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We show that Petrov type I vacuum solutions admitting a Killing vector whose
Papapetrou field is aligned with a principal bivector of the Weyl tensor are the
Kasner and Taub metrics, their counterpart with timelike orbits and their associated
windmill-like solutions, as well as the Petrov homogeneous vacuum solution. We
recover all these metrics by using an integration method based on an invariant
classification which allows us to characterize every solution. In this way we obtain
an intrinsic and explicit algorithm to identify them. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2363258�

I. INTRODUCTION

If � is a Killing vector, the Killing 2-form �� is closed and, in the vacuum case, it is a solution
of the source-free Maxwell equations. Because this fact was pointed out by Papapetrou,1 the
covariant derivative �� has also been called the Papapetrou field.2 In the Kerr geometry the
principal directions of the Killing 2-form associated with the timelike Killing vector coincide with
the two double principal null �Debever� directions of the Weyl tensor.2 This means that the Killing
2-form is a Weyl principal bivector. This fact has been remarked upon by Mars3 who has also
shown that it characterizes the Kerr solution under an asymptotic flatness behavior.

A question naturally arises: can all the vacuum solutions with this property of the Kerr metric
be determined? In other words, is it possible to integrate Einstein vacuum equations under the
hypothesis that the spacetime admits an isometry whose Killing 2-form is a principal bivector of
the Weyl tensor? Some partial results are known about this question. Thus, we have studied the
case of Petrov type D spacetimes elsewhere4 and we have shown that the Kerr-NUT solutions are
the type D vacuum metrics with a timelike Killing 2-form aligned with the Weyl geometry.

Metrics admitting an isometry were studied by considering the algebraic properties of the
associated Killing 2-form,5,6 and this approach was extended to the spacetimes with an homothetic
motion.7,8 More recently Fayos and Sopuerta2,9 have developed a formalism that improves the use
of the Killing 2-form and its underlined algebraic structure for analyzing the vacuum solutions
with an isometry. They consider two new viewpoints that permit a more accurate classification of
these spacetimes: �i� the differential properties of the principal directions of the Killing 2-form,
and �ii� the degree of alignment of the principal directions of the Killing 2-form with those of the
Weyl tensor. The Fayos and Sopuerta approach uses the Newman–Penrose formalism and several
extensions have been built for homothetic and conformal motions10,11 and for nonvacuum
solutions.12
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Some of the conditions on the Killing 2-form imposed in the literature quoted above could be
very restrictive. Thus, in a previous paper13 we have shown that the Petrov type I vacuum space-
times admitting an isometry whose Killing 2-form is aligned with a Weyl principal bivector belong
to two classes of metrics which admit a three-dimensional group of isometries of Bianchi types I
or II. In the present work we show that a close relation between the Weyl principal directions and
the isometry group exists in these classes. This fact allows us to achieve an integration of the
vacuum equations with the aid of an invariant classification and, in this way, to obtain an intrinsic
and explicit characterization of all the Petrov type I vacuum solutions that admit an aligned
Papapetrou field. It is worth remarking that the integration method used here could be suitable in
order to obtain other type I solutions.

The vacuum homogeneous Petrov solution14 was found to be the only one satisfying: �i�
vacuum, and �ii� existence of a simply transitive group G4 of isometries. Although these two
conditions characterize the Petrov metric, it is quite difficult to know when a metric tensor �given
in an arbitrary coordinate system� satisfies them. Indeed, the first condition is intrinsic because it
imposes a restriction on a metric concomitant, the Ricci tensor. Nevertheless, the second one
imposes equations that mix up, in principle, elements other than the metric tensor �Killing vectors
of the isometry group� and, consequently, it cannot be verified by simply substituting the metric
tensor. In Ref. 13 we have changed this last nonintrinsic condition for an intrinsic one: the Weyl
tensor is Petrov type I with constant eigenvalues. Moreover, as the Ricci and Weyl tensors are
concomitants of the metric tensor, Ric�Ric�g�, W�W�g�, we have finally obtained the following
intrinsic and explicit characterization of the Petrov solution:13 the necessary and sufficient condi-
tions for g to be the Petrov homogeneous vacuum solution are

