and the expected value. Note that in this case, no real scheduling effort is

required: all activities can be started when their predecessors are completed. For a review

of research up until 1987, we refer to Adlakha and Kulkarni (1989). A recent computational

study on bounding the makespan distribution, in which the most promising algorithms are

compared, is given by Ludwig et al. (2001).

The work on the SRCPSP, however, has remained rather limited until now. There are

only few computational publications on this problem: Igelmund and Radermacher (1983)

and Stork (2001) report on experiments with branch-and-bound algorithms, while Golenko-

Ginzburg and Gonik (1997) and Tsai and Gemmill (1998) develop greedy and local-search

heuristics. Time/resource trade-offs with stochastic activity durations, in which the resource

allocation influences the mean and/or the variance of the durations, are investigated in

Gerchak (2000), Gutjahr et al. (2000) and Wollmer (1985).

The contributions of this article are sixfold: (1) we examine multiple possible objective

functions for project scheduling with stochastic activity durations; (2) we show by computa-

tional experiments that these different objective functions are closely connected and that for
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most practical purposes, it suffices to focus on the minimization of the expected makespan;

(3) we develop a GRASP-heuristic that produces high-quality solutions, outperforming ex-

isting algorithms for expected-makespan minimization; (4) the variance-reduction technique

of descriptive sampling is applied and its benefits assessed; (5) the distribution of makespan

realizations for a given scheduling policy is studied; and (6) problem difficulty is explored as

a function of problem parameters.

The remainder of this article is organized as follows. Definitions and a detailed problem

statement are provided in Section 2, followed by a discussion of the computational setup

(Section 3). Section 4 presents the basic ingredients of our GRASP-algorithm. Our main

computational results for the expected-makespan objective can be found in Section 5; the

relationship between the expected makespan and some other objective functions is treated in

Section 6. The distribution of makespan realizations is the subject of Section 7, and we try

to characterize problem difficulty as a function of problem parameters in Section 8. Finally,

a summary is given in Section 9.

2. Definitions and problem statement

This section contains a number of definitions (Section 2.1), a discussion of scheduling policies

(Section 2.2), and a statement of the problems that we wish to solve (Section 2.3).

2.1 Definitions

A project consists of a set of activities N = {0, 1, . . . , n}, which are to be processed without

interruption on a number K of renewable resource types with availability ak, k = 1, . . . , K;

each activity i requires rik ∈ N units of resource type k. The duration Di of activity i

is a random variable (r.v.); the vector (D0, D1, . . . , Dn) is denoted by D. A is a (strict)

partial order on N , i.e. an irreflexive and transitive relation, which represents technological

precedence constraints. (Dummy) activities 0 and n represent start and end of the project,

respectively, and are the (unique) least and greatest element of the partially ordered set

(N,A). Activities 0 and n have zero resource usage and Pr[Di = 0] = 1 for i = 0, n; for

the remaining activities i ∈ N\{0, n} we assume that Pr[Di < 0] = 0 (Pr[e] represents the

probability of event e). We associate the directed acyclic graph G(N,A) with the partially

ordered set (N,A).
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We use lowercase vector d = (d0, d1, . . . , dn) to represent one particular realization (or

sample, or scenario) of D. Alternatively, when each duration Di is a constant, we use the

same notation d. In the (deterministic) RCPSP, each duration Di is a constant integer value.

A solution for the RCPSP is a schedule s, i.e., a vector of starting times (s0, s1, . . . , sn) with

si ≥ 0 for all i ∈ N , that is both time-feasible and resource-feasible. Schedule s is called

time-feasible if si + di ≤ sj for all (i, j) ∈ A; s is said to be resource-feasible if, at any time t

and for each resource type k, it holds that
∑

i∈A(s,t) rik ≤ ak, where the active set A(s, t) =

{i ∈ N |si ≤ t < si + di} contains the activities in N\{0, n} that are in progress at time t.

The objective function in RCPSP is the project makespan sn (which is to be minimized).

2.2 Scheduling policies

The execution of a project in the context of SRCPSP can best be seen as a dynamic decision

process. A solution is now a policy Π, which defines actions at decision times. Decision

times are typically t = 0 (the start of the project) and the completion times of activities.

An action can entail the start of a set of activities that is precedence- and resource-feasible.

A schedule is thus constructed gradually through time. A decision at time t may only

use information that has become available before or at time t; this requirement is often

referred to as the non-anticipativity constraint. As soon as all activities are completed, the

activity durations are known, yielding a realization d of D. Consequently, every policy Π

may alternatively be interpreted (cfr. Igelmund and Radermacher, 1983; Stork, 2001) as a

function Rn
≥ → Rn

≥ that maps given samples d of activity durations to vectors s(d; Π) ∈ Rn

of feasible activity starting times (schedules); if no misinterpretation is possible we usually

omit the identification of the policy and write s(d). For a given scenario d and policy Π,

sn(d; Π) denotes the makespan of the schedule. The most-studied objective for the SRCPSP

is to select a policy Π∗ within a specific class that minimizes E[sn(D; Π)], with E[·] the

expectation operator with respect to D.

A well-known class of scheduling policies is the class of priority policies, which order all

activities according to a priority list and, at every decision point t, start as many activities as

possible in the order dictated by the list (in line with the parallel schedule generation scheme

– parallel SGS – see Kolisch and Hartmann, 1999). These list-scheduling policies present a

number of drawbacks. First of all, priority policies cannot guarantee an optimal schedule.

Moreover, the change of activity durations may lead to so-called Graham anomalies (Graham,

1966) such as increasing project duration due to decreasing activity durations. Stork (2001)
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describes how, if we consider the interpretation of a policy as a function, these anomalies

lead us to conclude that priority policies are neither monotone nor continuous.

Several other classes of policies have been examined by Stork (2001), most of which

exhibit severe computational limitations; he concludes that, for larger instances, the only

remaining alternative is to use the class of so-called activity-based policies, which is also the

class that will be studied in this paper. An activity-based policy Π(L) is also represented

by a priority list L of the activities and, for a given sample d, computes starting times by

starting each activity in the order imposed by L as early as possible, with the side constraint

that si(d) ≤ sj(d) if i ≺L j. Elimination of this side constraint would yield a simple priority

policy that suffers from the Graham anomalies, but the ‘activity-based’ point of view, rather

than greedy ‘resource-based’, does away with this problem. Since these activity-based policies

perform activity-incrementation rather than time-incrementation, they can alternatively be

referred to as ‘(stochastic) serial SGS’ (Ballest́ın, 2007).

