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Abstract. An intrinsic algorithm that exclusively involves conditions on the metric tensor
and its differential concomitants is presented to identify every type-D static vacuum solution. In
particular, the necessary and sufficient explicit and intrinsic conditions are given for a Lorentzian
metric to be the Schwarzschild solution.

PACS numbers: 0470B, 0240H, 0420, 0420J, 0470C

1. Introduction

‘The unique spherically symmetric vacuum solution of Einstein equations is the
Schwarzschild metric’. This popular result, known as the Birkhoff theorem [1], evidently
gives a complete characterization of the Schwarzschild spacetime by requiring two
conditions on the metric tensorg. The first one (C1) implies that its Ricci tensor is zero,
Ric(g) = 0, and the second one (C2) states thatg admits an isometry groupG3 acting on
spacelike two-dimensional orbits with positive curvature. We are interested in underlining
the different nature of each condition: while C1 isexplicit in the metric tensor (in one of
its differential concomitants, the Ricci tensor), condition C2 isimplicit since the equations
that yield it mix up, in principle, other elements than the metric tensor (isometry maps or
Killing vectors of the spherical symmetry).

Since theintrinsic (depending solely on the metric tensor) andexplicit conditions may be
verified by direct substitution of the metric tensor, it is evident that getting anintrinsic and
fully explicit characterization of a spacetime (a family of spacetimes) is of interest. So, after
the above comments on the Birkhoff theorem, a question naturally arises: is it possible to
express, solely in terms of the metric tensor and its differential concomitants, the necessary
and sufficient conditions for a spacetime to be the Schwarzschild solution? We show here
that the answer is affirmative, by obtaining the equations defining the Schwarzschild metric
explicitly.

In order to obtain this kind of description it is certainly useful to get a complete algebraic
study of the curvature tensor (the Ricci and Weyl tensors) and, in particular, to acquire the
covariant determination of its characteristic directions and 2-planes [2, 3]. These results have
shown their usefulness, for instance, in building the Rainich theory for the thermodynamic
perfect fluid [4] and in giving the intrinsic characterization of the type-I spacetimes admitting
isotropic radiation [5].
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For the purpose of determining the type-D static vacuum solutions, Ehlers and Kundt [6]
applied the 1+3 formalism adapted to the hypersurface-orthogonal timelike Killing vector,
and tried an intrinsic description. Although they got quite far, they were two steps short
of arriving: the static condition was not written intrinsically, and some invariant scalars
they used to discriminate different solutions depended on the Weyl principal 2-form, which
was not explicitly expressed in terms of the Weyl tensor. Thus, they obtained a complete
invariant (but non-explicit) way to distinguish (among the static metrics) between two
different type-D vacuum solutions. We have overcome these shortcomings by obtaining the
metric concomitants and the intrinsic conditions allowing us to identify (among all metrics)
every type-D static vacuum solution.

These solutions were later recovered by Kinnersley [7], who acquired all type-D vacuum
spacetimes using the Newman–Penrose formalism adapted to the double Debever directions.
Here we present an alternative method based on the 2+ 2 Weyl principal almost-product
structure, which is more suitable for accomplishing the goal of this article: the intrinsic and
explicit characterization of the solutions.

This paper is organized as follows. In section 2 we introduce the formalism used and
recapitulate some basic results about 2+ 2 almost-product structures. In section 3 we give
a canonical expression for all type-D metrics whose Weyl tensor is divergence-free and
has real eigenvalues (proposition 1). Vacuum equations for these metrics (proposition 2)
are considered in section 4, and the static type-D metrics by Ehlers and Kundt arise in a
natural way and its intrinsic characterization follows (proposition 3). In section 5 we study
the explicit conditions that label the different types of these metrics (proposition 4). We
insist on, and emphasize, the equations that define the Schwarzschild solution in section 6
and give an algorithm to determine the timelike Killing vector and the Schwarzschild mass
(theorem 1). Finally, in section 7 we present a flow diagram that summarizes the main
results.

2. 2+ 2 almost-product structures

On the spacetime(V4, g) of signature(−+++), an almost-product structure is defined by
a plane fieldV and its orthogonal complementH . Taking into account the integrable
(hypersurface orthogonal), minimal, umbilical or geodesic character of each plane, an
invariant classification of the almost-product structures follows [8]. In the 2+ 2 case it
may be useful to work with thecanonical unitary 2-formU , the volume element of the
timelike planeV . Thenv = U2 andh = −(∗U)2 are the respective projectors andv+h = g.
Moreover,U may be written asU = l− ∧ l+, with l+ as its principal directions. With this
notation, and writingδ = −tr∇, it is easy to prove

Lemma 1.Let (V ,H) be a 2+2 almost-product structure and letU be its canonical 2-form.
Then the following conditions hold:

(i) V (respectively,H ) integrable⇐⇒ i(δ ∗ U)U = 0 (respectively,i(δU) ∗ U = 0).
(ii) V (respectively,H ) minimal⇐⇒ i(δ ∗ U) ∗ U = 0 (respectively,i(δU)U = 0).
(iii) V , H both umbilical⇐⇒ principal directions ofU are shear-free null geodesics.

