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Emission coordinates are those generated by positioning systems. Positioning systems are physical
systems constituted by four emitters broadcasting their respective times by means of sound or light
signals. We analyze the incidence of the space-time causal structure on the construction of emission
coordinates. The Newtonian case of four emitters at rest is analyzed and contrasted with the
corresponding situation in special relativity.
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I. INTRODUCTION

The study of space-time coordinate systems and the
different protocols associated with their physical con-
struction is a broad and open field in current physics
[1–10]. Here, we consider those coordinate systems con-
structed from positioning systems, that are basically de-
fined by four clocks (emitters) broadcasting their respec-
tive times by means of some type of signals (electromag-
netic, sonic). At each space-time event reached by the
signals, the received four times define the emission coor-
dinates of this event (with respect to the given position-
ing system).

A complete description of any coordinate system must
mention the protocols for the physical construction of
its geometric elements (coordinate lines, coordinate sur-
faces and coordinate hypersurfaces) which may have as-
sociated different causal characters (spacelike, timelike,
null). Thus, for example, these coordinate elements may
be performed, among other ways, by means of clocks for
timelike lines, laser pulses for null lines, rods or inexten-
sible threads for spacelike lines, laser beams for timelike
surfaces, light-front signals for null hypersurfaces and so
on.

Positioning systems, and their emission coordinates,
may be constructed both in Newtonian and relativistic
physics and their definition does not involve the use of
any synchronization convention. The physical protocols
allowing the realization of emission coordinates involve
the velocity of the used signal and the configuration
(kinematics) of the emitters. Thus, the coordinate hy-
persurfaces of an emission coordinate system are the four
families of space-time cones with vertices on the events of
the worldlines of the emitters, the emission cones gener-
ated by the signals. For homogeneous and non-dispersive
media, the emission cones are wholly determined by the
speed of the broadcast signals.
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A coordinate system has associated 4 one-parametric
families of hypersurfaces, 6 two-parametric families of
surfaces and 4 three-parametric families of lines. The
set of causal characters of these 14 geometric elements
is said the causal signature of the coordinate system. A
causal class is the set of all coordinate systems having
same causal signature.

The space-time coordinate systems have been classified
from the causal point of view, and the result is [11, 12] :
the number of causal classes of Newtonian and relativistic
coordinate systems is 4 and 199 respectively.

The assignment of one specific causal class to a co-
ordinate system in a region of the space-time supposes
that the causal characters of all the geometric elements
of the coordinate system (lines, surfaces and hypersur-
faces) are the same at any point of the region or, in other
words, that the region under consideration is a causal ho-
mogeneous region for the coordinate system in question.
Therefore, there are 4 or 199 causally different ways to
parameterize the events in a causal homogeneous region
of the space-time, according to the classical or relativistic
description that we want to make.

In dealing with evolution formalisms, one usually con-
siders standard coordinate systems which are adapted to
a 3 + 1 splitting of the space-time in space plus time.
The space-time is thus represented as (absolutely or rel-
atively) foliated by a one-parametric family of space-
like hypersurfaces (instants of a synchronization). This
provides the standard space-time decomposition that, of
course, is not the only admissible one.1 As the causal
classification of space-time coordinate systems shows,
other three causally different decompositions exist in
Newtonian physics, and other one hundred and ninety
eight exist in relativity.2

1 See reference [11] in connection with the role that the synchro-
nization group plays in the physical realization of unusual New-
tonian and relativistic space-time parameterizations.

2 Remember that other formulations already exist in Relativity
(different from the 3 + 1 one) offering complementary (or alter-
native) advantages to solve Einstein equations (see also footnote
5 below).
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Among these unusual space-time decompositions,
those associated with positioning systems deserve special
attention. The corresponding four dimensional region is
sliced by the histories (emission cones) of the broadcast
signals. The relativistic theory of positioning systems us-
ing electromagnetic signals has been analyzed elsewhere
[4–6, 13–15], remarking their incidence in the current
global navigation systems. Of course, the corresponding
theory with sub-luminous signals deserves relevant inter-
est in connection with sonic positioning systems, both in
the Newtonian and in the relativistic regimes.

Here, we analyze the causal properties of the emission
coordinates and, for the sake of simplicity, we consider
the case of four emitters at rest. Elsewhere, we have
obtained (in the Minkowski space-time) the transforma-
tion between inertial and light emission coordinates for
arbitrary motions of the emitters [16, 17].

The results reported in this paper lay the foundations
for a Newtonian theory of positioning systems, an issue
with potential applications. Indeed, nowadays there is
an increasing interest in the study and development of
indoor and ultrasonic positioning systems (see, for in-
stance, [18]).