2.3 Problem statement

The literature on project management abounds with motivations for reducing project lead

times, including various first-mover advantages in new-product development (see, for in-

stance, Smith and Reinertsen, 1991), advantages during the bidding process (Kerzner, 1998;

Newbold, 1998; Xie et al., 2006), and incentive contracts that foresee a penalty for delayed

completion or a bonus for early delivery (Bayiz and Corbett, 2005). Our focus on timely

project completion by using some characterization of the makespan (which is a stochastic

variable) as objective function, is therefore evident. We elaborate on this choice in the

paragraphs below.

2.3.1 Individual projects

French (1988) describes four criteria for decision making under uncertainty, which for a

minimization problem amount to (1) minimax (minimize the worst makespan realization that

can occur), (2) minimin (minimize the best outcome that can occur, which is an optimistic

approach, as opposed to the pessimistic minimax), (3) minimax regret (minimize the largest

possible difference in makespan between the policy to be selected, and the optimal makespan

for a given realization), and (4) minimize the objective in expectation. Scheduling with

objectives (1) and (3) is studied in Kouvelis and Yu (1997); we do not adopt these objectives

because (a) one normally needs discrete scenarios instead of continuous distributions, and

5



(b) the evaluation of the optimal objective function for constant durations should be easy in

order to be able to produce computational results for average-size instances (in the case of

Kouvelis and Yu: single-machine scheduling with total-flow-time objective and two-machine

flow-shop with makespan objective). Since a practical decision maker is usually risk-averse,

we also do not investigate objective (2).

In conclusion, when a project is to be executed in isolation (e.g. for internal clients),

expected makespan is the most logical objective of the foregoing. Actually, it is well-known

that the expectation criterion is most appropriate for a risk-neutral decision maker, and

in order to account for possible risk averseness, rather than work with utility functions

(with their inherent difficulty of estimation), one may put forward the use of constraints

of the form Pr[sn(D) ≥ δ] ≤ p, for given probability p and deadline δ, as an approximate

representation of risk averseness, which represents the undesirability of exceptionally high

makespan realizations, and which is comparable with downside-risk or Value-at-Risk (VaR)

constraints in Finance (Ang et al., 2006; Jorion, 2000). Likewise, Schuyler (2001) also

advocates conservatism when large potential gains and losses are associated with individual

decisions.

A second way to account for risk averseness is to investigate the trade-off between the

expected makespan E[sn(D)] and the makespan variance var[sn(D)]. This is in line with

Portougal and Trietsch (1998) who suggest that “variance reduction should be introduced

explicitly in the objective, while retaining the expected completion time as well”. Similarly,

Elmaghraby et al. (1999) also distinguish both mean and variance of the project duration as

the two prime performance measures of concern. In Gutierrez and Paul (2001) the impact is

examined of variability in activity durations on mean project duration, while Cho and Yum

(1997) focus more on the sensitivity of makespan variability. Finally, knowledge of the entire

distribution function of makespan realizations for a given policy is obviously also highly

informative to the decision maker; we investigate this in a separate section (Section 7).

2.3.2 External clients

The foregoing discussion looked into the execution of a project in isolation. When a project

deadline has been negotiated beforehand with external clients, however, it may be more useful

to adapt the scheduling objective function in order to reflect possible applicable penalty

structures (we do not focus on bonuses for early completion), which take the form either of

a fixed charge, so that the objective function becomes max Pr[sn ≤ δ] for a given deadline δ,
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or of a fixed charge per unit-time overrun, leading to min E[max{0; sn − δ}] (see Gutjahr et

al. (2000) for a model in a slightly different context that uses more general loss functions).

2.3.3 Problem statement: conclusion

In conclusion, we are left with three objective functions to investigate: max Pr[sn ≤ δ],

henceforth, in line with Portougal and Trietsch (1998), referred to as the service-level objec-

tive due to its similarity with inventory management (see, for instance, Silver et al., 1998);

min E[sn] (the expectation objective), and min E[max{0; sn − δ}] (the (expected) overrun

objective). For the benefit of risk averseness, a lower bound may be imposed on the service

level, or an upper bound on the makespan variance. In the remainder of this text, we use

the term statistic to refer to any function of sn. Obviously, a decision maker may also be

interested in possible trade-offs between the different suggested statistics. The correlation

between the statistics will be studied in Section 6.

3. Computational setup

The analyses in the next sections are based on computational experiments using randomly

generated datasets. The coding was performed in C using the Microsoft Visual C++ 6.0

programming environment, and the experiments were run on a Samsung X15 Plus portable

computer with Pentium M processor with 1,400 MHz clock speed and 512 MB RAM,

equipped with Windows XP. Our tests are performed on instances from the benchmark

library PSPLIB, which contains instances of different size and with different characteristics

of the deterministic RCPSP, and which were generated by the problem generator ProGen

(Kolisch and Sprecher, 1996); the number of resource types K ≤ 4. We only use the dataset

containing 600 instances with 120 activities (commonly named ‘j120’). The deterministic

duration d∗i for each activity i 6= 0, n is an integer randomly chosen from {1, 2, . . . , 10}.
We generate the probability distributions of the stochastic job processing times Di (which

are not created by the ProGen instance generator) in line with Stork (2001): we take the

given deterministic processing time d∗i of each job as expectation and we construct uniform,

exponential and beta distributions. More specifically, we examine five distributions: (contin-

uous) uniform on [d∗i −
√

d∗i ; d
∗
i +

√
d∗i ] (subsequently referred to as case ‘U1’); (continuous)

uniform on [0; 2d∗i ] (‘U2’); exponential with expectation d∗i (‘Exp’); beta distribution with

support [d∗i /2; 2d∗i ] and variance = d∗i /3 (‘B1’); and beta distribution with support [d∗i /2; 2d∗i ]
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and variance = d∗2i /3 (‘B2’). These five distributions have variances of d∗i /3, d∗2i /3, d∗2i , d∗i /3

and d∗2i /3, respectively. The distributions have been created so that U1 and B1 on the one

hand and U2 and B2 on the other hand share the same variance.

