
Gen. Relativ. Gravit. (2005) 37(6): 1015–1024
DOI 10.1007/s10714-005-0087-y

RESEARCH ARTICLE

Joan Josep Ferrando · Juan Antonio Sáez
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Abstract We apply a covariant and generic procedure to obtain explicit expres-
sions of the transverse frames that a type I spacetime admits in terms of an arbi-
trary initial frame. We also present a simple and general algorithm to obtain the
Weyl scalars �T

2 , �T
0 and �T

4 associated with these transverse frames. In both
cases it is only necessary to choose a particular root of a cubic expression.

Keywords Weyl frames · Radiation scalars

1 Introduction

The components �a of the Weyl tensor in a complex null tetrad {l, k, m, m̄} have a
specific physical meaning [1]. If an observer lying on the time-like plane {l, k} an-
alyzes the deviation of test free particles he can conclude that the components �0
and �4 describe, respectively, incoming and outgoing transverse waves, whereas
�1 and �3 are incoming and outgoing longitudinal wave components. On the
other hand, �2 is the Coulomb part of the gravitational field [1].

Depending on the Petrov-Bel type, special frames (and observers) exist for
which the �a take particular simple forms [1, 2]. Thus, in algebraically general
spacetimes we can consider two different types of adapted frames. If we take the
real null vectors l and k lying on one of the three Weyl principal planes then
�1 = �3 = 0, the transversal wave components �0 and �4 being non zero: we

J. J. Ferrando (B)
Departament d’Astronomia i Astrofı́sica, Universitat de València, E-46100 Burjassot,
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València, Spain
E-mail: juan.a.saez@uv.es



1016 J. J. Ferrando, J. A. Sáez

have then the Weyl transverse frames [3]. On the other hand, the frames with l
and k aligned with two of the four Debever directions satisfy �0 = �4 = 0,
the longitudinal wave components �1 and �3 being non zero: they are the Weyl
longitudinal frames or Debever frames.

As a consequence of the peeling-off theorem [4], one of the transverse compo-
nents, �0 or �4, is dominant in the wave zone of a radiative gravitational field. On
the other hand, the Teukolsky [5] formalism for studying gravitational radiation in
a Kerr black hole is built using a transverse frame, and the transverse components
are the essential variables. These and other similar facts focus attention on the
transverse frames and some radiation scalars have been associated with them [3].

The role played by the frames intrinsically associated with the curvature ten-
sor in the metric equivalence problem is well known [2]. Likewise, both the
transverse and Debever frames, can be of interest in dealing with type I space-
times. A detailed analysis on the transformations leading to the standard canon-
ical form of the Weyl tensor for the different Petrov-Bel types has been given
in [6], but some cases involving the solution of a quartic equation have not
been specified. In a recent paper [7], a general procedure is presented to ob-
tain the transverse scalars in a generic type I spacetime in which all the initial
Weyl scalars are non-vanishing. The method avoids solving the quartic equa-
tion but the expressions are quite extended and complicated. Moreover this
aforementioned work does not present explicit expressions for the transverse
tetrad.

In this paper we present a general algorithm to determine all the elements as-
sociated with every transverse frame in a generic type I spacetime and starting
from an arbitrary initial tetrad. The procedure only uses a particular solution of a
cubic equation and it affords, for each of the three principal planes: (i) the trans-
verse scalars �T

0 , �T
2 , �T

4 , (ii) the transverse base {WT , UT , VT } of the self-dual
bivector space, and (iii) the transverse null tetrad {lT , nT , mT , m̄T }.

It is worth remarking that obtaining the three principal transverse frames in a
type I spacetime can be suitable because, in dealing with the equivalence problem
of two metrics, it could be necessary to compare a transverse frame of one metric
with each of the three transverse frames of the other. The algorithmic obtaining
of these frames could also be a necessary mathematical tool for studying gravi-
tational radiation in numerical relativity as Beetle and Burko have pointed out in
[3]. Some recent alternative approaches emphasize this aspect [8, 9].