Ric = 0, 6�TrW 2�3 � �TrW 3�2, dTrW 2 = dTrW 3 = 0. �1�

A whole intrinsic and explicit characterization of a metric or a family of metrics is quite
interesting from a conceptual point of view and from a practical one because it can be tested by
direct substitution of the metric tensor in arbitrary coordinates. Thus, it is an approach to the
metric equivalence problem alternative to the usual one. This and other advantages have been
pointed out elsewhere15 where this kind of identification has been obtained for the Schwarszchild
spacetime as well as for all the other type D static vacuum solutions. A similar study has been
fulfilled for a family of Einstein–Maxwell solutions that include the Reissner–Nordström metric.16

In order to obtain intrinsic and explicit characterizations, as well as having an intrinsic label-
ling of the metrics, we need to express these intrinsic conditions in terms of explicit concomitants
of the metric tensor. When doing this, the role played by the results on the covariant determination
of the eigenvalues and eigenspaces of the Ricci tensor17 and the principal 2-forms and principal
directions of the Weyl tensor18,19 is essential.

In this work we solve vacuum equations under the hypothesis that the spacetime is Petrov type
I and there is a Killing vector whose associated Papapetrou field is a eigenbivector of the Weyl
tensor. In this way, we recover the Petrov homogeneous vacuum solutions as well as the Kasner
and Taub metrics, their counterpart with timelike orbits and their associated windmill-like solu-
tions. Our integration method is based on an invariant classification which allows us to character-
ize the solutions intrinsically and explicitly. For every solution some properties of the isometry
group and the aligned Killing 2-forms are given in terms of the Weyl principal directions.

The article is organized as follows. In Sec. II we present the Cartan formalism adapted to the
Weyl principal frame that a Petrov type I spacetime admits. In Sec. III we summarize some results
needed here about type I vacuum metrics admitting aligned Papapetrou fields. In Sec. IV we write
vacuum Einstein equations for the families of Petrov type I metrics that, having a nonconstant
Weyl eigenvalue, admit aligned Papapetrou fields. Sections V and VI are devoted to integrate
these equations in different invariant subcases, as well as to determine, for every solution, the
Killing vectors with an aligned Killing 2-form. In Sec. VII we present a similar study when all the
Weyl eigenvalues are constant. Finally, in Sec. VIII, we summarize the results in an algorithmic
form in order to make the intrinsic and explicit character of our results evident.
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II. CARTAN FORMALISM IN THE WEYL FRAME OF A TYPE I SPACETIME

The algebraic classification of the Weyl tensor was first tackled by Petrov20 considering the
number of the invariant subespaces of the Weyl tensor regarded as an endomorphism of the
2-forms space. This classification was completed by Géhéniau21 and Bel22 considering also the
eigenvalue multiplicity. In this framework appears the notion of Weyl principal bivector that we
use here and which was widely analyzed by Bel23 for the different algebraic types. In the 1960s
many other authors presented alternative approaches to this classification, and in more recent
studies19,24 a wide bibliography on this subject can be found. For short, we refer the different
classes of the Weyl tensor as the Petrov types. An algebraically general Weyl tensor is Petrov type
I.

In a Petrov type I spacetime the Weyl tensor W determines four orthogonal principal direc-
tions which define the Weyl principal frame �e��.19,23 Then, the bivectors �self-dual 2-forms� Ui

= 1��2 �Ui− i*Ui�, with Ui=e0∧ei, are eigenbivectors of the self-dual Weyl tensor W= 1 � 2 �W
− i*W�, * being the Hodge dual operator. These bivectors satisfy 2Ui�Ui=g, where � denotes the
contraction of adjacent index in the tensorial product. The tern �Ui� constitutes an orthonormal
frame in the bivector space which has the induced orientation given by

Ui � U j = −
i

�2
�ijkUk, i � j . �2�

If �i is the eigenvalue associated with the eigenbivector Ui, the self-dual Weyl tensor takes the
canonical form

W = − 	
i=1

3

�iUi � Ui. �3�

The Cartan formalism can be referred to the Weyl principal frame �e�� or, equivalently, to the
frame of eigenbivectors �Ui�. So, the six connection 1-forms ��

� defined by �e�=��
�

� e� can be
collected into three complex ones �i

j ��i
j =−� j

i�, and the first structure equations take the expres-
sion

�Ui = �i
j

� U j, �i
j = �i

j − �ijk�0
k . �4�

The second structure equations for a vacuum type I spacetime follow by applying the Ricci
identities ��������Ui�	=Ui�


R
	��+Ui



	 R
���, and in terms of the eigenbivectors �Ui� they can be
written as

d�i
k − �i

j ∧ � j
k = i�2�ikm�mUm. �5�

If we make the product of each of these second structure Eq. �5� with Um we can obtain the
following three complex scalar equations:

� · �i = �i
2 − �� j − �k�2 − �i �i, j,k � � , �6�

where �i=−Ui�� ·Ui�, and we have denoted � · �Tr� and �i
2=g��i ,�i�. The three complex

1-forms �i contain the 24 independent connection coefficients as the �i
j do. In fact, by using Eq.

