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Abstract

The simpler imaging reconstruction methods used for c-ray coded mask telescopes are based on correlation methods,

very fast and simple-to-use but with limitations in the reconstructed image. To improve these results, other recon-

struction methods have been developed, such as the maximum entropy methods or the Iterative Removal Of Sources

(IROS). However, such kind of methods are slower and can be impracticable for very complex telescopes.

In this paper we present an alternative image reconstruction method, based on an iterative maximum likelihood

algorithm called the EM algorithm, easy to implement and that can be successfully used for not very complex coded

mask systems, as is the case of the LEGRI telescope. This is the ®rst time this algorithm has been applied in c-ray

astronomy. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

When trying to obtain an image of a celestial
source emitting X or c radiation, classical tele-
scopes based on lenses or mirrors are useless due
to the high energy of the radiation [1]; these pho-
tons are so energetic that they can pass through
the lens without su�ering any signi®cant deviation.
Grazing-incident re¯ection [2] is a method that
allows to focus the low energy X-rays by striking
the photons in multiple re¯ectant surfaces. This
technique implies surfaces whose normal is at great

incidence angles with regard to the arriving pho-
tons, bigger than the critical angle of the re¯ecting
surface material, de¯ecting the radiation towards a
focus where the detecting surface is. Thus one can
form an image in an almost ``classical'' way.
However this technique is more ine�cient as the
arriving radiation energy increases, because the
incidence angle becomes too near to 90°, requiring
high amount of surfaces in order to have a rea-
sonable aperture area. As a result, this technique
only is feasible for energies below 15 keV.

If we want to obtain images for energies over 15
keV, we need to use a coded mask telescope. It
consists of an opaque plate that allows the pass of
radiation through a certain pattern of holes placed
between the detector plane and the source.
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Therefore it modulates (codi®es) the signal arriv-
ing from the source: each c-ray source casts a
shadow of the mask in the detector plane.

Afterwards, original source image can be ob-
tained by deconvolving the recorded image on the
detector plane. Nevertheless, the method used to
make such deconvolution is very important, as the
®nal quality of scienti®c data observation strongly
depends on the ability of the used algorithm, to
properly treat the recorded data.

We have developed an alternative image re-
construction method, based on an iterative maxi-
mum likelihood algorithm (EM algorithm) which
is used for the ®rst time in c-ray astronomy. The
EM algorithm can be easily implemented for not
very complex telescopes, as is the case of the Low
Energy Gamma Ray Imager (LEGRI).

The LEGRI is a coded mask telescope opti-
mised for hard X / soft c-ray domain (20±100 keV)
[3] on board the spanish MINISAT-01 satellite.
LEGRI consists of a position sensitive c-ray de-
tector, made up of an array of 10´10 solid state
detectors (80 HgI2 and 20 CdZnTe, �1 cm2 each)
with a collimator system in order to limit its ®eld
of view, plus a coded mask at 54 cm from the
detector plane (Fig. 1). Its continuum sensitivity is
4 ´ 10ÿ3 ph sÿ1 cmÿ2 in 105 s, at a 3r level. The
coded mask pattern is a 5´5 MURA [4] (Fig. 2)
placed in a mosaic of 14´14 pixels, each of size
2.4´2.4 cm. The ®eld of view of the instrument
due to the collimator system is �10.5° and the
angular resolution is 2.5°.

The main goals of LEGRI are: (i) to demon-
strate the technological feasibility of future c-ray
imagers based on solid state detector technology
and coded mask techniques, (ii) to perform a ga-
lactic survey in order to observe compact objects
like black hole candidates, neutron stars, pulsars
and high mass X-ray binaries.

We have implemented the EM algorithm for
the LEGRI instrument in order to test this method
when applied in c-ray astronomy.

Fig. 1. LEGRI system, showing the detector plane, the collimator and the mask pattern.

Fig. 2. 5´5 MURA, basic pattern of the LEGRI mask.
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2. The EM algorithm

When using coded masks together with pixelled
detectors, the recorded image on the detector plane
is not a direct image of the source, as in the case of
using lenses, but the modulation of the sources by
the telescope response, that usually can be ap-
proximated by the correlation of the sources with
the mask:

Dkl �
X

ij

OijMi�kj�l: �1�

Eq. (1) can be written in a more compact way as

D � O �M ; �2�
where Dkl is an array containing the counts de-
tected at the detector kl per unit of time, Oij ac-
counts for the photons emitted from the sky pixel
ij per unit of time, and M is an array representing
the mask pattern (Mij� 1 for a hole and Mij� 0
for an opaque element).