The results in this paper are based on a previous paper [10] which offers a
covariant algorithm to determine the type I Weyl canonical frames. This approach
was further developed in [11] where a complete algebraic analysis of the Weyl
tensor is presented. In this aforementioned paper every Weyl geometric element
(invariant scalars, principal directions or principal planes) associated with every
Petrov-Bel type is determined in a covariant way. This means that, given a metric
in an arbitrary coordinate system or in an arbitrary tetrad, if we know the Weyl
eigenvalues, we can obtain all these Weyl geometric elements without solving any
other equation. The Weyl eigenvalues are the roots of the (cubic) characteristic
equation of the self-dual Weyl endomorphism, whose coefficients are the symmet-
ric algebraic invariant scalars of the Weyl tensor. Thus, this covariant approach
could also be useful in looking for longitudinal scalars and Debever frames, as
well as, in dealing with algebraically special Petrov-Bel types.
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This work is organized as follows. In Sect. 2 we summarize some of the results
in [10, 11] and, in Sect. 3 and 4, we use them to obtain the elements associated
with the transverse frames. We will finish with a short discussion.

2 The covariant procedure

In an oriented spacetime (V4, g) of signature (− + ++) the algebraic classifica-
tion of the Weyl tensor C can be obtained by studying the linear map defined on
the self-dual 2-form space by the self-dual Weyl tensor C = 1

2 (C − i ∗ C). The
restriction on this self-dual space of the metric of the 2–form space G is given by
G = 1

2 (G − iη), where η is the spacetime volume element. In terms of the com-
plex invariant scalars, I = 1

2 tr C2, J = 1
6 tr C3, the characteristic equation takes

the form:
x3 − I x − 2J = 0 (1)

and its roots are, for k = 0, 1, 2,

αk+1 = βe
2πk

3 i + I

3β
e− 2πk

3 i, β = 3

√(
J +

√
J 2 − I 3/27

)
. (2)

The Weyl tensor is Petrov-Bel type I if (1) admits three different roots {αi }, which
is equivalent to the condition 27J 2 �= I 3. In this case an orthonormal frame {Wi }
exists which is built up with eigenvectors of C. The self-dual 2–forms Wi are the
principal 2-forms of the Weyl tensor [12]. Then, the self-dual Weyl tensor takes
the canonical expression

C = −
3∑

i=1

αi Wi ⊗ Wi (3)

In [10] we have determined the projection map on the eigenspace associated
with every eigenvalue αi and, consequently, we have acquired a covariant way to
obtain the principal 2-forms {Wi } in terms of the Weyl tensor. More precisely, we
can find in [10] the following result which we present here in a slightly different
version:

Proposition 1 Let C be the self-dual Weyl tensor of a type I space-time. The prin-
cipal 2-form Wi corresponding to the eigenvalue αi may be obtained as

Wi = Pi (X)√
(I − 3α2

i )Pi (X, X)

(4)

with Pi ≡ C2 + αiC + (α2
i − I )G, and where X is an arbitrary self-dual 2-form

such that Pi (X) �= 0.

The principal 2-forms of a type I Weyl tensor are given by (4) and are deter-
mined up to sign and permutation. Thus, we can consider 24 oriented eigen-frames
{Wi }: for every permutation, the sign of two of them gives us 4 possibilities, and
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the third can be obtained as [10] W3 = i
√

2W1 × W2, where × stands for the
contraction of adjacent indexes, (A × B)αβ = A λ

α Bλβ .
The three principal 2–forms Wi determine six Weyl principal 2–planes that

cut in four orthogonal directions: one time-like Weyl principal direction and three
space-like Weyl principal directions [10, 12], which have associated the Weyl
canonical orthonormal frames {eα}. It has been shown in [10] that an oriented
and orthochronous canonical orthonormal frame {eα} corresponds biunivocally to
every oriented eigen-frame {Wi }. Its explicit expression is given in the following
proposition [10]:

Proposition 2 The Weyl canonical frames {eα} of a type I space-time may be de-
termined as

e0 = −P0(x)√
P0(x, x)

, P0 ≡ −1

2

(
1

2
g +

3∑
i=1

Wi ×Wi

)
; ei = √

2Wi (e0) (5)

where Wi are the principal 2-forms given in Proposition 1, and where x is an
arbitrary future-pointing vector and an overline stands for the complex conjugate.

In the following sections we will see that the results in propositions 1 and 2
enable us to obtain the transverse scalars and the transverse frames starting from
an arbitrary frame. The covariant method presented in [10] could also be used in
looking for the longitudinal scalars and frames because the Debever directions
of a type I spacetime have also been obtained in [10] explicitly. It is worth men-
tioning that this study has been extended in [11] for an arbitrary Petrov-Bel type
in such a way that given a particular cubic root β of the expression (2), all the
Weyl geometric elements (principal 2–forms, principal and Debever directions
and canonical frames) can be obtained without solving any other equation.