�2� and the first structure Eqs. �4�, both sets ��i
j� and ��i� can be related by

�i � − Ui�� · Ui� = −
i

�2
�ijkUk��i

j� . �7�

And the inverse of these expressions say that for different i , j ,k,
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Uk��i
j� =

i
�2

�ijk��i + � j − �k�, �i, j,k � � . �8�

The Bianchi identities in the vacuum case state that the Weyl tensor is divergence-free � ·W=0,
and from Eq. �3� they can be written as

d�i = �� j − �k��� j − �k� − 3�i�i �i, j,k � � . �9�

Equations �9� show the relation that exists between the gradient of the Weyl eigenvalues and
the 1-forms �i in the vacuum case. This fact has suggested a classification of Petrov type I
spacetimes taking into account the dimension of the space that ��i� generate. More precisely,13

Definition 1: We say that a Petrov type I spacetime is of class Ia �a=1,2 ,3� if the dimension
of the space that ��i� generate is a.

Differential conditions of this kind were imposed by Edgar25 on the type I spacetimes, and he
showed that in the vacuum case his classification also has consequences on the functional depen-
dence of the Weyl eigenvalues. We have slightly modified the Edgar approach in order to obtain a
classification that is symmetric in the principal structures of the Weyl tensor. We remark the
invariant nature of this classification: it is based on the vector Weyl invariants �i.

We have been studied elsewhere the symmetries of the vacuum metrics of class I1 and we
have shown:13

Lemma 1: A vacuum metric of class I1 admits at least a �simply transitive� group G3 of
isometries. It admits a G4 if, and only if, it has constant eigenvalues.

III. ALIGNED KILLING 2-FORMS AND TYPE I VACUUM METRICS

If � is a �real� Killing vector its covariant derivative �� is named Killing 2-form or Papapetrou
field.1,2 The Papapetrou fields have been used to study and classify spacetimes admitting an
isometry or an homothetic or conformal motion �see Refs. 2–12�. In this way, some classes of
vacuum solutions with a principal direction of the Papapetrou field aligned with a �Debever� null
principal direction of the Weyl tensor have been considered.9 Also, the alignment between the
Weyl principal plane and the Papapetrou field associated with the timelike Killing vector has been
shown in the Kerr geometry.3,9

Is it possible to determine all the vacuum solutions having this property of the Kerr metric?
Elsewhere4 we give an affirmative answer to this question for the case of Petrov type D spacetimes
by showing that the type D vacuum solutions with a timelike Killing 2-form aligned with the Weyl
geometry are the Kerr-NUT metrics. In this work we accomplish this study for the Petrov type I
spacetimes by obtaining all the vacuum solutions with this property and by determining the Killing
vectors with an aligned Killing 2-form. Moreover, we show the close relation between the Weyl
tensor geometry and the geometries of � and ��.

In order to clarify what kind of alignment between the Killing 2-form and the Weyl tensor is
analyzed in this work we give the specific definition. If �Ui� is an orthonormal basis of the
self-dual 2-forms space, the Papapetrou field �� associated to a Killing vector � has, generically,
three independent complex components �i:

�� = 	
i=1

3

�i Ui + 	
i=1

3

�̃i Ũi �10�

where ~ means complex conjugate. Then:
Definition 2: We say that a Papapetrou field �� is aligned with a bivector U if both 2-forms

have the same principal 2-planes, that is, ��=�U+�̃Ũ.
We say that a Papapetrou field �� is aligned �with the Weyl tensor� if it is aligned with a Weyl

principal bivector.
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When a Killing 2-form is aligned with a bivector of an orthonormal frame of invariants
bivectors Ui, the Killing vector is strongly restricted by the connection 1-forms. Thus, for type I
metrics we have:13