The paper is organized as follows. In Sec. II we sum-
marize the main results on the causal classification of
Newtonian and relativistic space-time frames and coordi-
nate systems. For a more detailed discussion, see [11, 12].
In Sec. III we analyze the causal properties of Newtonian
emission coordinates. Any emission coordinate domain
always presents three regions corresponding to the three
non standard Newtonian causal classes. The relativistic
situation is studied in Sec. IV, where one may distin-
guish 103 causal classes of emission coordinates. One
causal class corresponds to luminous signals and is al-
ways causally homogeneous. The remaining 102 causal
classes may be physically constructed using sound sig-
nals. Then, depending on the velocity of the emitted
signal and on the configuration of the emitters, the do-
main of the emission coordinates presents different causal
homogeneous regions. Finally, in Sec. V we present a
discussion of our results and some future perspectives.

II. THE CAUSAL CLASSIFICATION OF
SPACE-TIME COORDINATE SYSTEMS

In this section, we summarize the main results about
the causal classification of Newtonian and relativistic
frames and coordinate systems. The proof of these re-
sults has been presented in references [11, 12].

A. Notion of causal class

In the four-dimensional space-time, the four vectors of
a frame {vA}4A=1 also define six planes ΠAB generated by
the pairs {vA, vB}, A 6= B, and form hyperplanes ΠABC

generated by the triplets {vA, vB , vC}, A 6= B 6= C 6= A;

these last ones are biunivocally determined by the four
orthogonal one forms, θA, whose set constitutes the dual
frame {θA}4A=1 of {vA}4A=1, θA(vB) = δA

B . The set of the
causal characters of these fourteen geometric elements
{vA, ΠAB , θA} is called the causal signature of the frame
and, in an abridged form, it is denoted as {cA, CAB , cA}.
Here, the symbol cA is the causal character of the vectors
vA; CAB , with A < B, is the causal character of the plane
generated by vA and vB ; and cA is the causal character
of the covector θA. Evidently, cA also provides the causal
character of the hyperplane generated by the vectors vB ,
vC and vD which are different from vA.

By definition, the causal class of a frame is the set
of all the frames that have the same causal signature;
and the causal class of a coordinate system {xα}4α=1 in
a causal homogeneous domain of the space-time is the
causal class {cα, Cαβ , cα} of its associated natural (or
coordinate) frame at the events of the domain. The cα’s

are the causal characters of the vectors ∂α ≡ ∂

∂xα
of

the natural frame {∂α} itself, and the cα’s are the causal
characters of the 1-forms dxα of the coframe {dxα}. Four
families of coordinate hypersurfaces are associated with
this coframe, and their mutual intersections give six fam-
ilies of coordinate surfaces whose causal characters are
precisely given by Cαβ (of course, the mutual intersec-
tions of these surfaces give the four congruences of coor-
dinate lines of causal character cα). We have chosen the
following order for the causal characters of a causal class:
{c1c2c3c4, C12C13C14C23C24C34, c1 c2 c3 c4}.

We use the following notation. Roman letters (e, t, l)
denote the causal characters (spacelike, timelike, null)
of vectors and coordinate lines. Capital letters (E, T, L)
denote the causal characters (spacelike, timelike, null)
of the associated planes and coordinate surfaces. And
Italic letters (e, t , l) denote the causal characters (space-
like, timelike, null) of covectors which also allows to de-
termine the causal characters (timelike, spacelike, null
respectively) of the coordinate hypersurfaces.

B. 4 causal classes of Newtonian coordinate
systems

The Newtonian causal structure admits only two
causal characters. Spacelike directions are those defined
by any pair of simultaneous events. Timelike directions
are those defined by pairs of non-simultaneous events
(there is no absolute cone associated with light propa-
gation or with any other physical signal). Consequently,
the study of the causal classification of coordinate sys-
tems in the Newtonian space-time is simpler than the
relativistic one.3

3 To our knowledge, and in spite of its simplicity, the causal clas-
sification of Newtonian coordinates has been first given in [11].
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The Newtonian causal structure is determined by an
exact 1-form θ = dt, called the time current and a rank
three contravariant positive space metric γ∗ satisfying the
orthogonality condition γ∗(θ) = 0. Each hypersurface
t = constant is the loci or space of simultaneous events
at the instant t.

At every event, the causal character of directions,
planes and hyperplanes is given in terms of θ and γ∗

according to the following definitions.
A vector v is spacelike if it is instantaneous with respect

to the time current θ, i.e. if θ(v) = 0. Otherwise, the
vector is timelike.

Correspondingly, a covector ω 6= 0 is timelike if it has
no instantaneous part with respect to the space metric
γ∗, i.e. if γ∗(ω) = 0. Otherwise, the covector ω is space-
like. The sole timelike codirection is that defined by the
current θ at every event, because γ∗ has rank 3.

A r-plane Π is spacelike if every vector v in it is space-
like. Otherwise, Π is timelike, i.e. it contains timelike
vectors.

A r-coplane Ω is timelike if it contains the time current
θ. Otherwise Ω is spacelike.