To obtain the unknown original image (O) we
have thus to process the recorded image (D), by
inverting mathematically the response of the tele-
scope. The usual way is by correlating the recorded
image with the mask pattern or a modi®cation of
it, called the reconstruction array [5]. This method
gives good results and is quite fast, and for this
reason it is preferred for very complex telescopes.
But the accuracy of the method could be fairly bad
if the real response of the telescope di�ers signi®-
cantly from the theoretical one, given by Eq. (2)
(for example, if there are passive structures inter-
fering with the sources, strongbacks, unhomoge-
neities on the mask transparency, parts of the
detector plane that have become unworkable,
di�erent e�ciencies of the detectors, etc).

To improve the quality of the reconstructed
image we have to implement in our model the ef-
fect of all the elements involved on the detection
process. This can be done if we rewrite Eq. (1) as:

Dkl �
X

ij

Uij
klOij; �3�

where noise term has not been considered (this
contribution will be treated later, Section 3.3).

Here U is a function that gives the ¯ux (in fact
the fraction) detected at the detector kl coming

from the sky pixel ij and its value ranges from 0 to
1. In U we can include all the elements that take
part on the radiation detection process as we
stated above. Some of these e�ects cannot be cal-
culated analytically but they can be obtained by
Monte Carlo techniques or measuring them di-
rectly when possible. Of course, the more realistic
U is, the better is the reconstruction.

Given this more realistic parametrization of the
detection process, one can consider di�erent
methods that have been successfully applied in the
®eld of coded mask telescopes for creating a better
image, such as the Iterative Removal Of Sources,
direct minimization of the v2 distribution [6] or the
maximum entropy methods [7].

In this work we present an alternative algo-
rithm, which can be successfully applied to re-
construct images when using coded mask
telescopes: the EM (``Expected value'' and ``Max-
imization'') algorithm [8]. It is an iterative by
construction algorithm for computing maximum
likelihood estimators from incomplete data. This
image reconstruction method has been successfully
used in nuclear medicine [9], this being the ®rst
time it is used in c-ray astronomy.

The philosophy of the method is the following
(see [9]): let us suppose that the data observed in
an experiment is a vector D, with an associated
conditional probability function g(D|O), where O
is a set of unknown parameters to be estimated
(the sky pixels in our case); that is, g stands for the
probability of obtaining the data D given the pa-
rameters O. Our aim is to ®nd the set of parame-
ters Omax that maximizes g(D|O), which will be the
best estimator of the real value of the parameters
O. In general it is rather di�cult to maximize
g(D|O) with respect to O; so, instead of working in
the observed (and incomplete) data space (which
we call D), we will work in the larger space of
theoretical complete data, called Dt, where the
optimization will be easier to achieve. The data of
this theoretical space, Dt, cannot be directly ob-
served but only through the real data D.

We assume that there is a (non-univocal)
mapping Dt ® s(Dt) from Dt to D and that the Dt

values can be known only if they are included in
Dt(D), i.e. the subset of Dt determined by the
equation D� s(Dt). We postulate for the complete
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data Dt also a conditioned probability function
f(Dt |O). Under these assumptions it is possible to
obtain again g(D|O) from f(Dt |O) by means of the
relation:

g�DjO� �
Z

D�s�Dt�
f �DtjO�dDt; �4�

where the integral is approximated to a discrete
sum if when we work with discrete variables (and
hence the probability functions are just probabili-
ties).

Each iteration n+1 of the EM algorithm con-
sists of two steps; to ®nd out an expected value (E
step) and to maximize it (M step):
· E step: to form the conditional expected value

E� logf �DtjO�jD; ~On�; �5�
where ~On stands for the array of parameters
estimated in the iteration n (it has known val-
ues, therefore).

· M step: to maximize this expected value with re-
spect to O, keeping the values ~On constant. This
gives us a new vector of estimated parameters
~On�1.
The intuitive idea is that we would like to know

the parameters O that maximize log f(Dt |O). Since
we do not know log f(Dt |O), we maximize instead
its expected value in the present iteration, for a
given experimental data D and current estimation
of the parameters, ~On.