Lemma 2: In a Petrov type I spacetime with a Killing vector �, the Papapetrou field �� is
aligned with a Weyl principal 2-form Ui if, and only if, � is orthogonal to the two complex
connection 1-forms �i

j (defined by the Weyl principal frame �Ui�).
The alignment between a Killing 2-form and a Weyl principal bivector of a type I vacuum

solution has been partially analyzed13 and the following necessary condition has been obtained:
Lemma 3: A vacuum Petrov type I spacetime which admits a Killing field with an aligned

Papapetrou field belongs to class I1.
As a consequence of Lemmas 1 and 3, we obtain that a vacuum Petrov type I spacetime which

admits a Killing field with an aligned Papapetrou field admits, at least, a three-dimensional group
of isometries. This means that a unique symmetry with an aligned Papapetrou field implies that
other symmetries exist.

These results imply that in order to find all the type I vacuum solutions admitting an aligned
Papapetrou field, we must analyze the vacuum solutions of class I1. We shall start with the case
where a non constant eigenvalue �1 exists. After that we shall finish by dealing with the case of all
the eigenvalues being constant.

IV. VACUUM EQUATIONS FOR THE CLASS I1

As we know that every vacuum solution of class I1 admits a �simply transitive� G3 group of
isometries, a real function  exists such that �i��i��. Moreover, as we are in class I1, it must be
�i∧� j =0 and so, from Bianchi identities �9�, we obtain �i∧d�1=0. So, taking into account Eq. �7�
and that a G3 is admitted, three functions �i�� exist such that

�i
j = i�ijk�kUk�d� . �11�

On the other hand, it has also been shown in Ref. 13 that d�1 cannot be a null vector and so,
�d�2�0. Thus, �d ,ui�, with ui=Ui�d�, is an orthogonal frame such that 2�ui�2=−�d�2. Then, we
can write the bivectors �Ui� as

Ui = −
1

�d�2
d ∧ ui +
i

�2
�ijku

j ∧ uk� . �12�

We can use this expression to eliminate Ui in the second structure Eqs. �4� and then they become
an exterior system for the orthonormal frame �d ,ui�,

dui = 
i��d ∧ ui + �i��uj ∧ uk �13�

for every cyclic permutation i , j ,k, and where the functions 
i and �i are given by


i = − �ln �i�� +
�2�i

�i�d�2 , �i = − i
 2�i

�i�d�2 +
� j�k

�i
� , �14�

where � stands for the derivative with respect to the variable . But d is proportional to the
invariant 1-form d�1 and a G3 exists. Thus, it follows that �d�2 and � depend on . This fact
allows us to choose  such that �=0. Then,  is fixed up to an affine transformation ��
+�. In terms of this harmonic function, the Eqs. �6� become

��� j + �k�� − �2� j�k��d�2 = 2�2�i �15�

for every cyclic permutation of i , j ,k. The Bianchi identities �9� can be stated as

�1� =
1
�2

��3��2 − �1� − �2�2�1 + �2��, �2� =
1
�2

��3��1 − �2� − �1��1 + 2�2�� . �16�
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At this point, it is clear that the integration of the system �13� depends strongly on the number
of the ui=Ui�d� that are integrable 1-forms. Thus, it seems suitable to give a classification of type
I1 spacetimes that takes into account these restrictions. But these conditions lead to an invariant
classification because of ui is proportional to Ui�d�1�:

Definition 3: We will say that a Petrov type I1 vacuum metric with d�1�0 is of class I1A

�A=0,1 ,2 ,3� if there are exactly A integrable 1-forms in the set �Ui�d�1��.
We have studied elsewhere13 the symmetries that the different classes I1A admit, as well as

necessary conditions for the alignment of the associated Killing 2-forms with the Weyl tensor.
Here we will make use of the following result:

Lemma 4: If a vacuum Petrov type I spacetime admits a Killing field with an aligned Papa-
petrou field then either it is the Petrov solution �that has constant eigenvalues� or it is of class I12

or I13. These classes admit an isometry group G3 of Bianchi types II and I, respectively.
Thus, in order to find the vacuum solutions with aligned Papapetrou fields, we must consider

the Petrov solution that admits a G4 or the classes I12 and I13. Now we obtain the vacuum solutions
for these two classes with non constant eigenvalues. To accomplish this goal, we will integrate the
Bianchi identities �16� and the scalar Eqs. �15� taking into account that in class I13 all the functions
�i given in Eq. �14� are zero and two of them vanish in class I12. Finally, the second structure Eqs.
�13� will be integrated to obtain the 1-forms ui in terms of real coordinates. After that, the metric
tensor will be obtained as

g =
1

�d�2�d � d − 2	
i=1

3

ui
� ui �17�

It is worth pointing out that in the spacetimes of type I1 that we are studying here there exist
two outlined coframes, namely, the Weyl principal coframe ���� and that defined by �d ,ui�. We
will see in following sections the close relation between both coframes for the spacetimes in
classes I12 and I13. This fact allows us to give intrinsic conditions that label every type I vacuum
solution admitting an aligned Papapetrou field.

V. VACUUM SOLUTIONS OF CLASS I13

In class I13 all of the 1-forms ui are integrable. Then Eqs. �13� hold with �i=0. Taking into
account Eq. �14�, we can solve the Eqs. �15� and �16� to obtain

�1 = be2a�, �2 = k�1, �d�2 =
be2a�

a2k�k + 1�
, �18�

�3 = �2ka, �2 = − �2a�k + 1�, �1 = − �2k�k + 1�a , �19�

where a, b and �=1+k+k2 are nonzero constants and k is different from 1, −2, and −1 � 2 because
g is not of Petrov type D, and different from −1 and 0 because none of the Weyl eigenvalues
vanishes as a consequence of the Szekeres–Brans theorem.26,27 The second structure Eqs. �13�
constitute an exterior system for the 1-forms ui�Ui�d�. It implies that three complex functions
�xi� exist such that

u1 = eadx1, u2 = eak2dx2, u3 = ea�1 + k�2dx3. �20�

From here and Eq. �17�, we can obtain the metric tensor g in complex coordinates. In order to get
real coordinates, another fact is needed. As  is a real function, it follows that d, �d�2 and �d
must also be real. If we compute �d by using Eqs. �17�–�19� we obtain that, necessarily, either all
of the coefficients are real and d coincides with one of the principal directions ��, or two of the
coefficients are conjugate and d takes the direction of one of the bisectors � i±� j of a spacelike
principal plane. We shall analyze every case, but we must take into account that as d∧d�1=0,
these conditions can also be written in terms of the Weyl eigenvalue.
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A. d�1 Is a Principal Direction

In this case a and k are real constants. We must remark that if d is a principal direction, then
ui�Ui�d� are so. But when d coincides with the timelike principal direction �0, every ui is a real
direction and, if d is a spacelike principal direction, some of them are purely imaginary. Now we
will analyze each case in detail.

(i) Case d�1∧�0=0. We have d=e0���0. Then ui= �1/�2�e0��� i, and so dxi of Eq. �20� are
real. If we take into account that the harmonic coordinate  is defined up to affine transformation,
the metric tensor �17� in real coordinates takes the form of the Kasner metric

g = − e−2d2 + e2�1/�−1��dx1�2 + e2�k2/�−1��dx2�2 + e2���1 + k�2/��−1��dx3�2. �21�

The coordinate transformation e−= t changes the harmonic time to the proper time and gives us
the usual expression for this solution.24,28

We must check whether there is a Killing field with an aligned Papapetrou field. We have
established13 that this condition is equivalent to a Killing field to be orthogonal to two of the
complex connection 1-forms �i

j �see Lemma 2�. The real Killing fields of this metric are �
=k1�x1 +k2�x2 +k3�x3. As the connection 1-forms �i

j are collinear with ui it follows that every
Killing field �i satisfies this condition, and so, we have three Killing fields such that their Papa-
petrou fields are aligned with the three principal 2-forms.

(ii) Case d�1∧�1=0. Now, d=e1���1, and so �d�2�0. In order to get real coordinates we
must take into account that in this case �2u1=−e1���0, �2u2= ie1���3 and �2u3= ie1���2. And
so, the coordinates adapted to u2 and u3 are purely imaginary xa=iya �a=2,3�, ya being real
functions. Then, for the metric tensor g we get a similar expression to the one in the previous case,
the only change being the causal character of the gradient of the Weyl eigenvalue

g = e−2d2 − e2�1/�−1��dx1�2 + e2�k2/�−1��dy2�2 + e2���1 + k�2/��−1��dy3�2. �22�

This is the static Kasner metric.24

This solution admits three Killing fields �x1, �y2, and �y3 such that their Papapetrou fields are
aligned with the three principal bivectors of the Weyl tensor. This finishes the study of the cases
in which the gradient of the invariant �1�� is collinear with a principal direction of the Weyl
tensor. The following proposition summarizes the main results.