These notions are also naturally valid for vectors fields
and 1-forms in causal homogeneous regions, and so, they
are obviously extended for curves and surfaces.

The analysis presented in [11] shows that only the fol-
lowing causal signatures

{t e e e, TT TE E E, t e e e}
{t t e e, T TT T TE, e e e e}
{t t t e, TT T TT T, e e e e}
{t t t t, TT TT T T, e e e e}

are admissible by the Newtonian causal structure.
Standard frames, i.e. those constructed with three rods

and one clock at rest with respect to the rods, belong to
the causal class {teee, TTTEEE, teee}. The history of the
clock is a timelike coordinate line. The other coordinate
lines are spacelike straight lines tangent to the rods at
every (clock’s) instant.

Geometrically, this causal class may be visualized as
follows. The natural coframe is of causal type {teee}.
This means that the family of (instantaneous) hyper-
planes generated by the directions of the three rods is
spacelike, and the three families of hyperplanes (each one
being the history of the plane generated by two rods) are
timelike. Then, the mutual cuts of these coordinate hy-
perplanes give the six families of coordinate planes, (three
of them being timelike and the other three being space-
like, {TTTEEE}). The coordinate planes cut in four
congruences of coordinate lines (one being timelike and
the others being spacelike, {teee}).

In [11], we have considered the other three non stan-
dard Newtonian frames, which may be physically con-
structed from a lineal change of the standard inertial syn-
chronization. The Newtonian positioning systems and
their associated emission coordinates provide another

physical example of frames with these, up to now, un-
usual causal signatures (see Sec. III below).

It is to be remarked that the four Newtonian causal sig-
natures also exist in relativity, according with the causal
classification of the Lorentzian frames (see Table I in the
next subsection).

C. 199 causal classes of relativistic coordinate
systems

The relativistic causal structure admits three causal
characters. Directions, planes or hyperplanes at a given
event are spacelike, null or timelike if they are respec-
tively exterior, tangent or secant to the light-cone of this
event.

In Lorentzian geometry, and with the signature (− +
++), a vector a 6= 0 is spacelike, null or timelike if a2 ≡ a·
a is, respectively, positive, zero or negative, a · b standing
for the Minkowski scalar product of a and b. Also, the
plane generated by the vectors a and b is spacelike, null
or timelike if (a∧ b)2 = a2b2 − (a · b)2 is positive, zero or
negative. And finally, the hyperplane generated by a, b
and c is spacelike, null or timelike if (a∧b∧c)2 is positive,
zero or negative, with

(a ∧ b ∧ c)2 =

∣∣∣∣∣∣
a2 a · b a · c

a · b b2 b · c
a · c b · c c2

∣∣∣∣∣∣
.

Now, the space-time metric defines a one-to-one corre-
spondence between vectors and covectors at every event
that obviously allows to define the causal character of
codirections and coplanes. Furthermore, all these point-
like notions are naturally extended to tensor fields and
r-forms on homogeneous causal domains.

In [12] we have obtained the 199 causal signatures com-
patible with a Lorentzian 4-dimensional space-time struc-
ture. They are shown in Table I which provides the causal
classification of the relativistic coordinate systems. The
reading of Table I is as follows.4

1. The first column shows the sets of causal characters
cA of the covectors of the coframe (that also gives
the sets of causal characters of the four hyperplanes
of the frame or of the four families of coordinate
hypersurfaces of a coordinate system). Only 15 sets
are possible, up to permutations [12].

2. The first row shows the sets of causal characters cA

of the vectors of the frame (that also gives the sets

4 The notation used in [12] is lightly different, but completely
equivalent, to the present notation. In [12], the signs (+,−, 0)
stand for the causal characters (spacelike, timelike, null) of the
associated planes and coordinate surfaces, while here they are
denoted by Capital letters (E, T, L) respectively.
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TABLE I: The 199 causal classes of relativistic frames and coordinates (c.f. reference [12]).
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of causal characters of the congruences of coordi-
nate lines of a coordinate system). Only 16 sets
are possible, up to permutations [12].

3. Each non empty (p, q)-cell (1 ≤ p ≤ 15, 1 ≤ q ≤ 16)
shows the set of causal characters CAB of the planes
of vectors of the q-th frame, which corresponds to
the p-th coframe or, correspondingly, the set of
causal characters of the six coordinate surfaces of
a coordinate system.

4. Permutations of the vectors of the frame or of the
covectors of the coframe induce permutations of
the planes and hyperplanes, but do not alter their
causal class. Correspondingly, permutations of the
lines or hypersurfaces of a coordinate system induce
permutations of the coordinate surfaces of the sys-
tem, but do not alter its causal class.

