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Abstract

Local inverse questions for Newtonian gravitation remain unanswered.
Restricted to one particle, these questions are: i) What are the local neces-
sary and sufficient conditions for an acceleration field to be the force field
of a sole point particle?, and ii) What are the mass and the position of
the particle corresponding to such an acceleration field? Their answer is
given for both, inertial and accelerated observers. For the last ones, this
is made through a characterization of inertial acceleration fields. The
results are covariant , intrinsic and constructive, i.e., they are coordinate-
free, expressed in terms of the sole acceleration field, and may be checked
by direct substitution of the field and its derivatives.

1 Introduction

The questions considered here concern also the domains of electromagnetism and
general relativity. The extreme dificulties to analyse them for Einstein’s and for
Maxwell’s equations has led us to first consider these questions in Newtonian
gravity. For simplicity, we shall here limit their setting to Newton’s gravity.

Our starting point is the following standard situation: an arbitrary and
unknown distribution of masses creates a gravitational field, which is measured
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Figure 1: An unknown distribution of masses creates a gravitational field,

which is measured only in a local domain (the interior of the rocket). What

information about the masses may be constructively extracted from this

local knowledge?

only in a local domain or laboratory (the interior of the rocket in Figure 1). We
are here concerned with the informations that can be extracted from this local
knowledge.

All what Newton’s theory says about the gravitational fields measured in
this local domain, is that they verify the gravitational equations:

∆V = 0 ⇔
{

da = 0
δa = 0 , (1)

a being the acceleration field , a = dV , and V the gravitational potential.
But these field equations are incomplete: although they are supposed to

contain all physical fields [1], it is well known that, conversely, almost all their
solutions are unphysical fields [2]. We are thus led to ask our first question:

Question 1 Is it possible to find a complete set of local field equations for
gravity, that is to say, a set of local field equations such that their solutions be
only the physical ones?

In general, it would be interesting to know how to find, for any local solution
of equations (1), the position and “charges” of its singularities, but we shall here
restrinct our question to the sole physical solutions. The second question is thus:

Question 2 Does there exist a method allowing to find the masses and positions
corresponding to a local physical gravitational field?

In theoretical physics, questions may be answered in many different, non
equivalent forms. The above two questions have been analysed in Newtonian
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theory by simplicity, but also because we hope that the Newtonian answers may
help to understand some aspects of the corresponding relativistic questions. In
part for this aim, we are interested in finding covariant (i.e. coordinate-free)
and intrinsic (i.e. involving only the data, namely the local acceleration field)
expressions. Also, for practical reasons, we would need these expressions to be
constructive, that is to say, such that they may be explicitly verified by direct
substitution of the data and of differential concomitants of them. Our third
question is thus:

Question 3 Do there exist covariant, intrinsic and constructive answers to the
above two questions?

Even for Newtonian theory, the general answers to these questions seem, at
least for the moment, out of reach. Here we shall humbly present the results
corresponding to the case of a sole Newtonian point particle. Their proofs and
a deeper analysis of them will be given elsewhere [3].

The results for Galilean observers are given in Section 2, theorems 1 and 2.
To treat accelerated observers, Section 3 presents the covariant, intrinsic and
constructive characterization of inertial fields in theorem 3; its constructive
character being completed by propositions 1 and 2. The results for accelerated
observers are presented in Section 4, theorem 4 and its corollary. Finally, Section
5 is devoted to some comments.

2 Gravitational Field of a Point Particle
for Galilean Observers

Suppose that a local Galilean observer measures, in the domain of its laboratory,
an acceleration field γ(x, t). The restriction of question 1 to the gravitational
fields created by a sole particle may be equivalently asked in the following terms:
what are the necessary and sufficient conditions that an acceleration field γ(x, t)
must verify in order that it correspond to the field associated to a massive point
particle? Or, in other words, how to characterize exclusively all the situations
correspondig to the scheme of Figure 2? The answer is given by the following
theorem:

Theorem 1 A (local) acceleration vectorfield γ(x, t) is the gravitational field
of a point particle if, and only if, it verifies the equation

∇γ = f

(
g − 3

γ ⊗ γ

| γ |2

)
, (2)

where f is a negative function, f < 0 , being g and ∇ respectively the 3-
dimensional space metric and the associated covariant derivative.
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Figure 2: A Galilean observer measures a local gravitational field γ(x, t) .

How to deduce that it is created by a spherically symmetric mass, and

how to know and locate this mass?

Expresion (2) is a well known consequence of a inverse-square field; it is its
sufficient character which is a less trivial result and, we believe, a new one.

Once known that the acceleration field γ(x, t) is due to a sole massive par-
ticle, question 2 naturaly arises: where it is located and what is its mass? The
answer is as follows:

Theorem 2 Let γ be the (local) acceleration field of a gravitational point par-
ticle. Then, its mass m and its position r are given by

m =
4| γ |5

(L(γ) | γ |)2
, r = − 2| γ |

L(γ) | γ | γ , (3)

where L(γ) stands for the Lie derivative along γ .

Of course, the integrability conditions of equation (2) implies that the mass
given by equation (3) is constant. Its possitive character is insured by the
condition f < 0 of theorem 1 .