Proposition 1: The Kasner metrics �21� and �22� are the only Petrov type I13 vacuum solutions
where the gradient of the Weyl eigenvalue is a principal direction of the Weyl tensor.

The metrics of this family admit three Killing fields �i which are collinear with the three
principal directions Ui�d�1�, such that their Papapetrou fields ��i are aligned with the three
principal bivectors Ui of the Weyl tensor.

B. d�1 Is Not a Principal Direction

As we have commented below, in this case d must take the direction of one of the bisectors
of a spacelike principal plane, say �2+�3, d��2+�3. Then, u1��3−�2, u2��0+i�1 and u3��0

−i�1. Moreover, �d is real if, and only if, a is real and 2k=−1+in, n being a nonzero real
constant because the metric is not of type D and n2�3 because � cannot be zero. Then, the
coordinate x1 of Eq. �20� must be purely imaginary, x1= ix, and x2 and x3 must be conjugated
functions, that is x2=y− iz, x3=y+ iz. Thus we get a real coordinate system � ,x ,y ,z� and, from
Eq. �17�, we find the following expression of the metric tensor:

g =
1

4
�3 − n2�2e�1/2��3−n2�d2 + e−�1/2��1+n2�dx2 + e�cos�n��dz2 − dy2� − 2 sin�n�dydz� .

�23�

This is the so called windmill solution.24,29
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To see if an aligned Killing 2-form can exist in this spacetime, we must look for a Killing field
to be orthogonal to two of the connection 1-forms. The Killing fields of this solution are �
=k1�x+k2�y +k3�z and, as every connection 1-form is parallel to one of the directions ui, the only
Killing field which is orthogonal to a pair of connection 1-forms is �x, that can be characterized as
the Killing field that takes the direction of the bisector �2−�3. Moreover, the Weyl tensor has just
a real eigenvalue �1 and if U1 is the associated eigenbivector, then U1�d�1� is collinear with the
Killing field �x. We can collect these results in the following:

Proposition 2: The windmill solution �23� is the only Petrov type I13 vacuum solution where
the gradient of the Weyl eigenvalue �1 is not a principal direction of the Weyl tensor.

In such spacetime a unique real eigenvalue �1 exists. Then, if U1 is the associated eigenbivec-
tor, the field U1�d�1� is collinear with a Killing field that has a Papapetrou field aligned with U1.

VI. VACUUM SOLUTIONS OF CLASS I12

Let us suppose now that only two directions, let us say u2 and u3, are integrable. So, we can
take �2=�3=0 in the second structure Eqs. �13�. Taking into account the definition of �i from Eq.
�14� we obtain

�3 =
k
�2

− �1, �2 =
a2

�2k
− �1, �1 =

a
�2

be−a + 1

be−a − 1
, �24�

where a, b, and k are complex constants, a2�k2. Then, by also using the Bianchi identities �16�
we obtain

�d�2 =
− 2�2c

a
e−��a2+ak+k2�/k��b2e−2a − 1�−1, �25�

where c is another complex constant.
As in the previous section, the only possibilities for �d to be real are that either d is a

principal direction �� or it is the bisector � i+� j of a spacelike principal plane.

A. d�1 Is a Principal Direction

In this case we have that k, a2 and �3� /�3−�2�3 are real. From Eq. �24� we obtain

�3�

�3
− �2�3 = − a

b2 + e2�2

b2 − e2�2
. �26�

So we can conclude that a and b2 must be real constants. Now we shall go on the integration of
Eq. �13�. As in the previous section it will be useful to distinguish the cases of d to be the
timelike principal direction �0 or a spacelike principal direction � i. We will study these cases
separately.