Exact evaluation of the statistics of our interest (expectation, variance, . . . ) is overly

time-consuming (for the expected makespan, for instance, this amounts to the PERT prob-

lem, which is well-known to constitute a formidable computational challenge, see Hagstrom

(1988)), which is why we approximate these values by means of simulation. Similar decisions

in the context of scheduling under uncertainty have been made by Ballest́ın (2007), Leus

and Herroelen (2004), Möhring and Radermacher (1989) and Stork (2001), among others. A

solution in this article is an activity-based policy Π(L), which is represented by an activity

list L. An approximation of any statistic g(L) associated with Π(L) is based on sampling

a number of realizations from D; the number of replications is a parameter. Stork (2001),

for instance, states that, for the expected makespan, 200 samples turn out to provide a

reasonable trade-off between precision and computational effort.

For our computational experiments we have examined the standard deviation of the

percentage deviation of simulated versus ‘true’ makespan (the last one obtained from a high

number (25000) of runs) over the dataset. For a justification of the standard deviation

as an accuracy measure, and for a discussion of the convergence of the estimate towards

the true value as the number of samples increases, see Kleywegt et al. (2001). Leus and

Herroelen (2004) note that the number of simulation runs corresponding with the same

standard deviation decreases with the number of activities; this approach has the advantage

of reducing (relative) simulation effort for larger problem instances. For instances with 120

activities (the only project size we work with), our observations are summarized in Figure 1,

where the accuracy of our estimate of the expectation and standard deviation of makespan

is depicted; the corresponding graph for the service level is very similar to Figure 1(a), the

graph for the expected overrun is close to Figure 1(b). Especially in Figure 1(a) we see

that the same number of replications leads to less accurate results for distributions with

higher variability. We conclude that 1000 replications lead to a (lack of) accuracy of below

1% for the expected makespan. For 1000 replications, Figure 2 shows the quality of the

approximation of the due dates corresponding with different service levels (estimated based

on the order statistics). We learn from the U-shaped graphs that it is easier to approximate

due dates corresponding with service levels in the middle of the interval [0; 100%] than in

the tails; we come back to this in Section 6.
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(a) Expected makespan. (b) Makespan standard deviation.

Figure 1: Accuracy, measured using the standard deviation of the percentage error, as a
function of the number of replications.

Ballest́ın (2007) shows that using fewer scenarios to calculate the approximation of each

activity list during the algorithm favors the calculation of more policies and leads to bet-

ter solutions at the end of the procedure. Those scenarios were calculated using random

sampling, as is common in most algorithms that work with scenarios. In this paper we

use the so-called descriptive sampling (Saliby, 1990, 1997), which is one particular variance-

reduction technique. Concretely, 1000 replications is the default number we work with for

computing correlations and fitting distributions (Sections 6, 7 and 8). When our focus is

on the highest-quality solutions obtainable with a given computational effort, on the other

hand, we consider the number of replications as a parameter of the algorithm. In our com-

putational results in Section 5, we opt for 10 replications (which was the best tested number

in Ballest́ın, 2007), and we provide empirical evidence that such a low number is preferable.

Figure 2: Accuracy of approximation of the service level for various due dates.
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4. GRASP

Below, we discuss GRASP a a general heuristic procedure (Section 4.1) and we describe the

overall structure of our search procedure for SRCPSP-solutions (Section 4.2).

4.1 GRASP as a general-purpose metaheuristic

A greedy randomized adaptive search procedure (GRASP) is a multi-start or iterative process

(Feo and Resende, 1995, 2000; Aiex et al., 2002). Each GRASP-iteration consists of two

phases: in a construction phase, a feasible solution is produced and in a local-search phase,

a local optimum in the neighborhood of the constructed solution is sought. The best overall

solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at

a time. The basic construction phase in GRASP is similar to the semi-greedy heuristic

proposed independently by Hart and Shogan (1987). At each construction iteration, the

choice of the next element to be added is determined by ordering all candidate elements

(i.e. those that can be added to the solution) in a candidate list C with respect to a greedy

function C → R. This function measures the (myopic) benefit of selecting each element.

The heuristic is adaptive because the benefits associated with every element are updated at

each iteration of the construction phase to reflect the changes brought on by the selection

of the previous element. The probabilistic component of a GRASP resides in the fact that

we choose one of the best candidates in the list, but not necessarily the top candidate; the

list of best candidates is called the restricted candidate list. It is almost always beneficial to

apply a local-search procedure to attempt to improve each constructed solution.

4.2 Adapting GRASP to our setting

The global structure of our GRASP-implementation is represented as Algorithm 1. Our

basic algorithm maintains a set EliteSet of elite solutions (activity lists), containing the best

solutions so far encountered. At each iteration of the algorithm, the solutions in EliteSet are

used to create a new activity list with the procedure BuildActList. Subsequently, a schedule

s∗ is built by applying a job-based policy with the mean durations d∗ to this list. After a

local-search procedure that attempts to improve this deterministic schedule, we re-translate

schedule s∗ into an activity list by means of function ScheduleToList, ordering activities by

starting times. This yields the representation of a new activity-based policy, whose objective
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Algorithm 1 GRASP: global algorithmic structure

EliteSet = ∅
while TerminationCriterion not met do

L = BuildActList(EliteSet)
s∗ = s(d∗, Π(L))
s∗ = LocalSearch(s∗)
L = ScheduleToList(s∗)
Evaluate the activity-based policy Π(L)
if L is better than the worst solution L′ in EliteSet then

EliteSet = (EliteSet \L′) ∪L
end if

end while
Return the best solution found

function is then evaluated (using simulation). If it is better than the worst solution in the

elite set, we erase that solution and include the new one.

We have implemented a local-search procedure based on the concept of justification. The

(double) justification of a schedule consists in first scheduling the activities as late as possible

in non-increasing order of their finish times and then scheduling the activities of the obtained

solution as soon as possible in non-decreasing order of their start times. In the RCPSP and

some of its generalizations, justification has proved to be very efficient: the makespan of

a solution is never worse after justification, and often lower. The technique is based on

principles described in Li and Willis (1992) and Özdamar and Ulusoy (1996), and Valls et

al. (2005) show that incorporating this technique in several different heuristic algorithms for

the RCPSP could improve their quality without an increase in the computation times; this

implementation is referred to as ‘LS1’. Additionally, in order to further improve the quality

of the solution, we also investigate the application of a two-point crossover with as input the

schedules before and after justification (the resulting method is called ‘LS2’).