This procedure generates sets of parameters
that ful®l the following property [9]:

logg�Dj ~On�1�P logg�Dj ~On�
$ g�Dj ~On�1�P g�Dj ~On� �6�

being strictly greater in many cases. That is, the
EM algorithm is designed to increase the likeli-
hood in each iteration.

Lange and Carson [9] applied this method for
imaging in nuclear medicine, for emission and
transmission tomography. In the case of emission
tomography [9], the D data can be related to the O
parameters by means of:

Dk �
X

ij

Uij
k Oij �7�

where k are the di�erent projections of the tomo-
graphy, ij are the pixels of the source that con-

tribute to the projection k and U is an array that
represents the probability that a photon leaving
pixel ij reaches the projection k (note that in this
case the problem is reduced to one dimension, as
di�erent tomography projections, Dk, are consid-
ered). Due to the strict concavity of the function
log g(D|O) the sequence On converge to the correct
solution Omax. The solution for the EM algorithm
in this case is given by:

~On�1
ij �

~On
ijP

k
Uij

k

X
k

Uij
k DkP

i0j0
Ui0j0

k
~On

i0j0

0BB@
1CCA: �8�

Eq. (8) can be rewritten as:

~On�1
ij � ~On

ij

P
kl

Uij
kl

Dkl
~Dn

kl

� �
P
kl

Uij
kl

�9�

being ~Dn
kl �

P
i0j0 U

i0j0
kl

~On
i0j0 . In Eq. (9) a second index

to the detector data D has been added in order to
account for the two-dimension detector plane ar-
ray. As can be seen, it is not necessary to impose
additional constraints to ensure the non-negativity
of the reconstructed image, except that the initial
parameters must be positive, that is, ~O0 P 0. This
does not preclude the possibility

lim
n!1

~On
ij � 0: �10�

Moreover, it converges to the proper maximum
likelihood estimator, independently of the initial
value ( ~O0) [9]. In order to avoid introducing any
previous structure in the image we will use a uni-
form ®eld of value 1 for every sky pixel ij as initial
parameters.

Eq. (9) is similar to the Lucy±Richardson
[10,11] method. However, the Lucy±Richardson
algorithm needs to be kept between a lower (0) and
upper (OMAX) boundaries in each iteration in order
to keep the iterative process under control and to
ensure a properly convergency. Nevertheless, the
term that arises in the denominator of the EM
algorithm assures automatically the convergency
of the iterative process without any additional
control.
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2.1. Convergency and stopping criteria

When an image is generated by means of an
iterative process, we have to stop it at a given
moment and accept the result of the last iteration
as the image generated by the reconstruction
process. Therefore it is important to know if the
iterative process converges and, if so, when we can
consider the process is ®nished.

The EM algorithm convergency to the maxi-
mum likelihood estimator is monotonous and
without oscillations as we will show later (Section
3.1); we can use this property to choose a stopping
criterion for the algorithm. Nevertheless, this is a
criterion about the convergency of the process, not
about the convergency to the correct result.
Therefore, we can impose other criteria to stop the
algorithm, for example, based on the similarity of
the estimated data � ~Dn

kl� with the real one (Dkl). We
can stop the process whenever the estimated data
(obtained from the present sky intensities estima-
tion) are within the error range of the real data,
that is:

~Dn
kl 2 �Dkl ÿ rkl;Dkl � rkl�: �11�

This is similar to impose conditions on the chi-
square value de®ned as:

v2 �
X

kl

Dkl ÿ ~Dkl

� �2

r2
kl

; �12�

where rkl �
�������
Dkl
p

(poissonian statistic). Neverthe-
less, this requirement may be not ful®lled. For
these cases we should use the former mentioned
monotonous convergency property of the algo-
rithm to stop it. We can stop the iterative process
when the algorithm is close to its convergency
value, that is, the di�erences between the images of
two consecutive iterations are very small. There-
fore to account for these di�erences we de®ne dn

as:

dn �
P

ij D ~On
ijP

ij
~On

ij

; �13�

where D ~On
ij � j ~On

ij ÿ ~Onÿ1
ij j. The more similar these

two successive images are, the smaller is dn. We can
impose that the algorithm stops when dn is lower

than a given value. In practice, we check in each
iteration both stopping conditions (Eqs. (11) and
(13)), and the process is stopped when one of them
is ful®lled.