Note that in Table I one must distinguish those
coframes of type {leee} having dual frame of the type
{leee} from those having dual frame of the type {elee}.
These two cases are not causally equivalent. When the
frame is {leee}, the hyperplane generated by the three
spacelike vectors is null, and the null vector of the frame
and the null covector of the coframe have associated, by
the metric, different null directions. When the frame is
{elee}, such a hyperplane is timelike, and the null direc-
tions are metrically equivalent.

For example, a coordinate system whose causal class is
{elee, TEELLE, leee} has associated a family of null coor-
dinate hypersurfaces and three families of timelike hyper-
surfaces. Their mutual cuts give one family of timelike
surfaces, two families of null surfaces and three families
of spacelike surfaces. The intersections of these surfaces
give a congruence of null lines and three congruences of
spacelike lines. In this case, the null vector and the null
covector are metrically identified. This class includes
some particular types of generalized Bondi-Sachs coor-
dinates.5 According to this example, the above distinc-
tion is very relevant to obtain the complete classification
of the generalized Bondi-Sachs coordinates in thirteen
causal classes [22].

Relativistic standard frames have the causal signature
{teee,TTTEEE, teee}. Other familiar relativistic frames
are those constituted by two null vectors and two space-
like ones. Among them, the more popular are those that
belong to the causal class {llee, TLLLLE, llee} (that al-
lows to define the complex Newman-Penrose tetrads).
Usually, such frames are constructed by taking advanced

5 The Bondi-Sachs coordinates [19, 20] were introduced to split
Einstein equations in characteristic form using null hypersur-
faces, in connection with astrophysical scenarios described by
bounded radiating systems and asymptotic flatness. These co-
ordinate systems and their generalizations [21] are very appro-
priated for investigating certain global properties at null infinity.

and retarded null coordinates (u, v) on a family of time-
like surfaces and two angular coordinates (θ, φ) on the
orthogonal (spacelike) surfaces.6

On the other hand, the causal signature of the real null
frames (those constituted by four independent real null
vectors) is {llll,TTTTTT, eeee}. Some time ago, Zeeman
[23] considered real null frames as a useful tool to deter-
mine the causality group of the Minkowski space-time.7
The causal signature associated with real null frames may
be seen as the algebraic dual of the causal signature of the
light emission coordinate systems, {eeee,EEEEEE, llll},
that will be considered in detail in subsection IV B be-
low. Of course, we can also consider Lorentzian frames
constituted by four timelike or four spacelike vectors.8

These examples show the role that the causal classi-
fication of relativistic frames plays in the physical con-
struction of admissible space-time coordinates. However,
it becomes apparent that only a few of causal classes has
been commonly employed until now. In fact, the over-
whelming majority of the relativistic causal classes, ex-
plicitly given in Table I, remains vastly unexplored. This
paper may be seen as a piece to induce the study and
physical construction of these other space-time coordi-
nate systems.

III. NEWTONIAN EMISSION COORDINATES

In this section we deal with the three non-standard pa-
rameterizations of Newtonian space-time domains and we
show that they may be physically constructed by means
of emission coordinates. The corresponding relativistic
situation is addressed in the next section.

A. Emission-inertial coordinate transformation

Suppose an inertial medium in which a class of signals
(sound, light) propagates at constant velocity v. Let κ(t)
be the space-time point-like trajectory of an emitter clock
that uses such signals to continuously broadcast its time

6 Notice that, starting from two null families of coordinate hyper-
surfaces and two timelike ones, that is, from a coframe of the
type {llee}, there exist 14 causal classes of coordinate systems,
different from {llee, TLLLLE, llee}, requiring different physical
constructions (see Table I).

7 Light coordinates [3], those that are built from the intersection of
four beams of light, provide a physical realization of the causal
class {llll, TTTTTT, eeee}.

8 The interest of the wholly symmetric realizations of these frames
was stressed by Derrick [7] and also by Finkelstein and Gibbs
[24]. The causal classification of Lorentzian symmetric frames in
seven causal classes was studied in [8]. More recently, Rovelli [9]
and Blagojević et al. [10] have considered physical constructions
of null symmetric coframes in the context of positioning systems.
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t. In the space-time, the front waves describe thus sound-
cones or light-cones carrying the value t = constant. Four
such emitters κA(t) (A = 1, 2, 3, 4) fill the space-time
with four (one-parameter) families of cones tA = constant
which generically define a space-time system of emission
coordinates.

Let us take every event as the vertex of the past cone of
velocity v corresponding to the signals in question. This
cone cuts the four histories κA(t) of the clocks at the
clock times tA. Then, the set {tA} constitutes the four
emission coordinates of the event.

Here we will consider the simple case of four emitters
at rest with respect to the inertial medium referred to a
standard coordinate system {t, xi} = {t, ~r}, of worldlines

κA(t) = (t,~cA) . (1)

Then, the signal emitted by the clock κA at the instant
tA at velocity v describes in the space-time a cone of
equation

v(t− tA) =
∣∣~r − ~cA

∣∣ , (2)

so that the emission coordinates {tA} are related to the
inertial ones {t, ~r} by

tA = t− 1
v

∣∣~r − ~cA
∣∣ . (3)

To know the causal class of the emission coordinates
{tA} it is convenient to consider the coordinate r-forms.