3 Transverse scalars

An arbitrary null tetrad {l, k, m, m̄} has the following associated null base
{W, U, V } of bivectors1

W = 1√
2
[l ∧ k + m ∧ m̄], U = − 1√

2
l ∧ m̄, V = 1√

2
k ∧ m (6)

Let �a = �0, �1, �2, �3, �4 be the usual components [2] of the Weyl tensor
in the base of the traceless double bivectors, i. e.:

1

2
C = �0U ⊗ U + �1U

∼⊗ W + �2(U
∼⊗ V + W ⊗ W) + �3W

∼⊗ V + �4V ⊗ V

1 The notation that we use here is similar to that used in reference [2], but the self-dual bivec-
tors {W, U, V} differ from those in [2] by the factor 1/

√
2, and the self-dual Weyl tensor by the

factor 1/2.
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In terms of the Weyl scalars �a , the invariants I, J are [2]:

I = I [�α] ≡ �0�4 − 4�1�3 + 3�2
2 (7)

J = J [�α] ≡

∣∣∣∣∣∣∣
�4 �3 �2

�3 �2 �1

�2 �1 �0

∣∣∣∣∣∣∣ (8)

Then, the Weyl eigenvalues can be computed by (2) where β stands for a particular
non null cubic root of (2) which, from now, we can suppose that it is given in terms
of �a as a consequence of (7) and (8):

β = β[�a] ≡ 3

√
J +

√
J 2 − I 3/27 (9)

The Weyl transverse bivector bases {WT , UT , VT } are those for which �T
1 =

�T
3 = 0. Thus, the Weyl tensor can be written:

1

2
C = �T

0 UT ⊗ UT + �T
2 (UT ∼⊗ VT + WT ⊗ WT ) + �T

4 VT ⊗ VT (10)

Then, UT and VT can be parameterized to satisfy �T
0 = �T

4 . If we compare
(10) with the canonical expression (3) we obtain that the tern {WT ,− i(VT +
UT ), VT −UT } is an orthonormal eigenframe of the Weyl tensor if {WT , UT , VT }
is a transverse bivector base. Conversely, if {Wi } is an orthonormal Weyl eigen-
frame, for every choice of an eigenvalue αi , we can take:

Wi = Wi , Ui = i

2
(W j + i Wk) , Vi = i

2
(W j − i Wk), (11)

where i, j, k take the different values of a cyclic permutation. Then the tern
{Wi , Ui , Vi } is an oriented bivector transverse frame that we name principal
transverse bivector base. Moreover, for every i , the non null principal transverse
scalars �

(i)
a are given in terms of the eigenvalues of the Weyl tensor by:

�
(i)
2 = −1

2
αi , �

(i)
0 = �

(i)
4 = α j − αk

2
(12)

where i, j, k take the different values of a cyclic permutation.
Consequently, three oriented principal transverse bases {Wi , Ui , Vi } exist ba-

sically (the others can be obtained by changing the sign of two elements or by
changing one sign and interchanging Ui ↔ Vi ). For each of these frames, we can
give the corresponding principal transverse scalars �

(i)
a by using (12). Indeed,

taking into account the expression of the eigenvalues (2) in terms of I , J and β,
we have:
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Theorem 1 Let �a be the components of a type I Weyl tensor in an arbitrary
frame. The principal transverse scalars are given by (12), with:

α1 = α1[�a] ≡
(

β + I

3β

)
, (13)

α2 = α2[�a] ≡ −1

2

(
(1 − i

√
3)β + (1 + i

√
3)

I

3β

)
, (14)

α3 = α3[�a] ≡ −1

2

(
(1 + i

√
3)β + (1 − i

√
3)

I

3β

)
. (15)

where I ≡ I [�a], J ≡ J [�a] and β ≡ β[�a] are given by (7), (8) and (9),
respectively.

If {Wi , Ui , Vi } is a principal transverse bivector base, then the tern:

WT = Wi , UT = zUi , VT = z−1Vi (16)

where z is a complex function, is a transverse bivector base because it satisfies the
transverse condition, �T

1 = �T
3 = 0. Moreover, the transverse components are:

�T
2 = �

(i)
2 , �T

0 = z−2�
(i)
0 , �T

4 = z2�
(i)
4 . (17)

It is worth pointing out that the transverse principal components (given by (12)
and Theorem 1) are invariant scalars, but for a generic (non necessarily principal)
transverse frame only the Coulomb component �T

2 is invariant. Nevertheless, it
follows from (12) and (17) that the product of the transverse components does not
depend on the complex Lorentz rotation z:

ξ (i) ≡ �T
0 �T

4 = (
�

(i)
0

)2 = (
�

(i)
4

)2 (18)

The invariant scalars ξ (i) are not but the Beetle-Burko radiation scalars which
have been proposed in [3] as containing information about the field gravitational
radiation.