At each iteration of BuildActList (see Algorithm 2) an eligible activity is selected, until

we obtain a complete activity list. An activity is called eligible when all its predecessors

have been selected. A greedy way to choose the activity could be to use the best solution

found so far as the reference for this selection – that is, to select the eligible activity that

comes first in that activity list. In order to randomize the selection, we will randomly choose

among the elite set the solution that will serve as the reference. An elite solution remains

the reference in the following nit ∈ [nitmin ; nitmax] iterations (randomly chosen).

To add more randomness, we also include the possibility that the eligible activity is
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Algorithm 2 BuildActList

i = 0; EligibleSet = {0}; nit = 0
while i < n do

if nit = 0 then
reference = SelectSolution
if reference 6= “LFT”, “random” then

nit ∈ [nitmin ; nitmax]
end if

else
nit = nit −1

end if
Select an activity j from EligibleSet according to the reference
L(i) = j; i = i + 1

end while
Return the activity list L

chosen according to its latest finish time or that it is chosen randomly; these latter two

options are only applied in a small fraction pLFT and pRandom, respectively; in this case nit

= 0 (other values have been examined but lead to worse results). In the first iterations of

our GRASP, when the elite set is not full, we set the values of pLFT and pRandom to 95%

and 5%, respectively.

In order to introduce diversity in the procedure, we have included the possibility of a

yet different reference solution in the function SelectSolution (see Algorithm 3), namely the

inverse of a list in EliteSet, with probability pInverse, denoted as inv(). In this case, a list

L from EliteSet is chosen, and the next activity in BuildActList is an eligible activity with

highest position in L.

Algorithm 3 SelectSolution

Draw p ∈ [0; 1]
if p < pLFT then

reference = “LFT”
else if p < pLFT + pRandom then

reference = “random”
else

A reference solution is randomly drawn from EliteSet
if p < pLFT + pRandom + pInverse then

reference = inv(reference)
end if

end if
Return reference solution
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5. Computational results for the expected makespan

In this section we compare different versions of our GRASP-implementation with expected-

makespan objective in order to evaluate the quality of the overall algorithm and its individual

elements (Section 5.1), and we provide a comparison of our algorithmic performance with

other recently proposed algorithms (Section 5.2).

5.1 Details of our GRASP-implementation

The quality of an algorithm is measured by the percentage distance of E[sn(D; Π(L))] (ap-

proximated using 1000 replications, independent from the ones used in the optimization

phase) from the critical-path length of the project with deterministic mean durations d∗i .

These percentages are averaged over all the instances of the set j120. In the literature on

heuristics for the deterministic RCPSP, it is common (see, e.g., Hartmann and Kolisch, 2000)

to impose a limit on the number of generated schedules, for ease of comparison of different

algorithms regardless of the computer infrastructure. We work with two limits on the num-

ber of schedules: 5000 and 25000. Due to the particularities of job-based policies (an activity

cannot be scheduled before an already scheduled activity), it turns out (see Ballest́ın, 2007)

that job-based policies are about twice as fast as the deterministic serial SGS. Consequently,

we count one scheduling pass of a job-based policy as 0.5.

The first line of Table 1 shows the results of the final version of our algorithm, simply

called ‘GRASP’, where pInverse = 0, pRandom = 0.05 and LS2 is used. The second line,

labelled ‘Basic’, pertains to an implementation without local search and without descriptive

Distribution U1 U2 Exp B1 B2
# schedules 5000 25000 5000 25000 5000 25000 5000 25000 5000 25000
GRASP 46.84 45.21 72.58 70.95 114.42 112.37 47.17 45.60 75.97 74.17
Basic 50.57 48.68 76.55 74.78 118.72 117.20 50.70 48.99 79.49 77.64
Basic+DS 50.12 48.33 75.76 73.83 117.36 115.34 50.49 48.61 78.96 77.04
GRASP-LS1 49.17 47.73 76.68 74.93 121.07 119.02 49.75 48.14 80.50 78.62
Inverse 46.93 45.35 72.67 70.97 114.40 112.46 47.25 45.58 76.00 74.22
100 iter 49.81 46.73 75.36 71.76 116.76 112.36 50.20 47.18 78.63 75.00
500 iter 53.04 49.53 79.59 75.05 122.69 116.16 53.40 49.89 83.06 78.26
1000 iter 53.79 51.15 80.50 76.95 123.70 118.77 54.15 51.51 83.97 80.28

Table 1: Percentage distance of E[sn(D; Π(L))] (approximated using 1000 replications)
from the critical-path length of the project with deterministic mean durations d∗i .
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(a) 5000 schedules. (b) 25000 schedules.

Figure 3: Computational results for descriptive sampling.

sampling. ‘Basic+DS’ refers to the inclusion of descriptive sampling (DS) in Basic. ‘GRASP-

LS1’ is GRASP with LS1 instead of LS2. In ‘Inverse’ we set pInverse = 0.05 and pRandom

= 0, to study whether the use of solutions in EliteSet to attain diversity is useful. Finally,

the last three lines of the table give the computational performance of GRASP with 100,

500 and 1000 replications rather than just 10.

We observe that the biggest improvement comes from changing from LS1 to LS2. The

straightforward use of justification improves the quality of Basic+DS only when activity-

duration variability is low (U1-B1), but worsens it in the other cases. However, LS2 manages

to improve the results in all cases. The use of elite solutions in an inverse manner to introduce

diversity does not add anything to the results. It is our opinion nevertheless that it is a good

way to diversify the search and we will in the future try to look for other ways to implement

this idea. A low number of replications also turns out to perform considerably better (as

was hinted at at the end of Section 3).

Finally, the inclusion of the DS also (slightly) improves the results of the basic algorithm.

We have computed the improvement in the average deviation from the critical-path length

that is obtained by the incorporation of DS (compared to random sampling) when we work

with 5, 10 and 20 replications; the results for a schedule limit of 5000 and 25000 schedules

can be found in Figure 3. The gain obtained by DS tends to decrease as the number of

replications increases, both for 5000 and 25000 schedules, and this trend is independent of

the duration distribution. Specifically, the gain is up to 2% with five replications for some

distributions, making the incorporation of DS clearly worthwhile. Perhaps more important

than the technique of DS itself is the fact that this opens a new area of research in heuristic

algorithms with replications, namely regarding the implementation of the sampling: to the
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best of our knowledge, up until now only random sampling has been used. Based on the

foregoing data, we can recommend the use of descriptive rather than random sampling in

heuristic search especially when the number of replications is low, in which case the potential

improvement appears to be significant.