B. Emission coordinate hypersurfaces

From (3), the coframe of 1-forms {dtA} may be written

dtA = dt + ωA , ωA ≡ −1
v
uA , (4)

where uA is the 1-form associated to the generically unit
spacelike vector ~uA, given by

~uA ≡ ~r − ~cA

|~r − ~cA| , (5)

uA = γ(~uA), γ being the 3-dimensional inverse of the
structure metric γ∗ associated to the inertial observers
∂t , γ.γ∗ = I−θ⊗∂t , and θ being the time current.9 The

9 Note that, while γ∗ is an intrinsic element of the geometry of
Newtonian space-time, its ‘three-dimensional inverse’ γ is an
observer-dependent quantity, given by γ.γ∗ = I − θ ⊗ u, where
u is the unit velocity of the chosen observer. Two different ob-
servers have associated two different degenerate four-dimensional
covariant metrics γ of rank three, although their induced spatial
components on the instantaneous space take the same value, as
it is well experienced in the usual Newtonian three-dimensional
formalism.

Jacobian matrix of the transformation (3) is not defined
at the events (t, ~r) where ~r = ~cA , that is to say, along
the clock worldlines κA. Below we shall see other events
where the Jacobian matrix is not defined. Out of these
worldlines one has ωA 6= 0 and thus dtA is spacelike (it
is not collinear to the time current). Consequently, it
follows.

Proposition 1. The coframe of the Newtonian emission
coordinate system is of causal type {e e e e}.

C. Emission coordinate surfaces

The co-planes of the coordinate system are determined
by the 2-forms

dtA ∧ dtB = dt ∧ (ωB − ωA) + ωA ∧ ωB , (6)

so that the co-plane AB is generically spacelike, and can
be timelike only when ωA∧ωB = 0 , that is to say on the
timelike plane of events ΠAB that contains the worldlines
of κA and κB . Because the clocks are at rest with respect
to the starting inertial system, at any t = constant their
positions κA(t) ≡ A will generically define the four ver-
tices A, B,C, D (all 6=) of a 3-dimensional tetrahedron
(see Fig. 1). Denote by `AB the straight line passing
through A and B and, in it, by iAB the corresponding
open edge of the tetrahedron and by sAB (respect. sBA)
the other open segment contiguous to A (respect. con-
tiguous to B). It is then clear that the timelike plane
ΠAB is the history of the straight line `AB , and we will
denote by IAB the history of iAB , the (timelike) open
strip of ΠAB whose boundaries are κA and κB . Simi-
larly, SAB (respect. SBA) will denote the (timelike) open
strip of ΠAB contiguous to κA (respect. contiguous to
κB). Now we see that the condition ωA ∧ ωB = 0 takes
place along `AB , thus on the events of ΠAB . In addi-
tion, because from (4) all the ωA have same length, one
has ωA = −ωB on iAB , thus on the events of IAB , and
ωA = ωB on the two other open segments sAB and sBA,
thus on the events of SAB and SBA, where one has

dtA ∧ dtB = 0 , (7)

and the coordinate system degenerates. These open
strips of ΠAB , SAB and SBA, are also the half-planes
describing the history of the shadows that the clocks A
and B make respectively to the signals of the clocks B
and A. These considerations on expressions (6) and (7)
show that either all the coordinate coplanes are space-
like, or one of them is timelike, so that, on account of a
general algebraic property10 stated in [11], the following
result occurs.

10 This property says that a r-plane Π is spacelike (resp. timelike)
iff the annihilator coplane ΩΠ ≡ {ω |ω(v) = 0 ∀v ∈ Π} is timelike
(resp. spacelike).
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FIG. 1: At any instant t = constant, the positions κA(t) ≡ A
(A = 1, 2, 3, 4) of the four clocks generically define the four
vertices A, B, C, D (all 6=) of a 3-dimensional tetrahedron. If
the clocks are at rest in an inertial system, the outer open
segments sAB and sBA of the straight line `AB containing the
edge iAB between the vertices A and B represent the shadows
of the signals B and A produced by A and B respectively.

Proposition 2. Generically the type of the coordi-
nate planes of the Newtonian emission coordinates is
{T TT T TT} but on the events of the six timelike strips
IAB , and only on them, the type is {TT TT T E}, the
coordinate system being degenerate on the shadows SAB

and SBA and undetermined on the worldlines κA.

D. Emission coordinate lines

To analyze the coordinate lines of a Newtonian emis-
sion coordinate system, let us consider the dual 3-forms:

dtA ∧ dtB ∧ dtC = ωA ∧ ωB ∧ ωC

+ dt ∧ (
ωA ∧ ωB + ωB ∧ ωC + ωC ∧ ωA

)
.

