The EM Algorithm for Imaging with Gaps in the Detector Plane

- Index
- LEGRI Description
 - LEGRI on board Minisat 01
 - The telescope
 - The detector plane
 - Movement and pointing
- Mathematical Description
 - Detection and data integration
 - The EM algorithm
- Results
 - Noise level and Crab pulsar signal
 - Crab reconstruction

LEGRI Description

LEGRI on board Minisat 01

Main components:

- Detector Unit
- Mask
- Star Sensor
- High voltage unit
- DPU and extra power unit

The telescope

The Mask

- Pattern: MURA 5x5 in a mosaic (14x14 units)
- Distance between centres 2.4 cm
- Distance mask-detector plane: 54 cm

The detector plane

- 10x10 detector units
- Distance between centres 1.2 cm
- Common electronic each row of 10 detectors
- Collimator height: 5.85 cm

The detector plane

• 80 HgI₂ and 20 Cd(Zn)Te. Solid state detectors.

• Energy range: 20 - 100 keV.

• Operative detectors: 17!!

Movement and pointing

- The satellite moves and the pointing changes. We have to consider it.
- Two ways to know the pointing:
 - The Star Sensor pointing reconstruction.
 - The Minisat 01 pointing reconstruction.

Mathematical Description

Detection and data integration

$$D_{klp} = \left(\sum_{\alpha\beta} O_{\alpha\beta} \Phi_{klp}^{\alpha\beta} + B_{kl}\right) T_p$$

kl = detector unit indexes

p = pointing direction index. Data are integrated in different sets for each pointing direction

 $\alpha\beta$ = sky pixel indexes

O = emission intensities from the sky pixels per time unit and area unit

 Φ = sky fluxes (how much sees detector kl coming from the sky pixel $\alpha\beta$ during pointing p; =1 everything, =0 nothing –usually something between 0 and 1-)

 T_p = integration time for pointing p

Taking into account the changes of pointing (rotantions + translations):

$$\Phi_{klp}^{\alpha\beta} = \Phi_{kl}^{(\alpha-\alpha_p)\cos(roll_p) + (\beta-\beta_p)\sin(roll_p)} - (\alpha-\alpha_p)\sin(roll_p) + (\beta-\beta_p)\cos(roll_p)$$

The EM algorithm

- g(D|O) = probability of obtaining the data D given the parameter set O
- we look for O^{max} that maximices $g(D|O) \rightarrow good$ estimator of sky intensities
- EM carries out that maximization via and iterative and indirect way:

We define a bigger (and fictitious) data space D_t (D is a subset of D_t) and its associated $f(D_t|O)$. Then n-th iteration:

- E step: form $E(\log f(D_t|O) \mid D,!\tilde{O}^n)$
- M step: maximize it with respect to O keeping Õⁿ constant → it gives Õⁿ⁺¹

Property:
$$g(D|\tilde{O}^{n+1}) \ge g(D|\tilde{O}^n)$$

Final form:

$$ilde{O}_{lphaeta}^{n+1} = ilde{O}_{lphaeta}^n rac{\sum_{klp} \Phi_{klp}^{lphaeta} igg(rac{D_{klp}}{\widetilde{D}_{klp}}igg)}{\sum_{klp} \Phi_{klp}^{lphaeta}}$$

But
$$\sum_{kl} \longrightarrow \sum_{kl = \text{useful detectors}}$$

Results

- LEGRI background noise level ≈ 0.6 counts/s cm²
- Crab Nebulae pulsar intensity ≈ 0.94 photons/s cm²
- Significance level in ~40000 s