5.2 Comparison with state-of-the-art algorithms

We are now ready to compare our GRASP-algorithm with other SRCPSP-algorithms from

the literature. First of all, we consider the genetic algorithm (GA) of Ballest́ın (2007), where

the same dataset and schedule limit are used, with distributions U1, U2 and Exp. Table 2

provides a comparison; we can see that GRASP outperforms the GA in all cases. If we look

back to Table 1, even our Basic algorithm does better than the GA, which emphasizes the

improvement obtained by adding the descriptive sampling and LS2.

Secondly, we consider the tabu search (TS) and simulated annealing (SA) of Tsai and

Gemmill (1998), where algorithmic performance is evaluated on the Patterson dataset (Pat-

terson, 1984), with adaptations for obtaining stochastic (beta) activity durations. As a

measure of the quality of their algorithms, the authors report the deviation from an ap-

proximate lower bound. Table 3 shows their results obtained on a personal computer with

166 MHz; SA2 and TS2 differ from SA1 and TS1 only in the parameters settings; the two

final columns contain the results of our GRASP-algorithm on the same problem set. The

GRASP-algorithm with a limit of 5000 schedules outperforms both the SA and the TS in

quality and in time, even if we take into account the difference in computer infrastructure.

Distribution U1 U2 Exp
# schedules 5000 25000 5000 25000 5000 25000
GA 51.94% 49.63% 78.65% 75.38% 120.22% 116.83%
GRASP 46.84% 45.21% 72.58% 70.95% 114.42% 112.37%

Table 2: Comparison between GRASP and GA.

Algorithm SA1 SA2 TS1 TS2 GRASP GRASP
(5000) (25000)

Above approximate lower bound 3.40% 2.27% 3.71% 2.54% 2.01% 1.96
Average time (s) 10.804 21.414 5.834 11.290 0.92 4.24

Table 3: Comparison between GRASP (with 5000 and 25000 schedules) and the algorithms
of Tsai and Gemmil (1998).
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Distribution beta uniform normal
Heuristic 1 433.88 448.49 448.85
Heuristic 2 447.98 461.35 461.58
GRASP (5000) 408.75 427.64 422.04
GRASP (25000) 403.16 424.28 415.40

Table 4: Expected makespan for the instance from Golenko-Ginzburg and Gonik (1997).

The small difference between 5000 and 25000 schedules might be due to the fact that the

solutions found are near-optimal.

Golenko-Ginzburg and Gonik (1997) test their algorithms only on one instance with 36

activities and a single resource type; Table 4 contains their and our results for this instance for

three duration distributions. The authors do not report on running times for the procedures

but only point out that the algorithm that uses an exact procedure to solve consecutive

multi-dimensional knapsack problems (Heuristic 1) needs much more time than the algorithm

that solves these problems heuristically (Heuristic 2). Obviously, no strong conclusions can

be drawn based on only one instance, but the difference between the algorithms is quite

large, especially with Heuristic 2. Stork (2001) also tests his exact algorithm (branch-and-

bound) on the same instance, but only for the uniform distribution. He obtains an expected

makespan of (rounded) 434 when the branch-and-bound is truncated.

6. Correlations and trade-offs

In this section we investigate how the different statistics (expected makespan, probability

of meeting a due date, . . . ) behave relatively to one another. To this aim we examine

1500 solutions per project instance, generated by the GA from Ballest́ın (2007). We do not

use the GRASP-algorithm that is the subject of this paper in order to guarantee that we

do not influence the outcome of the results and because the GA is a good algorithm (for

expected-makespan minimization), outperforming other state-of-the-art algorithms.

6.1 Expected makespan versus service level

The first relationship to be examined is that between service level and expected makespan,

the first being a probability, the second a measure of schedule length. It is tempting to simply

investigate the correlation between E[sn] and Pr[sn ≤ δ], for given values of δ. This approach

has some disadvantages, however. First of all, it is difficult to choose appropriate due dates δ
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probability U1 U2 Exp B1 B2
50% 99.91% 99.60% 97.66% 99.89% 99.45%

0.11 0.37 1.67 0.12 0.45
75% 99.84% 99.35% 96.94% 99.83% 99.22%

0.18 0.60 1.96 0.19 0.58
90% 99.62% 98.41% 93.81% 99.61% 98.21%

0.42 1.74 4.38 0.35 1.33
99% 98.21% 94.07% 73.91% 97.89% 92.62%

1.96 5.11 13.72 1.92 5.00

Table 5: Coefficients of determination for the relationship between due date and expected
makespan, for four service levels (in the first column): average (first value) and standard
deviation (second value) over the dataset. The columns correspond with the five duration
distributions.

for an entire dataset: it may be more appropriate to have (a) different value(s) per instance.

Second, since the service level is expressed as a percentage, it is not the most convenient

quantity to compute correlations with, because quite a number of solutions may have 0% or

100% service level. Therefore we calculate for each instance the due date δ associated with

given service levels and investigate the correlation between δ and E[sn]. Table 5 contains

the coefficient of determination, which characterizes the linear relation between the two

quantities (note that this coefficient is the square of the correlation coefficient).

We observe that the more variance the distribution has, the less correlation is present: the

distribution with smallest correlation is clearly Exp, followed by U2 and B2. The correlation

is smallest in the tail and larger in the ‘middle’ of the domain. We conclude that, for

most practical purposes, it is not necessary to work with service levels: optimal (or good)

expected-makespan solutions automatically perform very well on the service-level objective.

Only perhaps in some extreme cases will it be interesting to optimize the service level instead

of the expected makespan, namely for very high levels (≥ 99%) and large duration variability.

One should also take into account that the lesser correlations in these cases may be due in

part to the difficulty in estimating the service levels (simulation of rare events) (cfr. Section

5, especially Figure 2).