3. The EM method for LEGRI

In order to test the EM algorithm we have de-
veloped a Monte Carlo simulator of the LEGRI
telescope, a medium size c-ray telescope, using the
GEANTá3 simulation package [12] together with a
simpler and faster geometrical simulator. Full
LEGRI geometry and material were considered in
the Monte Carlo simulator, taking into account all
the physical processes involved in the detection of
c-rays. Di�erent sky sources and background
noise levels have been considered in the calcula-
tions. In Fig. 3 we show as an example the ex-
pected shadowgram obtained in the detector plane
when illuminating LEGRI with a centred point
source emitting 100 photons cmÿ2 at 100 keV and
in absence of background noise. Fig. 3a shows the
result for the Monte Carlo simulator and Fig. 3b
for the geometrical simulator. The counts detected
in the shaded part (where one should expect no
counts) in Fig. 3a are due to the scatter of the
incident photons with the mask structure. We can
see that both simulators produce a very similar
result, and therefore we can use the faster geo-
metrical simulator to obtain detector planes to
work with.

3.1. Execution time and convergency

Given a pixelled sky map (to be reconstructed
by the algorithm) with a size of A´B pixels, and a
detector plane with a size of a´ b detectors (in the
case of LEGRI 10´10), the number of operations
(see Eq. (9)) for I iterations of the EM algorithm
are:

��a� b� � �A� B� 1� � �A� B� � �a� b� 2��
� I � �2� a� b� A� B� 2� A� B� a� b� � I :

To show the convergency of the EM algorithm,
we are going to use the geometrical simulator and
illuminate it with a centred point source of 100
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photons cmÿ2 plus a random noise with average
value of 30 counts cmÿ2. In Fig. 4 we show the
values of dn, v2 and intensity of the reconstructed
source versus iterations, obtained during the EM
reconstruction for this example. The algorithm
stopped, after 1 min and 25 s (using a Sun Sparc 20
with 120 Mbytes RAM) at iteration 445, ful®lling
the stopping criterion of Eq. (11).

The EM algorithm converges very well to the
correct solution and does not need any control.
Moreover, the convergency of the algorithm is
monotonous and achieves di�erences between
consecutive images smaller than 1% after only 50
iterations. The reconstructed image for the centred
point source can be seen in Fig. 5.

The number of pixels considered in the recon-
structed image of Fig. 5 is A´B� 33´33 and the
detector plane has a´b� 10 ´10 detector units.
This gives 2.2´105 operations per iteration.

For the same number of iterations, a more
complex c-ray telescope as is the case of IBIS,
one of the main instruments of the future IN-
TEGRAL mission with 128´128 detectors, a
®eld of view of �14.5° and an angular resolution
of 120 (which gives 580´ 580 sky pixels if we
subdivide it in the same way we have done in
LEGRI's image) the EM algorithm will need
about 1.1´1010 operations per iteration; if we
assume the same number of iterations, i.e. 445,
the EM algorithm will last about 50 days. This is
the main reason why such kind of algorithms can
be successfully applied to medium size telescopes
but can be unapplicable for very complex c-ray
telescopes.

3.2. E�ects of the mask geometry

The mask pattern of LEGRI is a 5´5 MURA
pattern [4] placed in a 2.8´ 2.8 mosaic. The size of
each mask element is 2.4´2.4 cm, being the sepa-
ration between each element of the detector plane
of 1.2 cm. Therefore, the detector plane has the
same size as the 5´5 MURA. This con®guration
was chosen in order to be able to use the classical
reconstruction methods based on the correlation:
any source in the ®eld of view will cast in the de-
tector plane a complete (although permuted)
shadow of the basic 5´ 5 MURA pattern, i.e. it is a
cyclic system [13]. In this case it is possible to use a
cyclic correlation instead of a simple correlation,
and correlate the data with the reconstruction ar-
ray G as follows:

~Oij � D �
cycl

G �
Xaÿ1

k�0

Xbÿ1

l�0

DklG�k�i�mod a�l�j�mod b �14�

Fig. 3. Expected shadowgrams in the detector plane produced

by a centred point source emitting 100 photons cmÿ2 at 100 keV

without background noise; (a) using a Monte Carlo simulator

and (b) using a geometrical simulator.
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being a and b the size of the detector plane and the
reconstruction array. Using Eq. (2) it is equal to:

~O � D � G � O �M � G �15�
where M�G should be a delta function in the ideal
case. This will be possible if the system is a cyclic
one and the basic mask pattern is a URA [1] or
MURA pattern, as in our case.