3 Inertial Acceleration Field
for Accelerated Observers

Suppose now that a local accelerated observer measures, in the domain of its
laboratory, an acceleration field α(x, t). This acceleration field is, in general, the
superposition of its proper accelerated motion, and of the exterior gravitational
fields. Can he know when exterior gravitational fields are absent, as Figure
3 shows? or, in other words, can he be sure that he is not submitted but to
inertial forces?
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Figure 3: An accelerated observer measures locally an acceleration field

α(x, t) . How to know that he is not submitted but to inertial forces?

According to question 3, we are looking for constructive answers. In order
to obtain them, we need two results concerning square roots of tensors. More
precisely, we need to know when a symmetric tensor L admits an antisymmetric
square root A, A2 = L, and, in that case, what is its expression in terms of L.
The corresponding results are given by propositions 1 and 2:

Proposition 1 A second order symmetric tensor L admits an antisymmetric
square root if, and only if, it verifies

L2 − 1
2

(trL)L = 0 . (4)

Proposition 2 For such a second order symmetric tensor L, its antisymmetric
square root ∧√L is given by

∧√
L =

1√
i2(x)L

∗ i(x)L , (5)

where

L ≡ L − 1
2
(trL) g , (6)

x is an arbitrary regular vectorfield for L, i.e. such that i(x) L 
= 0 , i(.) denotes
the interior product and ∗ the Hodge dual operator.

Note that, in spite of the arbitrary character of the vector x appearing
in equation (5), ∧√L is unique and independent of the chosen regular x. We
shall not consider here the operator ∧

√ · on symmetric tensors that would be

5



undefined on tensors not verifying equation (4), but we shall rather consider
∧√L as the notation of the existing antisymmetric tensor obtained from a tensor
L that verifies this equation.

We are now in position to give the covariant , intrinsic and constructive
characterization of inertial fields:

Theorem 3 An acceleration field α(x, t) is an inertial acceleration field corre-
sponding to an accelerated observer if, and only if, it verifies:

∇L(α) g = 0

dα =
(

∧
√

2L(α) g
)•


 , (7)

where ( )• stands for the time derivative.

4 Gravitational Field of a Point Particle
for Accelerated Observers

We now consider the general situation in which a local accelerated observer is
under the influence of both, the gravitational field γ(x, t) of a point particle and
its proper inertial field α(x, t), as shown in Figure 4, where a(x, t) denotes the
total acceleration field measured in the local laboratory.

a(x,t)

Accelerated Observer

m

Figure 4: An accelerated observer, submitted to the gravitational field

of a spherically symmetric mass, measures locally an acceleration field

a(x, t) . How to extract from it γ(x, t) and α(x, t) , i.e. its gravitational

and inertial components?
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In order to present the answers to our above three basic questions, it is
convenient to previously introduce some differential concomitants of an arbitrary
vectorfield v.

An adequate measure of the modulus of the hessian of the vectorfield v, is
the scalar Φ(v) given by

Φ(v) ≡ 1√
| ∇∇v |

, (8)

whose gradient allows to define the 1-form Γ(v) by

Γ(v) ≡
√

8
45

1
| dΦ(v) |3

dΦ(v) . (9)

On the other hand, theorem 1 suggest us to introduce for any v the gravita-
tional differential concomitant G(v) associated to equation (2):

G(v) ≡ ∇v + λ2

(
g − 3

v ⊗ v

| v |2

)
. (10)

Similarly, theorem 3 suggests to introduce the doble inertial differential con-
comitant I(v) associated to equations (7):

I(v) ≡




∇L(v)g

dv −
(

∧
√

2L(v) g
)•


 . (11)

With the aid of these concomitants, the complete characterization of the
acceleration fields in question is the following one:

Theorem 4 A local acceleration field a(x, t) is the total acceleration field of an
accelerated observer inmersed in the gravitational field of one point particle if,
and only if, it verifies the equations

G (Γ(a)) = 0 , I (a − Γ(a)) = 0 . (12)

Taking into account the meaning of equations (2) and (7), explained re-
spectively by theorems 1 and 3, from equations (12) and theorem 2 one easily
obtains:

Corollary 1 For a total acceleration field a(x, t), the gravitational acceleration
γ of the particle and the inertial acceleration α of the observer are given by

γ = Γ(a) , α = a − Γ(a) , (13)

and the mass m and position r of the particle by

m =
4|Γ |5

(L(Γ)|Γ |)2
, r = − 2|Γ |

L(Γ)|Γ | Γ . (14)
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5 Conclusions

We would like to conclude by noting briefly a few points (a detailed analysis
will be given elsewhere [3]):

i) The above results show that, at least for one particle, a complete gravita-
tional theory including location of masses is possible, and has been constructed.

ii) Even for one particle, this theory is far from being trivial.
iii) The method may, in principle, be extended to a finite number of particles

(and perhaps, with a limiting process, to an infinite number).
iv) It seems to show that a complete theory of fields is necessarily related

to a hierarchy of equations, and not to a unic, universal set of equations, as we
used to think up to now.

v) The present results are first elements of a non usual way of thinking field
theory. For some applications they may be too hard to use, but for some others
they (and their plausible extensions) constitute the shortest and clear answers.

vi) Although Newtonian, these results are also heuristically interesting for
some relativistic problems, for example the physical interpretation of static
space-times. We shall consider these problems elsewhere.
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