As a result of the foregoing conclusion, we will also not spend attention anymore to

service-level bounds as a representation of risk averseness: assuming near-perfect correla-

tion, either the (unconstrained) solution with minimum expected makespan respects the

service-level bound, or no solution exists that offers a service level above the threshold. One

additional remark is in order here: we noted in Section 3 that for comparable precision, one
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Figure 4: The trade-off of due date (abscissa) versus service level (ordinate). Five due
dates are considered, namely min− (2/8)(max−min), min− (1/8)(max−min), min, min +
(1/8)(max − min) and min + (2/8)(max − min), where ‘min’ and ‘max’ are the lowest and
highest makespan realization of a good GA-solution (for a high number of replications).

needs a considerably higher number of replications for the service level than for the expected

makespan, so we can anticipate that, ceteris paribus, the same number of replications will

tend to favor the selection of better solutions in the case of the makespan objective.

We are now ready investigate the trade-off of due date versus service level. The results are

displayed in Figure 4; in line with the previous paragraphs, optimal (or at least high-quality)

service levels are set via expected-makespan optimization. We observe close similarities

between the distributions with similar variance (U1-B1 and U2-B2). We can also see how

the graphs ‘flatten out’ as the variability increases. Specifically, the service level changes

drastically when the deadline changes for U1 and B1. For these low-variability distributions

a clear ‘S’-shape is discerned, which shows that both for very high and very low service levels,

the necessary improvement in average makespan to obtain a given service-level improvement

is higher than in the ‘bulk’ of the makespan spread; we presume that this is so because less

solutions correspond with very high and low makespans. The trend is almost linear for U2,

B2 and Exp, with shallowest slope for Exp. We point out that these figures are averages

over 600 instances, so the behavior may be different for individual instances.

6.2 Expected makespan versus variance

We first include a discussion on delivery dates (Section 6.2.1) and then present computational

results (Section 6.2.2).
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6.2.1 Delivery dates

For the benefit of risk averseness, one of the options envisaged is to impose lower bounds

on the makespan variance. In principle we can simply eliminate a solution if it does not

respect the constraint. A problem that may occur is that, since our search procedure looks

for objective-function improvements, it may generate only non-permissible solutions. We

therefore proceed as follows: the altered makespan salt
n corresponding with an activity list L

is obtained as

salt
n (D; Π(L)) = max{sn(D; Π(L)); ∆} (1)

where ∆ is an artificial delivery date for the schedule; higher ∆ leads to higher expected

makespan but lower variance. For a given upper bound on the variance we find the lowest

value of ∆ such that the bound is respected (via binary search). Since we evaluate the

performance measures by means of sampling, the computations corresponding with Equation

(1) are straightforward (the max-operator is applied to known numbers for each sample). As

an example, for four makespan realizations sn = 100, 101, 103 and 104, Table 6 contains the

quantities salt
n (d, Π(L)). One activity list leads to multiple pairs (E[salt

n ], var[salt
n ]), dependent

on ∆. For a given threshold (upper bound) on the variance, however, only one of those pairs

comes out best, namely the pair with lowest E[salt
n ] such that var[salt

n ] does not exceed the

threshold.

6.2.2 Computational results for the relationship variance/expected makespan

In this section we investigate the relationship between the expected makespan and the

makespan variance. For the same dataset as in Section 6.1, we obtain results quite dif-

ferent than before: average coefficients of determination are between 62% and 69% (see

Table 7). Interestingly, the highest values occur for the exponential, while these were lowest

for the service level (see Table 5). This latter phenomenon might be due in part to the fact

∆ = 99 100 101 106
sn = 100 100 100 101 106

101 101 101 101 106
103 103 103 103 106
104 104 104 104 106

Table 6: Altered makespan salt
n corresponding with four different values for the delivery

date ∆. Each column contains one sample of altered makespans.
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U1 U2 Exp B1 B2
62.12% 63.43% 68.67% 64.19% 65.50%

17.36 17.17 14.08 15.94 16.60

Table 7: Coefficients of determination for the relationship between standard deviation and
expected makespan: average (first value) and standard deviation (second value) over the
dataset. The columns correspond with the five duration distributions.

that the expectation of an exponential variable is equal to its standard deviation, so that for

a given longest path of activities in the schedule, higher expectation will also imply higher

variance (although the same is true, but to a lesser extent, for the other distributions; in the

context of resource-constrained scheduling, one should also generally avoid to overly focus

the attention on paths).

From the foregoing we conclude that these correlations are not satisfactorily high for

us to neglect the variance, and we anticipate that an actual expectation/variance trade-off

exists. This trade-off is examined in Figure 5, where the expected makespan obtained by

the GRASP-algorithm is plotted as a function of an upper bound imposed on the variance

(actually on the standard deviation). Seven such bounds are enforced. Let ‘min’ represent

the minimum standard deviation over all solutions that were examined by the GA in a

search for the minimum expected makespan (unconstrained). The bounds are determined

as k × min, with k = 0, 1
8
, 1

4
, 3

8
, 1

2
, 5

8
and 1. The graphs are very similar in shape for all

five distributions, but there are differences, mainly in the ‘jumps’ in the expected makespan

corresponding with a step from one k-value to the next. For example, the jump in U1 is five

units of expected makespan from k = 1
4

to k = 1, while it is 45 for Exp. Consequently, the

Figure 5: The trade-off of variance (abscissa) versus expected makespan (ordinate).
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decision maker needs to ‘sacrifice’ a considerable increase in makespan expectation if he/she

wants to restrict the makespan variance in the cases where the variances of the individual

activity durations are high (especially Exp, also U2 and B2). However, this loss is not

very important when the variances of the Di are low (U1 and B1), unless the restriction is

severe (k = 0, 1
8
, 1

4
). This observation was to be expected intuitively; in this section we have

been able to show the existence of this phenomenon numerically. Also, and contrary to the

due-date/service-level trade-off, the experimental trade-off curves for this case are convex.

6.3 Expected makespan versus expected overrun

We investigate the minimization of the expected overrun E[max{0; sn−δ}] once the manager

has fixed a deadline δ. We are obviously mainly interested in δ-values such that

min
d
{sn(d; Π)} < δ < max

d
{sn(d; Π)}, (2)

where optimization in the first and third term is performed over all possible duration-

realization vectors d in the sample we work with, and Π is any job-based policy (otherwise,

either we have an optimal objective of zero, or we simply minimize expected makespan).