When both planes are integrable, minimal, umbilical or geodesic, we call the almost-
product structure accordingly. A product metric is a metricg̃ admitting a product structure
(V ,H), i.e. an integrable and geodesic (minimal and umbilical) structure. Then, and only
then, local coordinates(xA, xi), A = 0, 1, i = 2, 3, exist such that̃g = σ− + σ+, with
σ− = σ−AB(xC) dxA dxB andσ+ = σ+ij (xk) dxi dxj .
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Integrable and umbilical properties are conformal invariants. However, this does not
take place for the minimal character of a structure. In fact, ifg̃ is a product metric and
g = e2λg̃, we have

i(δU)U − i(δ ∗ U) ∗ U = −2dλ. (1)

3. Divergence-free type-D metrics with real eigenvalues

Let us consider the Petrov type-D spacetimes with Weyl real eigenvalues. In this case, the
self-dual Weyl tensor is

W ≡ 1
2(W − ı ∗W) = 3ρU ⊗ U + ρG, (2)

with G = 1
2(G−ıη) andU = 1√

2
(U−ı∗U), whereG = 1

2g∧g, η andU are, respectively, the
canonical metric on the space of the 2-forms, the metric volume element and the canonical
2-form associated to the Weyl principal structure, the double eigenvalueρ being the real

function ρ = − ( 1
12 trW 3

)1/3 6= 0.

Moreover, if S ≡ 1
3ρ (W − ρG), from (2) we obtainS = U ⊗ U− ∗

U ⊗
∗
U and then

S2 + S = 0. Conversely, ifS2 + S = 0, the self-dual tensorS = 1
2(S − ı ∗ S) satisfies

S2 + S = 0 and the Weyl tensor has therefore a degree-2 minimal polynomial and, since
ρ 6= 0, the spacetime is of type D, withρ being the double eigenvalue. So we can state

Lemma 2.A Weyl tensor is of Petrov type-D with real eigenvalues if, and only if,

ρ ≡ − ( 1
12 trW 3

)(1/3) 6= 0, S2+ S = 0

with S ≡ 1
3ρ (W − ρG).

In order to impose vacuum equations in the next section, let us now consider the
Bianchi identities for the vacuum case:δW = 0. From the Weyl canonical expression (2),
this divergence-free condition for the Weyl tensor becomes

dρ − 3ρ i(δU)U = 0 (3)

i(δH+)H+ = i(δH−)H− = 0 (4)

whereH+ are the self-dual null 2-forms whose fundamental directionsl+ are theU principal
directions. Condition (4) states exactly the geodesic and shear-free character ofl+, in
agreement with the Golberg and Sachs result [9] and, after lemma 1, the umbilical nature
of the Weyl principal structure. Taking lemma 1 into account, the imaginary part of (3)
gives its integrability, and from (1) and the real part of (3) it follows thatg is conformal to
a product metric, with conformal factor e2λ = κ2ρ−2/3, κ being an arbitrary constant.

Furthermore, from Gauss–Codazzi equations it follows that a 2+ 2 product metric
g̃ = σ− + σ+ is of Petrov type-D with a double Weyl eigenvalueρ̃ = − 1

6(X− + X+),
whereXε is the Gaussian curvature ofσ ε (ε = ±), and that it degenerates to type 0
whenX− = −X+ = constant. Moreover, the Weyl eigenvalues change by a conformal
transformation,g = e2λg̃, asρ = e−2λρ̃. Then, combining all these results, we can state

Proposition 1.The metric tensor of a Petrov type-D spacetime with real Weyl eigenvalues
and divergence-free Weyl tensor may be written as

g = 1

(X− +X+)2
(
σ− + σ+) (5)

where σ− = σ−AB(x
C) dxA dxB and σ+ = σ+ij (x

k) dxi dxj are arbitrary two-dimensional
metrics,σ− hyperbolic andσ+ elliptic, with Gaussian curvaturesX− andX+, respectively.
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4. Vacuum solutions

Until now, we have partially imposed the vacuum condition through Bianchi identities,
δW = 0, and we have arrived at the canonical form (5). Now let us impose the complete
vacuum equations Ric(g) = 0 on these metrics. Taking into account the relationship between
the Ricci tensors of two conformal metrics and recalling that for a product metric one has
Ric(σ− + σ+) = X−σ− +X+σ+, we prove

Proposition 2.All the type-D vacuum solutions with real eigenvalues are given by(5),
whereσ− and σ+ are bidimensional metrics, hyperbolic and elliptic respectively, which
satisfy

Dε dXε = −1

2
(X2

ε + a)σ ε, σ ε( dXε, dXε) = εf (εXε) (6)

with f (X) = − 1
3X

3− aX + b, and whereXε is the Gaussian curvature ofσ ε , a andb are
arbitrary constants and Dε is the covariant derivative associated to each metric.