This kind of straightforward methods are very
fast and for this reason are preferred for very

complex telescopes. But for medium size tele-
scopes, we have seen that the EM algorithm is
competitive in computing time.

3.2.1. Angular resolution
In the classical reconstruction methods based

on the correlation, the angular resolution is given
by the angle subtended by a mask element viewed
from the detector plane, that is:

resol: � arctg
c
f

� �
�16�

being c the size of a mask element and f the dis-
tance mask±detector plane (for LEGRI, c� 2.4 cm
and f� 54 cm, obtaining an angular resolution of
2.54°). This resolution, given by the correlative
methods, is usually the nominal resolution of the
coded mask-based c-ray telescopes and it is inde-
pendent of the spatial resolution of the detector
plane.

Obviously, if the detector plane has a good
spatial resolution (i.e. can resolve pixels 10 times
smaller than the mask elements), it is expected in
principle to have a better angular resolution.
Therefore, one has to conclude that when using a
correlative method, there is implicitly a loss of
information. If we use the EM method, we can
retrieve this lost information and obtain the real
angular resolution:

Fig. 5. Reconstruction of a 100 ph cmÿ2 centred point source.

Fig. 4. Convergency of the EM method for the magnitudes (a) dn, and (b) source intensity and v2.
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resol: � arctg
d
f

� �
�17�

being d the size of the detector plane pixels. The
real angular resolution on the telescope depends on
the spatial resolution of the detector plane. For
LEGRI, this value is 1.27°. Only in the case when
d� c there is no loss of information when using a
correlative method.

We can show it easily if we apply the ®eld of
sources shown as crosses in Fig. 6 to our LEGRI
simulator (without any background in this case)
and we reconstruct the detected image by both, a
correlative method and the EM algorithm. In this
case we are limiting ourselves to a central zone of
the ®eld of view (�6°).

In Fig. 6a we have reconstructed the image
using a correlation-based method called d-decod-
ing [14] which is a correlative method with a con-
trast greater than other correlative methods. In
Fig. 6b, we have used the EM algorithm. The
image obtained with the EM algorithm has better
contrast and resolves better the di�erent sources
(except those two too near in the centre, because
their angular separation is lower than 1.27°).

3.2.2. Ghosts
Using a cyclic system such as the one of the

LEGRI telescope, with the basic pattern in a
2.8´2.8 mosaic, one has the disadvantage that
di�erent source positions on the sky can cast the
same pattern in the detector plane. This will give
an intrinsic degeneration in the system and one
will be unable to distinguish between certain
source positions. As the reconstruction methods
will not have additional information to distinguish
among those directions, this fact will produce fake
sources in the reconstructed image that we call
ghosts.

To show up this e�ect, we have applied the sky
source distribution marked with crosses in Fig. 7
to our simulator. After applying the EM algorithm
to the detected signal, we obtain the reconstructed
image shown in Fig. 7. We can see that the central
source has been reconstructed without any ghost,
because the shadow cast by a source on-axis can-
not be produced by any other source position (due
to the collimators surrounding each detector units

which limit the ®eld of view to �10.5°). But this is
not the case for the other sources. The source lo-
cated at (5,0) produces two sources in the recon-
structed image, one in the real position and the
other source (ghost) located just in a position
where it would cast the same shadowgram as the
real one. The di�erence in reconstructed intensities
is due to the triangular response of the collimators.

Fig. 6. (a) Reconstruction using d-decoding (a correlative

method); (b) reconstruction using the EM algorithm. Shown

only the central part of the image. In both cases the sky sources

used as input in the simulator are marked with crosses.
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The same situation occurs for the source located at
()5, )5), which produces three ghosts, corre-
sponding to the other possible positions at which a
source would produce the same shadow on the
detector plane as the true one.

This e�ect of ``ghosting'' can be avoided by
using a non-cyclical mask (although in this case it
is not possible to use a cyclic correlation), for ex-
ample a random mask or a bigger URA or MURA
masks.

3.3. Noise e�ect

In general, added to the signal coming from the
sky source, one has a background noise that a�ects
to the signal. There are di�erent sources of noise
that can be considered, i.e. other sky sources, the
di�use c-ray background, cosmic rays, protons
and electrons trapped in the earth's magnetic ®eld
(in the case of LEGRI's L.E.O. orbit, the south
Atlantic anomaly -S.A.A.-), radioactivity induced
by these energetic particles in the structure of the
telescope, electronic noise, etc. . . all of them are
just counts added to the c-ray sky source counts
we want to study.

