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Abstract. The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic
signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified
approach allows us to explain and to analyze the properties and interest of these relativistic posi-
tioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed.
The interest of the Coll systems in gravimetry is pointed out.
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INTRODUCTION

The relativistic positioning systems were introduced by B. Coll a few years ago in
the Spanish Relativity Meeting from Valladolid [1]. Remember that these systems are
defined by four clocks broadcasting their proper time. Here we will name them for
short ’Coll systems’. In a ’long contribution’ to these proceedings B. Coll explains
the interest, characteristics and good qualities of these relativistic positioning systems
in the generic four-dimensional case. In this short communication we present a two-
dimensional approach to the Coll systems.

The two-dimensional approach should help us understand better how these relativistic
systems work and the richness of the elements of the Coll systems. Indeed, the simplicity
of the 2-dimensional case allows us to use precise and explicit diagrams which improve
the qualitative comprehension of the positioning systems. Moreover, two-dimensional
examples admit simple and explicit analytic results.

Nevertheless, it is worth remarking that the two-dimensional case has particulari-
ties and results that cannot be generalized to the generic four-dimensional case. Con-
sequently, the two-dimensional approach is suitable for learning basic concepts about
positioning systems, but it does not allow us to study some specific positioning features
that necessarily need a three- or a four-dimensional approach.

In the second section we introduce the basic elements of a Coll system: emission
coordinates and its other essential physical components. In the third section we explain
the analytic method to obtain the emission coordinates from an arbitrary null coordinate
system and we use it to develop the positioning system defined in flat space-time by two
geodesic clocks. We finish with some comments about other positioning subjects that
we are considering at present.



BASIC CONCEPTS AND ESSENTIAL PHYSICAL COMPONENTS

In a two-dimensional space-time, letγ1 andγ2 be the world lines of two clocks measuring
their proper timesτ1 and τ2 respectively. Suppose they broadcast them by means of
electromagnetic signals, and that these signals reach each other of the world lines. The
future light cones (here reduced to pairs of ’light’ lines) cut in the region between
both emitters and they are tangent outside. Thus, these proper times do not distinguish
different events on the emission null geodesics of the exterior region.

The internal region, bounded by the emitter world lines, defines a coordinate domain,
the emission coordinate domainΩ. Indeed, every event on this domain can be distin-
guished by the times(τ1,τ2) received from the emitter clocks. In other words, the past
light cone of every event on the emission domain cuts the emitter world lines atγ1(τ1)
and γ2(τ2) respectively: then{τ1,τ2} are theemission coordinatesof this event. An
important property of the emission coordinates we have defined is that they are null co-
ordinates. The plane{τ1}×{τ2} in which the different data of the positioning system
can be transcribed is called thegrid of the positioning system.

An observerγ travelling throughout the emission coordinate domain and equipped
with a receiver which allows to read the proper times(τ1,τ2) at each point of his
trajectory is a user of this positioning system.

In defining the emission coordinates we have introduced the first essential physical
components of a Coll system:

- The principal emittersγ1, γ2, which broadcast their proper timeτ1, τ2.
- The usersγ, travelling in the emitter coordinate domainΩ, receive the emitted times
{τ1,τ2} (their emitter coordinates).

These elements define a generic, free and immediate location system (it can be defined
in a generic space-time; it can be defined without knowing the gravitational field; a user
knows his coordinates without delay).

Any user receiving continuously theuser’s positioning data{τ1,τ2} may extract his
trajectory,τ2 = F(τ1), in the grid. Nevertheless, whatever the user be, these data are
insufficient to construct both of the two emitter trajectories.

In order to give to any user the capability of knowing the emitter trajectories in the
grid, the positioning system must be endowed with a device allowing every emitter to
also broadcast the proper time it is receiving from the other emitter:

- The emittersγ1, γ2 are also transmitters: they receive the signals (such as a user)
and broadcast them.

- The usersγ also receive the transmitted times{τ̄1, τ̄2}.
In other words, the clocks must be allowed to broadcasttheir emission coordinatesand

then, any user receiving continuously theemitter’s positioning data{τ1,τ2; τ̄1, τ̄2} may
extract from them the equations̄τ2 = ϕ1(τ1) andτ̄1 = ϕ2(τ2) of the emitter trajectories.
A positioning system so endowed will be called anauto-located positioning system.