Thus, vacuum equations for the family of metrics given by (5) turn out to be the (only
coupled by the common constantsa andb) equations (6) for two bidimensional metricsσ ε .
If a solutionσ− andσ+ is known, a vacuum solutiong is given by (5). The above equation
(6) admits the solution of constant curvature, dXε = 0; thena = −X2

ε and b = − 2
3εX

3
ε .

Otherwise, if dXε 6= 0, Xε can be taken as a coordinate and a straightforward calculation
shows that the solution of (6) in this case is

σ ε = 1

εf (εXε)
dX2

ε + f (εXε) dZ2. (7)

Thus the analysis of vacuum equations leads us to distinguishing between the following
cases:

(i) dX+ = dX− = 0. ThenX+ +X− = 0 and the spacetime is flat.
(ii) dX+ = 0, dX− 6= 0. Then the elliptic metricσ+ has constant curvatureX+, andσ− is

given by (7) witha = −X+2, b = − 2
3X

3
+. Depending onX+ being positive, negative

or null, we have, respectively, theA1, A2 or A3 metrics by Ehlers and Kundt [6].
(iii) dX+ 6= 0, dX− = 0. Then the hyperbolic metricσ− has constant curvature, andσ+

is given by (7) witha = −X−2, b = 2
3X

3
−. TheB1, B2 andB3 spacetimes [6] appear,

respectively, by choosingX− as positive, negative or null.
(iv) dX+ 6= 0, dX− 6= 0. Thenσ+ and σ− are given by (7), and this case allows us to

obtain the C-metrics [6].

From these considerations it follows that the vacuum solutions of Petrov type-D with
real Weyl eigenvalues are the type-D static vacuum solutions studied by Ehlers and Kundt
[6]. Thus, we have an intrinsic characterization of these spacetimes that, after lemma 2, we
can explicitly give in terms of the metric tensor:

Proposition 3.Type-D static vacuum solutions are characterized by conditions

ρ(g) 6= 0, S2(g)+ S(g) = 0, Ric(g) = 0 (8)

with ρ(g) ≡ − ( 1
12 trW 3(g)

)1/3
and S(g) ≡ 1

3ρ (W(g) − 1
2ρ(g) g ∧ g), W(g) and Ric(g)

being the Weyl and the Ricci tensors associated to the metric tensorg.
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5. The intrinsic label

Proposition 3 gives us an intrinsic and explicit description of the family of the type-D static
vacuum metrics. Now let us study an intrinsic and explicit way to identify every metric
of this family (classesAi , Bi andC by Ehlers and Kundt [6]). In terms of the Gaussian
curvatures of the two-dimensional metricsσ ε , the double Weyl eigenvalue of the metric (5)
becomesρ = − 1

6(X− +X+)3 (see section 3). Therefore, the metricσ− (respectively,σ+)
is of constant curvature, dX− = 0 (respectively, dX+ = 0), if and only if the gradient ofρ
is on the spacelike (timelike, respectively) principal 2-plane or, equivalently,i(dρ)U = 0
(i(dρ) ∗ U = 0, respectively),U being the principal 2-form of the Weyl tensor.

On the other hand, from the expressions ofg and ρ, a straightforward calculation
shows that if dXε = 0, thenXε = (6ρ)−2/3( 1

9g( d lnρ, d lnρ)−2ρ). Thus we can state the
following

Lemma 3.Let U andρ be the (real) principal 2-form and the double Weyl eigenvalue of
a type-D static vacuum metric, andXε the two-dimensional Gaussian curvatures of the
canonical form (5). Then

(i) dX− = 0 (respectively, dX+ = 0) if, and only if, i( dρ)U = 0 (respectively,

i( dρ)
∗
U= 0).

(ii) If dXε = 0 thenXε = (6ρ)−2/3( 1
9g( d lnρ, d lnρ)− 2ρ).

The first statement of this lemma gives us a way of identifying the precedent cases
(A-, B- or C-metrics), and the second one provides the invariant scalar that allows us
to distinguish the three types of A-metrics or B-metrics. Consequently, we can identify
different kinds of type-D static vacuum metrics by applying invariant conditions. Now we
must write these conditions as functions of Weyl concomitants in order to obtain anintrinsic
andexplicit description.