(8)

The hyperplane of covectors ABC is generically space-
like, and can be timelike only when ωA ∧ ωB ∧ ωC = 0,
which happens on the events of the timelike hyperplane
ΠABC that contains the worldlines κA, κB , κC . In the
stationary 3-dimensional sections t = constant, these
events correspond to the planes `ABC that contain the
three clocks A, B, C, and thus the three lines `AB ,
`BC , `CA, including the tetrahedral faces iABC that their
edges iAB , iBC and iCA delimit, and the six strips sAB ,
sBA, sBC , sCB , sCA, sAC . We already know that, apart
from on the clocks A, B, C themselves, on these last
six strips the coordinate coplanes degenerate; are there
any other events in which the coordinate hyperplanes of
covectors are degenerate? In other words, there where
ωA ∧ ωB ∧ ωC = 0 out of the edges, can the other term
in (8) also vanish? We have:

ωC = αωA + βωB , (9)

so that (8) becomes

dtA ∧ dtB ∧ dtC = (1− α− β)dt ∧ ωA ∧ ωB , (10)

which cannot degenerate, being ωA ∧ ωB 6= 0, unless
α + β = 1. But

1 = (ωC)2 = α2+β2+2αβ(ωA·ωB) = 1+2αβ(ωA·ωB−1),

admits no solution, because α 6= 0 6= β and necessarily
ωA ·ωB < 1. The tangent vectors to the coordinate lines
being at every event causally related to the hyperplanes
by the aforementioned property11 gives the following re-
sult.

Proposition 3. The coordinate lines of the emission
coordinates in Newtonian space-times are generically of
type {t t t t}, but on the events of the timelike hyperplanes
ΠABC containing three emitters they are generically of
type {t t t e}, and are of type {t t e e} on the events of the
timelike strips IAB generated by every pair of clocks.

It is pertinent here to note that, in Newtonian space-
time, the emission coordinate system generated by a po-
sitioning system is never everywhere causally homoge-
neous, but always has three regions corresponding to the
non standard three causal classes. Only the emission
coordinate systems generated by relativistic positioning
systems based on light signals are always causally homo-
geneous, as we will see in the next section.

The geometry of the coordinate surfaces and coordi-
nate lines of the emission coordinates is simple. Because
generated by the two by two or three by three intersec-
tions of the coordinate hypersurfaces, which are isotropic
cones of parallel axes, the coordinate surfaces and coor-
dinate lines of the emission coordinates are hyperboloids
and hyperbolas respectively. As already seen, these hy-
perbolas are generically timelike lines, up to at their base
point, where they become spacelike.

E. Coordinate volume element and Jacobian

As we have seen, the transformation (3) from a stan-
dard inertial coordinate system {t, xi} = {t, ~r} to an
emission coordinate system {tA} is degenerate on the
clock shadows SAB , timelike space-time surfaces gener-
ated by every clock for the signals coming to it from the
others. Thus the question: is transformation (3) degen-
erate at other events than those of the shadows SAB?
To see it, let us consider the emission coordinate volume
element, ηe:

ηe ≡ dtA ∧ dtB ∧ dtC ∧ dtD

= dt ∧ [−ωA ∧ ωB ∧ ωC + ωB ∧ ωC ∧ ωD

−ωC ∧ ωD ∧ ωA + ωD ∧ ωA ∧ ωB ]
= −dt ∧ [

(ωA − ωD) ∧ (ωB − ωD) ∧ (ωC − ωD)
]

.

11 See footnote 10.
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It is then evident that the Jacobian is degenerate, as we
already know, there where ωA = ωB , that is to say, on
the clock shadows SAB , for any pair A 6= B. But, as
the above expression for ηe shows, the Jacobian can be
also degenerate there where the three vectors ωA − ωD

are linearly dependent. It can be seen (for example in
[25]), that this happens on the events where the signals
coming from the four clocks are seen or heard as coming
from four points located on a circle of the celestial sphere
of the event (quotient of the instantaneous space of the
event by the radial distance to the event).

IV. RELATIVISTIC EMISSION COORDINATES

Let us consider now the relativistic analog of the emis-
sion coordinates of the above section. Now, every emitter
κA is supposed to continuously broadcast, in an inertial
non-dispersive medium, their proper time τA by means
of sound or light signals that propagate in the medium
at constant velocity v ≤ 1.

It is to be stressed that, in flat metric, the coordinate
transformation between inertial and light emission coor-
dinates may be obtained for any arbitrarily prescribed
kinematics of the emitters [16, 17]. However, here we
are interested in the study of causal properties and, as
in Sec. III, the four emitters will be considered at rest
with respect to the medium referred to a standard coor-
dinate system {t, xi} = {t, ~r}. The inertial time t is also
the proper time of the four emitters and their worldlines
take the expression (1): κA(t) = (t,~cA) . Then, the equa-
tion of the cones that describe the signals is (2), and the
emission coordinates {tA} are related to the inertial ones
{t, ~r} by (3).