The easiest way to introduce the background
noise in our calculations is just to add it to Eq. (3):

Dkl �
X

ij

Uij
klOij � B: �18�

In Eq. (18) we have considered that back-
ground is independent of the considered detector.
In a more realistic situation, each detector will
detect a di�erent background, not only due to
di�erences in the e�ciency, but also due to the fact
that, as the telescope structure is activated, the
detectors closer to this structure will have higher
background counting rate. In this case we could
have a situation similar to that shown in Fig. 8
where, added to a central point source of 100
photons cmÿ2, we have included an anisotropic
background, bigger in the border (�300 counts
cmÿ2) where the strongback structure of the tele-
scope is, and decreasing towards the centre (�50
counts cmÿ2).

Taking the possibility of anisotropic back-
ground, we can rewrite Eq. (18) as:

Dkl �
X

ij

Uij
klOij � Bkl: �19�

If we assume we know the background noise
(we have a good model of it, Bmodel), the usual way
to treat with it when we are looking at a sky c-ray

Fig. 8. Shadowgram in the detector plane produced by a 10 ph

cmÿ2 centred point source plus an anisotropic background.

Fig. 7. Reconstruction using the EM algorithm, showing the

real input sources (marked with crosses) and their ghosts.
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source is just to subtract it from the data, in order
to have an equation similar to Eq. (3):

Dcorrected
kl � Dkl ÿ Bmodel

kl �
X

ij

Uij
klOij: �20�

Then, if we use correlative methods, we can
apply our reconstruction array directly to Dcorrected.
But unfortunately we cannot act in the same way if
we use the EM algorithm, because the subtraction
Dkl ÿ Bmodel

kl can produce negative values in
Dcorrected (there are detectors measuring only
background due to the mask shadow, and statis-
tical ¯uctuations implies that the measured counts
can be lower than the estimation of the back-
ground, Bmodel

kl ). To assure positive values of the
estimated source intensities ~O (Eq. (9)), Dkl must
be positive.

The correct way to treat with the background
when using the EM algorithm is to consider it as a
part of the detector response. Therefore, the esti-
mators of the D values will include implicitly a
background term:

~Dkl �
X

ij

Uij
kl

~Oij � Bmodel
kl ; �21�

the way to obtain this model of the detector plane
background, to include it as part of the detector
response, is to look at a ®eld of view without any
c-source (and so the sum for ij in Eq. (21) is equal
to 0) and measure the detected counts.

If we use as input Fig. 8 (non-homogeneous
background plus a source emitting 100 ph cmÿ2),
the results in the reconstruction can be seen in Fig.
9. In Fig. 9a we are not considering any model of
the background noise; in Fig. 9b, we subtract be-
fore reconstruction a model of the background
noise (a model similar to the background we have
introduced previously) to the detected counts, ac-
cording to Eq. (20); in Fig. 9c, we add the model of
the background as a part of the detector response,
according to Eq. (21). Sidelobes arise when back-
ground is not considered (Fig. 9a). In Fig. 9b the
EM algorithm produces an even worse result with
negative values for some pixels. Finally, in Fig. 9c
the sources are properly reproduced when back-
ground is considered as a part of the detector re-
sponse (Eq. (21)).

3.4. Non-perfect detector plane

When we reconstruct an image by means of a
correlative method, we have to correlate the data
with the so-called reconstruction array G accord-
ing to

~O � D � G � O �M � G� B � G �22�
or what is the same

~Oij �
X

kl

DklGk�i l�j

�
X
i0j0

X
kl

Oi0j0Mi0�kj0�lGk�i l�j �
X

kl

BklGk�i l�j;

�23�
where G should satisfy that M�G is a delta func-
tion (the identity for the correlation operation)
and B�G as close as possible to 0. In this equation
is implicitly the fact that all the Dkl data have the
same importance and that we have to take into
account all of them in order to have a correct
image reconstruction: if some detectors are swit-
ched o� or damaged ± and so Dkl� 0 for those
detectors ± , then some of the values of M that
should be di�erent from 0 will be 0 and therefore
M�G will not be a delta function anymore. To test
the e�ect on the reconstructed image of this non-
perfect detector plane, we have used as input of the
simulator the same ®eld of sources of Fig. 6. We
have switched o� three rows of detectors and eight
more detectors selected at random, that is 38% of
the detector plane has been disabled. The detector
plane shadowgram can be seen in Fig. 10.