In order to examine these cases, we compute ‘minmin’ as the minimum of the minimiza-

tion term in Equation (2) taken over all policies Π examined by the GA, and similarly

‘minmax’ as the minimum of the maximization term in (2). We wish to investigate especially

δ ∈]minmin; minmax[; other values often turn out to admit policies with all makespan realiza-

tions either higher or lower than the deadline. More specifically, we work with three values

for δ, namely δ1 = minmin + (minmax − minmin)/2, δ2 = minmin + 5(minmax − minmin)/8

and δ3 = minmin + 3(minmax−minmin)/4.

We find that, dependent on the value of the deadline, two types of relation between the

expected makespan and the expected overrun can be encountered, either linear or quadratic;

this is illustrated in Figure 6. A high determination coefficient in a linear or in a quadratic

relationship between E[sn] and E[max{0; sn−δ}] would imply that for all practical purposes,

we can suffice with optimization of the first quantity in order to optimize also the second. It

turns out that on fitting a quadratic equation to the data (which obviously includes a linear

relationship), the determination coefficients are above 95% in all cases, and the majority

even above 99%; for the sake of brevity, we omit the table displaying all coefficients.
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(a) A linear example. (b) A non-linear example.

Figure 6: Expected makespan (abscissa) versus expected overrun (ordinate).

7. The distribution of the makespan realizations of a

given policy

In a deterministic setting, the decision maker knows exactly when the project will finish

and can make decisions based on this information. In a stochastic environment, he/she dis-

poses only of the expected makespan, which is a very limited piece of information knowing

that many different makespan realizations can actually occur. Clearly, knowledge of the

entire distribution of possible makespan realizations G(t; Π(L)) : R → [0; 1] : G(t; Π(L)) =

Pr[sn(D; Π(L)) ≤ t] is much more informative. Our goal in this section is to better un-

derstand the shape of this distribution. We provide two paragraphs, one with the detailed

computations (Section 7.1) and one with some conclusions (Section 7.2).

7.1 A detailed study of the distribution of makespan realization
of a given policy

Our first step is to calculate two descriptive measures for the shape and symmetry of the

makespan distribution of a policy, its skewness and its kurtosis. Approximations for these

values are collected in Table 8. The first (second) line shows the average of the (absolute)

skewness of the different instances. The third line represents the fraction of the instances

with positive skewness. The remaining lines display the same results for the kurtosis.

The data coming from both uniforms are very symmetric, and even the number of in-

stances with positive and negative skewness is around 50%. The absolute value of the kurtosis

is small, although there are more instances in which the kurtosis is negative. At any rate,

if we pay attention to the absolute values, the data could come from a normal distribution
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Distribution U1 U2 Exp B1 B2
skewness 0.006 −0.009 0.492 0.143 0.014
|skewness| 0.067 0.069 0.492 0.148 0.074
% inst.> 0 51.33% 43.67% 100.00% 92.00% 52.67%
kurtosis −0.030 −0.037 0.440 0.023 −0.051
|kurtosis| 0.128 0.122 0.450 0.130 0.133
% inst.> 0 36.50% 35.67% 92.67% 49.33% 33.00%

Table 8: Skewness and kurtosis for the different distributions.

(which has zero skewness and kurtosis). Interestingly, the increase in the variability from

U1 to U2 hardly affects the measures. The situation is slightly different for the beta distri-

butions. The figures of B2 are very similar to those of U1 and U2, but for B1 we observe

data that are less symmetric (long right-sided tail), yet more unbiased in the case of positive

and negative skewness. We can still consider the normal distribution as a possible model

for these data. Finally, data coming from the exponential have a long right-sided tail (posi-

tive skewness) and a prominent peak (positive kurtosis). The normal should not be able to

capture these data.

The next step in our attempt to characterize the distribution of the makespan realizations

is to find a known distribution that adequately fits the obtained data, for which many choices

are possible. Based on the previous measures and histograms of the data (e.g. Figure 7 for

instance j1201 1 if the durations stem from U1), we have tried to fit a normal distribution

N (µ, σ2) to the data, with µ the average of the makespan realizations and σ2 the (sample)

Figure 7: Histogram of the different makespan realizations of a solution for j1201 1.
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Distribution U1 U2 Exp B1 B2
% A-D < 5% crit. val. 92.67% 92.67% 1.00% 70.00% 90.67%
Average A-D stat. 0.404 0.413 3.032 0.648 0.433
Maximum A-D stat. 1.41 1.82 7.868 3.065 2.409
% inst. A-D > 1 2.33% 2.00% 96.00% 15.00% 3.33%

Table 9: A-D values and hypothesis tests for the different distributions.

variance. One method to determine whether a certain distribution appropriately fits the

data is a hypothesis contrast or test:

H0 : G = N (µ, σ2) (null hypothesis)

H1 : G 6= N(µ, σ2) (alternative hypothesis)

The way to contrast the hypothesis is by calculating a statistic of a sample of G. We will

use the Anderson-Darling (A-D) statistic A2 (D’Agostino, 1986; Linnet, 1988):

A2 = −N − 1

N

N∑
i=1

(2i− 1)(ln(G(yi)− ln(G(yN+1−i)))),

where {yi}N
i=1 are N (not necessarily different) makespan realizations obtained from N repli-

cations. This test can be applied for any distribution, although critical values of the A-D

statistic under the null hypothesis have only been tabulated for a limited number of dis-

tributions. Table 9 shows for which fraction of instances (out of the 600) the A-D value

is smaller than the 5% critical value, together with the average and the maximum of the

statistic, and the percentage of instances in which it is larger than 1. According to the table,

the normal distribution can be used to model the distribution of the makespan realizations

of the solution given by the GRASP, at least in most instances of U1, U2 and B2, and also

in many instances (but quite fewer than in B2) of B1. We should add that the average of

the A-D statistic in U1, U2 and B2 corresponds to a significance level larger than 0.2 and

that many instances lead to a A-D statistic associated with levels over 0.5 (some are 0.8 and

0.9). The table also states that the normal is of no use at all in the case of Exp.