Eventually, the positioning system can be endowed with complementary devices. For
example, in obtaining the dynamic properties of the system:

- The emittersγ1, γ2 can carry accelerometers and broadcast their acceleration.



- The usersγ can also receive the emitter acceleration data{α1,α2}.
In some cases, it can be useful that the users generate their own data: they can carry

a clock that measures their proper timeτ and an accelerometer that measures their
accelerationα.

Thus, a Coll positioning system can be performed in such a way that any user can
obtain a subset of the user data:{τ1,τ2; τ̄1, τ̄2;α1,α2;τ,α}.

POSITIONING WITH GEODESIC EMITTERS IN FLAT METRIC

Let us assume theproper time history of two emittersto be known in a null coordinate
system{u,v}:

γ1≡
{

u = u1(τ1)
v = v1(τ1)

γ2≡
{

u = u2(τ2)
v = v2(τ2)

(1)

We can introduce the proper times as coordinates{τ1,τ2} as follows:

u = u1(τ1) , v = v2(τ2) (2)

This change definesemission null coordinatesin the emission coordinate domain
Ω ≡

{
(u,v) / F−1

2 (v) ≤ u , F1(u) ≤ v
}

. In the region outsideΩ this change also
determines null coordinates which are an extension of the emission coordinates. But in
this region the coordinates are not physical, i.e. are not the emitted proper times of the
principal emittersγ1, γ2.

Now we use this procedure for the case of twogeodesicemittersγ1, γ2 in flat space-
time. In inertial null coordinates{u,v} the proper time parametrization of the emitters
are:

γ1≡
{

u = λ1τ1

v = 1
λ1

τ1 +v0
γ2≡

{
u = λ2τ2 +u0
v = 1

λ2
τ2 (3)

Then, the emitter coordinates{τ1,τ2} are defined by the change:

u = u1(τ1) = λ1τ
1 , v = v2(τ2) =

1
λ2

τ
2 (4)

From here we can obtain the metric tensor in emitter coordinates{τ1,τ2} and we
obtain: ds2 = λ dτ1dτ2 , λ ≡ λ1

λ2
. On the other hand, in emission coordinates{τ1,τ2},

the equations of the emitter trajectories are:

γ1≡
{

τ1 = τ1

τ2 = ϕ1(τ1)≡ 1
λ

τ1 + τ2
0

γ2≡
{

τ1 = ϕ2(τ2)≡ 1
λ

τ2 + τ1
0

τ2 = τ2
(5)

Let γ be a user of this positioning system. What information can this user obtain
from the public data? Evidently(τ1,τ2) place the user on the user grid, and(τ̄1, τ̄2),
τ̄ i = ϕ j(τ j), place the emitters on the user grid. On the other hand, the metric component
could be obtained from the emitter’s positioning data{τ1,τ2; τ̄1, τ̄2} at two events. The



space-time interval is:

ds2 =

√
∆τ1∆τ2

∆τ̄1∆τ̄2 dτ
1dτ

2 (6)

DISCUSSION AND WORK IN PROGRESS

We finish this talk with some comments about other positioning subjects we are studying
at present. Firstly, the interest of the Coll systems in gravimetry. If we suppose that the
user has no previous information on the gravitational field, what metric information can
a user obtain from the public and proper user data? Can a user do gravimetry by using
our positioning system? We have shown that [2]:

- The public data{τ1,τ2; τ̄1, τ̄2;α1,α2} determine the space-time metric interval and
its gradient along the emitter trajectories.

- The public-user data{τ1,τ2;τ,α} determine the space-time metric interval and its
gradient along the user trajectory.

The development of a general method that offer a good estimation of the gravitational
field from this information is still an open problem, but some preliminary results show
its interest in determining the parameters in a given (parameterized) model [3].

On the other hand, some circumstances can lead to take another point of view: the
user knows the space-time in which he is immersed (Minkowski, Schwarzschild,...) and
we want to study the information that the data received by the user offer. We have
undertaken this problem for the flat case an we have obtained interesting preliminary
results. In particular, we have shown that [4]:

- If a user receives the emitter positioning data{τ1,τ2; τ̄1, τ̄2} along his trajectory
and the acceleration of one of the emitters during a soleecho interval(i.e., travel
time of a two-way signal from an emitter to the other), then this user knows: his local
unities of time and distance, the metric interval in emission coordinates everywhere,
his own acceleration and the acceleration of the principal emitters, the change between
emission and inertial coordinates, his trajectory and the emitter trajectories in inertial
coordinates.
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