Let us consider the canonical expression of a type-D Weyl tensor with real eigenvalues
in terms of the (real) principal 2-formU , W = 3ρ(U ⊗ U − ∗U ⊗ ∗U)+ ρG. From here

we get∗W = 3ρ U
∼⊗ ∗U + ρη and S ≡ 1

3ρ (W − ρG) = U ⊗ U − ∗U ⊗ ∗U . Thus,

∗W(dρ, ·, dρ, ·) = 3ρ i( dρ)U
∼⊗ i(dρ) ∗ U and, after lemma 3, we have that condition

∗W(dρ, ·, dρ, ·) 6= 0 gives an explicit characterization of the C-metrics.
Otherwise, if∗W(dρ, ·, dρ, ·) = 0, we have that eitheri(dρ)U or i( dρ) ∗ U must

vanish. When this happens, the quadratic form

Q ≡ S( dρ, ·, dρ, ·) = i( dρ)U ⊗ i( dρ)U − i( dρ) ∗ U ⊗ i( dρ) ∗ U (9)

is either non-negative or non-positive; this corresponds, after lemma 3, to the A-metrics
and B-metrics, respectively. Moreover,Q is non-negative (non-positive, respectively) in
accordance with the sign of its trace with an elliptical metric associated tog.

Taking into account all the above considerations, we can state the following

Proposition 4.Let g be a type-D static vacuum solution (characterized in proposition 3).
Let us take the metric concomitants

α ≡ 1
9g( d lnρ, d lnρ)− 2ρ P ≡ ∗W(dρ, ·, dρ, ·) Q ≡ S(dρ, ·, dρ, ·)

and letx be an arbitrary unitary timelike vector. Then

(i) g is a C-metric if, and only if,P 6= 0.
(ii) g is an A-metric if, and only if,P = 0 and 2Q(x, x)+ trQ > 0.
Furthermore, it is of typeA1, A2 or A3 if α > 0, α < 0 or α = 0, respectively.
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(iii) g is a B-metric if, and only if,P = 0 and 2Q(x, x)+ trQ < 0.

Furthermore, it is of typeB1, B2 or B3 if α > 0, α < 0 or α = 0, respectively.

6. The Schwarzschild characterization

Let us consider a more detailed analysis of theA1-metrics. In the local coordinates that we
have used to integrate vacuum equations, the metric tensor is

g = −1

3
(2X+ −X−) dZ−2+ 3

(X− +X+)4(2X+ −X−) dX−2+ 1

X+(X− +X+)2 d�2 (10)

where d�2 is the metric on the unitary sphere andX+ is a positive constant. In fact,
with the transformationt = X+Z−, r = 1/(X− + X+)

√
X+, the metric (10) becomes

the Schwarzschild metric in Schwarzschild coordinates. Now, it is easy to see that the
Schwarzschild mass is given bym = 6X+−3/2, and the modulus of the timelike Killing

vector by ‖∂t‖ =
√

1
3(2X+ −X−), and so we can obtain them as functions of scalar

invariants. These considerations and propositions 3 and 4 lead us to the following

Theorem 1.Let Ric(g) andW ≡ W(g) be the Ricci and the Weyl tensors of a spacetime
metric g, and let us take the metric concomitants

ρ ≡ − ( 1
12 trW 3

)1/3
, α ≡ 1

9g(d lnρ, d lnρ)− 2ρ, S ≡ 1

3ρ
(W − 1

2ρ g ∧ g), (11)

P ≡ ∗W(dρ, ·, dρ, ·), Q ≡ S(dρ, ·, dρ, ·) (12)

The necessary and sufficient conditions forg to be the Schwarzschild metric are

Ric(g) = 0, ρ 6= 0, S2+ S = 0, (13)

P = 0, 2Q(x, x)+ trQ > 0, α > 0 (14)

wherex is an arbitrary unitary timelike vector. Moreover, the Schwarzschild mass is given
by m = ρ/(α3/2) and the timelike Killing vector byξ = ρ−4/3(Q(x)/

√
Q(x, x)).

7. A summary in algorithmic form

Finally, in order to emphasize the algorithmic nature of our results, we present them as
a flow diagram (opposite) that identifies, among all metrics, every type-D static vacuum
solution. This operational algorithm involves an arbitrary unitary timelike vectorx and
some metric concomitants that may be obtained from the components of the metric tensor
g in arbitrary local coordinates: the Ricci tensor Ric(g) and the Weyl tensor invariantsρ,
α, S, P andQ given in (11) and (12).
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