When data do not pass a normality test, it is common practice to transform them and

apply the test to the transformed data. We have applied the Box-Cox transformation, given

by

x = fλ(y) =

{
(yλ − 1)/λ, λ 6= 0;
ln y, λ = 0.
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Distribution U1 U2 Exp B1 B2
% A-D < 5% crit. val. 94.00% 94.67% 95.67% 95.00% 94.50%
Average A-D stat. 0.324 0.327 0.316 0.322 0.327
Maximum A-D stat. 1.105 1.106 0.956 1.782 1.304
% inst. A-D > 1 0.17% 0.33% 0.00% 0.50% 0.50%

Table 10: A-D values and hypothesis tests for the different distributions, for the trans-
formed data.

The parameter λ is found via maximum likelihood. Table 10 contains the same information

as Table 9 but with respect to the transformed data (note that the critical values are lower

than in the original test, which is not always taken into account in statistical packages).

We see from the table that via this transformation we are able to adequately fit most of

the instances for all five the duration distributions: all averages of the A-D statistic are

very similar and correspond to significance levels larger than 0.2. Obviously, the optimal

λ associated to many instances in the uniforms and betas correspond to values around 1

(λ = 1 corresponds with no transformation).

Our intention is not to perform an exhaustive search of the one distribution that best

fits the data obtained by the solution of the GRASP, because the result may change if we

alter the parameters of the GRASP (especially the number of replications or the limit on the

number of schedules). Our goal has been to show that it is generally possible to find known

distributions that fit reasonably well the makespan realizations of a given solution (a given

policy).

7.2 Conclusions

Knowledge of an approximate distribution of the makespan realizations of an implemented

policy provides the decision maker with the possibility to compute values such as Pr[a ≤ sn ≤ b]

for any a, b, and therefore constitutes a valuable piece of managerial information. In a

study of the stochastic flow shop, Dodin (1996) uses Monte-Carlo sampling to determine the

makespan distribution of a given sequence. He argues that, for different duration distribu-

tions, the makespan of a given sequence becomes approximately normal when a large number

of jobs are involved (and positively skewed in case of large variance), but only based on a

visual observation of the shape of the sample distributions, so without hypothesis testing.

A number of cautionary remarks are in order in interpreting our results. Firstly, we

have performed many tests and therefore we can expect to find contrasts where the test
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fails even when H0 is true: if we produce a large number of random samples of the same

size from the same N (µ, σ2), around 5% of them would fail the A-D contrast with a critical

value of 5%. Secondly, if a sample passes a test, this does not mean that H0 is correct,

only that the available information is not useful to reject it. However, in our cases we have

other information that supports our choice of distribution, like the histograms and the small

averages of the A-D statistic. In conclusion, we cannot with certainty state that the data

stem from (transformed) normal distributions, but these latter do seem to provide good

approximations.

Under the foregoing caveat, and with a reasonable amount of certainty, we can say that

the solutions obtained by the GRASP in the Exp-case do not follow a normal distribution

and that their distributions are therefore quite different from those in the case of e.g. U1,

which can be mostly modeled by a normal distribution.

8. Phase transitions

In an article published in 1999, Herroelen and De Reyck, following recent work in artificial

intelligence (Hayes, 1997; Huberman and Hogg, 1987), study so called phase transitions,

where they observe the varying difficulty of project scheduling as a function of a number of

problem parameters. More specifically, the difficulty of problems is expressed in terms of the

running time needed by an exact algorithm, and they obtain ‘bell-shaped’ curves with an

‘easy-hard-easy’ pattern for some of the problem parameters, and a steady hard-easy pattern

for other parameters. In a similar way as Herroelen and De Reyck, we will investigate in

this section whether an instance is easy or hard and try to explain this difficulty in terms of

some parameters.

In determining the difficulty of an instance, however, we cannot just use the running

time of our algorithm to measure whether an instance is easy or hard, because our heuristic

spends more or less the same time for each instance, since it uses a limit on the number of

schedules created during the computations. We therefore look for other ways to evaluate the

difficulty of an instance. Our measure will be the percentage improvement from the average

objective-function value of the initial population to the best (GRASP-)solution, with which

we effectively obtain a measure for the spread of the objective-function values.

The first explanatory variable that we investigate is the resource strength RS (Cooper,

1976), which is a measure for the distribution of the resource requirements among the activ-
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(a) Distribution U1. (b) Distribution B2.

Figure 8: Problem difficulty as a function of RS.

ities; our results are illustrated in the box plots in Figure 8. For U1, we obtain a hard-easy

transition, which is in concordance to what has been observed in the RCPSP; a similar graph

results for B1. When we work with the rest of the duration distributions, however, which

have a larger variance (U2, B2 and Exp), the pattern is somewhat different: the hard-easy

transition only occurs after a ‘level’ hard interval.

Secondly, we turn our attention to order strength OS (Mastor, 1970), which is a measure

for the density of the precedence network. In the deterministic RCPSP, lower OS corresponds

with higher computational effort, which is rather intuitive since more sequencing decisions

remain to be made. The difficulty of the instances is depicted as a function of OS for all the

problem instances in Figure 9, for distribution U1 (the plots are very similar for the other

distributions). To our surprise, no clear relationship can be distinguished. We conjecture

that this is so because in the SRCPSP the prime source of difficulty resides in the stochasticity

Figure 9: Problem difficulty as a function of OS for U1.
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of the activity durations rather than in the ex-ante sequencing part of the computations.

One might argue that the spread in the objective-function values (our measure of difficulty)

need not be 100% proportional to the difficulty of the problem; we have therefore tried other

measures of difficulty, including an attempt to quantify the curvature of the plot of the

objective-function value as a function of the iteration count, but this has not led to different

results. Finally, other explanatory variables such as resource factor RF, network complexity

NC (Pascoe, 1966; Kolisch and Sprecher, 1996) and variability of the activities’ durations

have also been examined but did not yield interesting outcomes either.

9. Summary

This article has investigated the incorporation of explicit recognition of variability into

project planning by developing activity-based scheduling policies for the stochastic RCPSP.

We have examined multiple possible objective functions for project scheduling with stochas-

tic activity durations, and we have shown by means of computational experiments that

these different objective functions are closely connected and that for most practical pur-

poses, it suffices to focus on the minimization of the expected makespan. We have proposed

a GRASP-heuristic that produces high-quality solutions, outperforming the currently avail-

able procedures. The variance-reduction technique of descriptive sampling is applied and

its benefits assessed. Finally, we have also studied the distribution of the makespan realiza-

tions for a given scheduling policy, and we have explored problem difficulty as a function of

problem parameters, this latter topic under the header of ‘phase transitions’.
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