(i) Case d�1∧�0=0. Here we have d=e0���0, and so ui must be real for every i. Conse-
quently, if we take into account Eq. �13� with �2=�3=0, real coordinates �x ,y ,z� can be found
such that

u2 =
e−�k/2�

�2
dx, u3 =

e−�a2/2k�

�2
dy, u1 = −

i�2abe−a

b2e−2a − 1
e−��a2+k2�/2k��dz + xdy� . �27�

As u1 is real, we find that b is purely imaginary, b=−i�. Then, from Eq. �25� we can calculate
�d�2, and taking into account the freedom of an affine transformation in choosing the harmonic
coordinate , we can take �=1 and we can write the metric in the usual form of the Taub30 metric

g =
cosh�a�

a
�− e��a2+k2�/k�d2 + e�a2/k�dx2 + ekdy2� +

a

cosh�a�
�dz + xdy�2. �28�
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To see if a Killing field with an aligned Papapetrou field exists, we must look for a Killing
field which is orthogonal to two of the connection 1-forms. The Killing fields of the Taub metric
�28� are �=k1�x+k2�y + �k3−k1y��z and, taking into account that the connection 1-forms �i

j are
collinear with uk, from Eq. �27� we find that the only Killing field that is orthogonal to a pair of
connection 1-forms is �=�z, and it is orthogonal to �1

2 and �1
3. So, the principal 2-form aligned

with a Papapetrou field is U1, and it is characterized by the fact that U1�d� is not integrable.
(ii) Case d�1∧�1=0. Now, d=e1���1 and we have �2 u1=−e1���0, �2u2= ie1���3 and

�2 u3= ie1���2. So, we can consider real coordinates �x ,y ,z� such that

u2 =
ie−�k/2�

�2
dx, u3 =

ie−�a2/2k�

�2
dy, u1 =

− �2�ae−a

�2e−2a + 1
e−��a2+k2�/2k��dz − xdy� . �29�

Then, the same analysis of the previous case leads to the counterpart with timelike orbits of the
Taub metric24

g =
cosh�a�

a
�e��a2+k2�/k�d2 + e�a2/k�dx2 + ekdy2� −

a

cosh�a�
�dz − xdy�2. �30�

The same property of the Taub metric concerned with the aligned Papapetrou fields holds in
this case. We can summarize these results for the case that d�1 is collinear with a principal
direction in the following:

Proposition 3: The Taub metric �28� that has spacelike orbits, and its counterpart with timelike
orbits �30� are the only type I12 vacuum solutions where the gradient of the Weyl eigenvalue �1 is
collinear with a principal direction of the Weyl tensor.

Both metrics admit a principal 2-form Ui such that Ui�d�1� is not integrable. Then, the Killing
field collinear with Ui�d�1� is the only one whose Papapetrou field is aligned �with the principal
2-form Ui�.

B. d�1 Is Not a Principal Direction

In this case d must take the direction of one of the bisectors of a spacelike principal plane,
say �2+�3, d��2+�3. Then, a similar analysis to the one in the previous cases, leads to the metric

g = e2m� cosh�a�
a

d2 +
a

cosh�a�
e−2m�dz − udv�2 +

cosh�a�
a

e−m�cos�n��dv2 − du2�

− 2 sin�n�dudv� , �31�

where a2=m2+n2, n�0. This is an equivalent windmill-like metric for the Taub solution.
The real Killing fields of this metric in the previous coordinate system are �=k1�u+k2�v

+ �k1v+k3��z. As the complex connection 1-forms �i
j are collinear with uk�Uk�d�, we conclude

that there is only one Killing field �z which is orthogonal to two connection 1-forms, more
precisely, to �1

2 and �1
3. So, this Killing field has a Papapetrou field which is aligned with the

principal bivector U1. We summarize these results in the following:
Proposition 4: The metric �31� is the only vacuum solution of class I12 where the gradient of

the Weyl eigenvalue �1 is not a Weyl principal direction.
This solution admits a principal 2-form Ui such that Ui�d�1� is not integrable. Then, the

Killing field collinear with Ui�d�1� is the only one whose Papapetrou field is aligned �with the
principal 2-form Ui�.

VII. TYPE I VACUUM SOLUTIONS WITH CONSTANT EIGENVALUES

Elsewhere13 we have shown that the only Petrov type I vacuum solution with constant eigen-
values is the homogeneous Petrov solution.14,24 In real coordinates this metric writes as
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k2g = dx2 + e−2xdy2 + ex�cos�3x�dz2 − dt2� − 2 sin�3xdzdt� . �32�

The eigenvalues of this metric are proportional to the three cubic roots of −1, �i=k2�3 −1. So, a real
eigenvalue, let us say �3, exists. From the metric expression �32� we get that �1

3∧U1��1
2�=0 and

�2
3∧U2��1

2�=0. Moreover, a straightforward calculation shows that dx takes the direction of one of
the bisectors of the plane *U3, dx=e1�x���1+�2�, and that the complex connection 1-forms �i

j are
given by

�1
2 = e−xdy, U3��1

2� = −
i

�2
dx ,

U1��1
2� =

1

2
e�1/2��1+i�3�x�dt − idz�, U2��1

2� =
1

2
e�1/2��1−i�3�x�dt + idz� .