When we reconstruct the image using a corre-
lative method, we get the image of Fig. 11a where
it is not possible to distinguish any source. On the
other hand, if we apply the EM algorithm to this
seriously damaged detector plane we obtain the
result showed in Fig. 11b. The result obtained by
the EM algorithm is rather better although some
odd structures arise in the reconstructed image.

However we can still improve this result: we
should not consider the information coming from
them as valid information (as we do if we just
apply the EM algorithm to the detected counts)
because we know they do not work. The way to
avoid this incorrect treatment of information from
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these detectors is by means of a by-pass of the
disabled or damaged detectors. That is, in Eqs. (9)
and (21) we have to exclude from the sum all the
damaged detectors:X

kl

!
X

kl 62 damaged detectors

: �24�

In this case we obtain the result showed in Fig.
11c, which is better than the previous one and

very similar to the result we obtained when we
had the whole detector plane working (see Fig.
6c). That is, we can recover more information
from the source with the EM algorithm than that
obtained with the classical correlative methods
(notice that this by-pass is done automatically in
the case we use a correlative method, so we cannot
improve the correlation results by means of this
by-pass).

Fig. 9. EM reconstructions of Fig. 8: (a) without considering any model of background; (b) subtracting a model before reconstruction;

(c) adding the same model as a part of the detector response.
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4. LEGRI data and preliminary results

When we work with the real data coming from
the LEGRI instrument we have to deal with a very
important background noise, which makes the
data handling more di�cult. This noise is due to
the fact that Minisat 01 is in a Low Earth Orbit
(L.E.O.) with a height of 550 km which passes
across the South Atlantic anomaly. This fact in-
duces great amounts of activation in the LEGRI
structure material, producing a strong background
which dominates over the sky data.

On the other hand, we have a severe damage
due to problems in the launching and the e�ect of
the strong radiation environment where LEGRI is
orbiting, and about the 80% of the detector plane
has become useless. As a result of these two e�ects,
the sensitivity of LEGRI is not good enough to see
the main part of the sky gamma sources.

Anyway, with the measurements we have made
nowadays, we can see the brightest sources in the
sky, as the case of the pulsar in the Crab Nebula.
Using the data we have obtained from the Crab
Nebula and applying them our EM algorithm, we
obtain the image reconstruction shown in Fig. 12.
We can see at the centre the signal from the pulsar
in the Crab Nebula, and surrounding it, six ghosts

or fake sources due to the mask pattern and un-
certainties produced for the damaged detector
plane. Due to the strong limitations in pointing

Fig. 10. An example of damaged detector plane, illuminated by

the same sky sources of the case shown in Fig. 6.

Fig. 11. Reconstructions of Fig. 10: (a) using a correlative

method; (b) using the EM algorithm; (c) using the EM algo-

rithm and by-passing the damaged detectors.
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and observing time of the platform Minisat 01, we
cannot increase the integration time as quickly as
we would like, in order to improve the sensitivity
of the instrument, and only acquiring more data in
the future we will increase the integration time and
so the sensitivity of the instrument.

5. Conclusions

This is the ®rst time the EM algorithm has been
applied to coded-mask based c-ray telescopes.

The EM algorithm is a powerful iterative
method for image reconstruction, with very good
convergency characteristics: robustness, no need of
additional controls or checks to assure conver-
gency, positivity of the solution and convergence
to the proper solution. The EM algorithm has a
suitable computing time for medium-size coded-

mask based telescopes which makes it competitive
with the correlative methods. This algorithm has
been applied to LEGRI telescope, on board
Minisat-01, showing a very good adaptability to
di�cult conditions (i.e. space-varying background
noise in the detector plane, improvement of the
angular resolution, very high background noise
rate in the real data, an important damage in the
detector plane), giving as a preliminary result an
image of the Crab Nebula pulsar. It is expected
that future measurements will increase the inte-
gration time of the sources and therefore the sen-
sitivity, allowing to detect weaker sources.

With the EM algorithm it is possible to recover
more information from the data than that ob-
tained with classical correlative methods. The EM
algorithm seems to be a very suitable method for
image reconstruction of medium size c-ray tele-
scopes where coded mask techniques are needed.
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