A. Coordinate hypersurfaces, surfaces and lines

To know the causal class of the emission coordinate
system {tA} we can start from the coframe of 1-forms
{dtA} given in (4) and (5), that provide the causal char-
acter of the coordinate hypersurfaces tA = constant. Out
of the clock worldlines κA, where the transformation (3)
is not defined, dtA is spacelike or null because:

(dtA)2 = −1 +
1
v2
≥ 0 (11)

Consequently, we have this statement.
Proposition 4. The coframe of the relativistic emission

coordinate system with v < 1 is of causal type {e e e e}.
When v = 1, the coframe has causal type {l l l l}.

In other words, all the coordinate hypersurfaces of the
relativistic emission coordinates are timelike when v < 1,
and null when v = 1.

The coplanes of the coordinate system are determined
by the 2-forms (6) that satisfy

(dtA ∧ dtB)2 = − 1
v4

(µ2
AB − 2v2µAB + 2v2 − 1), (12)

where

µAB ≡ uA · uB . (13)

Note that µAB is the cosine of the angle between the
signals coming from the emitters A and B. The study of
the polynomial (12) in µAB leads to the following:

Proposition 5. The coplane AB of a relativistic emis-
sion coordinate system is spacelike, null or timelike ac-
cording as µAB is greater, equal or smaller than 2v2 − 1.

The causal character of the planes may be directly
obtained from the dual version of the above statement.
Consequently, the emission coordinate surfaces defined
by constant tA and tB are spacelike, null or timelike ac-
cording to whether µCD is smaller, equal or greater than
2v2 − 1. Now, it is understood that the pairs of indexes
AB and CD are constrained to take complementary pairs
of values (for instance, A = 2, B = 3 and C = 1, D = 4).

To analyze the coordinate lines, let us consider the dual
3-forms (8). We have:

(dtA∧dtB∧dtC)2 =
1
v4

(
1− v2

v2
∆D − ΛD

)
, D 6= A,B, C,

where ∆D and ΛD depend on µAB as:

∆D ≡ (uA ∧ uB ∧ uC)2
= 1 + 2µABµBCµCA − (µ2

AB + µ2
BC + µ2

CA)

ΛD ≡ 2(1− µAB)(1− µBC)(1− µCA) .

From them, we arrive to the following result.
Proposition 6. The hyperplane of covectors ABC of a

relativistic emission coordinate system is spacelike, null
or timelike according as ΛD/∆D is smaller, equal or
greater than (1− v2)/v2.

As a consequence, the dual version of this result says
that the emission congruence of coordinate lines defined
by variable tA and constant tB (with B 6= A) is timelike,
null or spacelike according to whether ΛA/∆A is smaller,
equal or greater than (1− v2)/v2.

B. The 103 causal classes of relativistic emission
coordinates

First, let us consider the light case v = 1. It is clear
that, from (11), we have (dtA)2 = 0 so that the coframe
of the relativistic emission coordinate systems with v = 1
is of causal type {l l l l}. Because the µAB are all smaller
than 1, it follows from Proposition 5 that all the coplanes
are timelike, and consequently all the planes are space-
like, that is CAB = E. On the other hand, ΛA and ∆A

are both positive and then, from Proposition 6, all the
hyperplanes of covectors are timelike, and the cA can-
not but be spacelike, cA = e. This result, obtained for
an inertial homogeneous medium and four static clocks,
may be shown true also for arbitrary clocks in general
space-times [5]. We have thus:
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Proposition 7. All the relativistic positioning systems
with light signals define in their whole domains a sole
causal class, of causal signature

{e e e e , EE E EE E, l l l l} .

These relativistic positioning systems, of great interest
for future space research and navigation, have been con-
sidered elsewhere [4–6, 13–16]. On the other hand, in
order to construct the theory of the current sonic posi-
tioning systems, it is reasonable to think that a Newto-
nian approach suffices (see, for instance, [18]). However,
as we are going to show, the relativistic approach offers
considerable conceptual advantages over the Newtonian
one providing, in addition, new examples of relativistic
causal classes that might be physically constructed.

Now, let us consider the sonic case v < 1. Taking into
consideration the results of subsection IVA (Propositions
4, 5 and 6) we arrive to the following statement.