The Killing fields of this solution are ��t ,�z ,�y ,�x+y�y + 1 � 2 ��3t−z��z− 1 � 2 �t+�3z��t� and so, it
easily follows:

Proposition 5: The Petrov homogeneous vacuum solution �32� admits just a Killing field such
that its Papapetrou field is aligned with a principal bivector. If �3 is the real eigenvalue, this
Killing field is proportional to �1

2 and its Papapetrou field is aligned with U3.

VIII. SUMMARY IN ALGORITHMIC FORM

In this article we have found all the Petrov type I vacuum solutions admitting a Killing field
whose Papapetrou field is aligned with a principal bivector of the Weyl tensor. We knew13 that
these solutions admit either a simply transitive group G4 of isometries and then the metric must be
the homogeneous Petrov solution �32�, or a simply transitive G3 group of isometries and then the
spacetime belongs to one of the classes I13 and I12 in definition 3. Here we have shown that these
necessary conditions given in Ref. 13 are also sufficient conditions.

The solutions can be characterized by a condition on the normal direction to the orbits group:
for class I13, �i� if it is a timelike principal direction we reach the Kasner metric �21�, �ii� if it is a
spacelike principal direction we reach the static Kasner metric �22�, and �iii� if it is not a principal
direction we obtain the windmill Kasner metric �23�; for class I12, under similar conditions, we
obtain �i� the Taub metric �28�, �ii� the timelike counterpart of the Taub metric �30�, and �iii� the
windmill-like metric for the Taub solution �31�.

It is worth pointing out that the integration procedure is based on intrinsic conditions imposed
on algebraic and differential concomitants of the Weyl tensor. On the other hand, these Weyl
invariants can be obtained directly from the components of the metric tensor g in arbitrary local
coordinates and without solving any equations.18,19 Consequently, we get an intrinsic and explicit
labeling of every solution �similar to that given for the Petrov metric in Ref. 13�. Table I summa-
rizes these results and enables us to obtain the directions of the Killing fields having aligned
Papapetrou field. In the table we find the Weyl tensor invariants

�i � �i�g�, �� � ���g�, Ui � Ui�g� , �33�

�i � �i�g� = − Ui�� · Ui� , �34�

N � N�g�, number of integrable directions in the set �U j�d�i�� . �35�

The metric concomitants �33� are, respectively, the Weyl eigenvalues �i�g�, the Weyl principal
coframe ���g� and the unitary Weyl principal bivectors Ui�g�. The explicit expressions of these
Weyl invariants in terms of the Weyl tensor can be found elsewhere.18,19
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Finally, to underline the intrinsic nature of our results we present a flow diagram that charac-
terizes, among all the type I vacuum solutions, those having an aligned Papapetrou field. This
operational algorithm can be useful from a computational point of view and also involves the Weyl
invariants �33�–�35�.

TABLE I. Type I vacuum solutions with aligned Papapetrou fields.

SOLUTION
Intrinsic characterization

�i∧� j =0, Ric=0
Killing vectors with

aligned Papapetrou field

Kasner �21� d�1�0, N=3
d�1∧�0=0 �i�Ui�d�1� , i=1,2 ,3

Kasner �22� d�1�0, N=3
d�1∧� j =0 for some j

��i aligned with Ui

Windmill �23� d�1�0, N=3
d�1∧���0 ∀�

∃ ! �i0
real, ��Ui0

�d�1�
�� aligned with Ui0

Taub �28� d�1�0, N=2
d�1∧�0=0

Taub �30� d�1�0, N=2
d�1∧� j =0 for some j

∃ ! i0 /Ui0
�d�1� is not integrable
��Ui0

�d�1�
�� aligned with Ui0

Windmill �31� d�1�0, N=2
d�1∧���0 ∀�

Petrov �32� d�i=0 ∀ i
∃ ! �3 real, ���1

2

�� aligned with U3
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