Proposition 8. The causal classes of the relativistic
emission coordinate systems with v < 1 are of the form:

{c1 c2 c3 c4, C12 C13 C14 C23 C24 C34, e e e e}
where the causal characters, cA, CAB depend on the
cosines µAB of the angles between the signals coming
from the emitters A and B as:

cA =





t
ΛA

∆A
<

1− v2

v2

l
ΛA

∆A
=

1− v2

v2

e
ΛA

∆A
>

1− v2

v2

(14)

CAB =





T µCD > 2v2 − 1
L µCD = 2v2 − 1
E µCD < 2v2 − 1

(15)

with C, D 6= A,B.
A detailed analysis of the compatible characters of the

geometric elements leads us to the following result:
Proposition 9. Depending on the different configura-

tions of the stationary emitters and/or of the different
values of the velocity v < 1, the relativistic emission co-
ordinate systems may present space-time regions of 102
different causal classes.

In fact, the result follows by taking into account the
causal classification of Table I. The compatible causal
characters CAB are explicitly given in the (1, q)-cells with
q 6= 3. In fact, the (1, 3)-cell is empty. The potential sets
CAB in this cell may be (and has been) counted in the
(1, 2)-cell, by virtue of the permutation freedom of the
coframe spacelike characters {e e e e}. For this reason,
both cells in Table I are separated by a dashed vertical
segment.

For same reasons as in the Newtonian case, the co-
ordinate lines of emission coordinates are also hyperbo-
las here. Nevertheless, their causal types differ: in the

Newtonian case every hyperbola is everywhere timelike
except at its base point, where it is spacelike; in the rela-
tivistic case with v < 1 the corresponding point becomes
enlarged to a whole spacelike interval, bounded by two
points where it is null, the rest of the branches being
timelike. In the relativistic case v = 1 the hyperbolas are
spacelike everywhere. Obviously, this fact is on the ba-
sis of the richness (103 causal classes) of the relativistic
positioning systems.

C. Causal signatures with Newtonian analogous

Finally, it is worth mentioning that some emitters con-
figurations and sound velocities v < 1 generate space-
time regions of the same causal signatures that the three
Newtonian ones analyzed in Sec. III. More specifically,
we have this result.

Proposition 10. There are three relativistic causal
classes of emission coordinates with v < 1 which have
Newtonian causal signatures. They are related to how
the events receive the sound signals, according to the fol-
lowing three sets of conditions:

{t t t t, TT TT T T, e e e e} if

∀A,
ΛA

∆A
<

1− v2

v2

{t t t e, TT T TT T, e e e e} if



∃! A,

ΛA

∆A
>

1− v2

v2

∀B 6= A,
ΛB

∆B
<

1− v2

v2

{t t e e, TTT T TE, e e e e} if




for I = A,B,
ΛI

∆I
<

1− v2

v2

∀C 6= A,B,
ΛC

∆C
>

1− v2

v2

µAB < 2v2 − 1

It is easy to find (in Table I) the above causal classes
and also the standard one {teee, TTTEEE, teee}. Of
course, the signatures of these relativistic causal classes
are those of the Newtonian case.

V. COMMENTS AND WORK IN PROGRESS

We have analyzed positioning systems and their as-
sociated emission coordinates from the causal point of
view. Positioning systems in relativity may be of 103
causal classes. Three of them correspond to the three
Newtonian causal classes, and only one of them, the
{eeee, EEEEEE, llll}, corresponds to relativistic posi-
tioning systems based on light signals.
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Thus, the causal classes associated with emission coor-
dinates constitute a broad, but strict, subset of the set of
the 199 causal classes of relativistic coordinates systems
whose main aspects have been summarized.

A point of interest is that the use of emission coordi-
nates shows that one can locate events in the space-time
without any use of the concept of synchronization. Fur-
thermore, positioning systems allow their users to know
their own coordinates (emission coordinates) without de-
lay. From laboratory domains, Earth surface physics or
global navigation systems to space physics, solar sys-
tem or celestial astronomy, positioning systems allow the
explicit construction of the correspondence between the
events of the observable physical world and the points of
its mathematical space-time model in the physical theory
in use.

The ability to take hold of Newtonian space-time with-
out the use of the simultaneity foliation, or any other
synchronization, may seem rather academic. But such
ability in the relativistic space-time seems urgent. Sim-
ply because, in relativity, relative simultaneity synchro-
nizations, be they introduced as an approximate concept
or as an exact one, have neither more nor less physical
reality than the celestial crystal spheres of the Ptolemaic
epicyclic theory.

Such synchronizations are conventional constructions
whose realization in fact demands the a priori knowledge
of (a good number of) the physical quantities that one
usually wants to know. As such constructions, they can
play a role in the ‘a posteriori’ physical interpretation of
some physical quantities, but are unusable as a starting
basis for referring physical observations of an unknown
environment.

The direct confrontation of physicists with their envi-
ronment in order to understand it gravitationally is a ba-
sic problem yet unsolved in relativity. Such a confronta-
tion needs a locating structure that, in order to not to
chase its own tail, should be constructed before the gravi-
tational properties are measured. As analyzed elsewhere
(see, for example, [4–6, 13–17]) this locating structure is
constituted by the relativistic positioning systems broad-
casting light signals in vacuum.
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