Our simple method to determine the transverse components starting from an
arbitrary frame presented in Theorem 1 improves some previous results [7] that
offer quite complicated expressions of the transverse components in a (not neces-
sarily principal) transverse frame.

The transformations leading from an initial configuration to the transverse
frames have been studied in [6], but these transformation have not been obtained
explicitly in the more regular cases. This problem is analyzed and solved in the
following section by offering explicit expressions for the transverse frames.

4 Obtaining transverse frames from an arbitrary frame

In order to determine the transverse frames starting from an arbitrary frame, we
begin by obtaining the principal 2–forms {Wi } in terms of the initial bivector
base {W, U, V} and the initial Weyl scalars �a . We will use Proposition 1 and,
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consequently, we must pick out a self-dual 2-form X. If we take X = U, and we
compute Pi (U), where the projector Pi is given in Proposition 1, we obtain:

Pi (U) = Ai U + Bi W + Ci V, Pi (U, U) = 1

2
Ci , (19)

where the scalars Ai , Bi and Ci are the following functions of the Weyl compo-
nents �a :

Ai = Ai [�a] ≡ �0�4 + �2
2 − 2�1�3 + αi�2 + (

α2
i − I

)
(20)

Bi = Bi [�a] ≡ �1�4 − �2�3 + �3αi (21)

Ci = Ci [�a] ≡ 2�2�4 − 2�2
3 + αi�4 (22)

Then, if we take into account expression (4) for the principal 2–forms, we can
state:

Theorem 2 Let �a be the components of a type I Weyl tensor in a non transverse
bivector base {W, U, V}. The (unitary) principal 2–forms {Wi } are given by:

Wi = 1√
Di Ci

(Ai U + Bi W + Ci V) , (23)

where the scalars Ai , Bi and Ci are the functions of the Weyl scalars �a given in
(20), (21) and (22), and

Di = Di [ψa] ≡ 1

2

(
I − 3α2

i

)
, (24)

with αi = αi [�a] given in Theorem 1 and where I ≡ I [�a], J ≡ J [�a] and
β ≡ β[�a] are given by (7), (8) and (9), respectively.

It should be mentioned that if we start from a non transverse frame as
Theorem 2 states, the bivector U can not be orthogonal to any principal 2–form
Wi and, consequently, the condition Pi (U) �= 0 required in proposition 1 holds.

Now, if we consider the relation (11) between a null base and an orthonormal
base in the bivector space, the determination of the principal transverse bivector
bases is a simple consequence of Theorem 2:

Corollary 1 Let �a be the components of a type I Weyl tensor in an arbitrary
bivector base {W, U, V}. The principal transverse bivector bases {Wi , Ui , Vi }
can be obtained as (11) where {Wi } is given in Theorem 2.

Theorem 2 and Corollary 1 give us explicit expressions for the three prin-
cipal transverse bivector bases. The non principal transverse bivector bases
{WT , UT , VT } can be obtained from the principal ones as (16) by considering
arbitrary values for the complex function z.

Once the transverse bivector bases {WT , UT , VT } are known, we can look for
the transverse frames {lT , nT , mT , m̄T } associated with them by (6). To obtain
them, we could apply to the bivectors {WT , UT , VT } the covariant method to
determine the principal directions of a 2–form [13] (see also [10, 11]), but here we
opt by an alternative procedure based on Proposition 2: starting from an arbitrary
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null tetrad {l, k, m, m̄} we will obtain the Weyl orthonormal frame {eα} and, from
it, we derive the null transverse frames {lT , kT , mT , m̄T }.

From (23) we can obtain the e0-projector P0 given in Proposition 2. If we take
x = l and compute P(l), we have:

−4P(l) = al + bk + cm + c̄m̄, 4P(l, l) = b (25)

where

a = a[�a] ≡ 2 + cc̄

b

b = b[�a] ≡
∑ |Ci |

|Di | (26)

c = c[�a] ≡ −
∑ B̄i Ci

|Di ||Ci |
On the other hand, if we take into account the expression for the ei given in

Proposition 2, we can state:

Theorem 3 Let �a be the components of a type I Weyl tensor in a non transverse
null frame {l, k, m, m̄}. The orthonormal Weyl canonical frame can be obtained
as:

e0 = 1

2
√

b
(al + bk + cm + c̄m̄), ei = √

2Wi (e0) (27)

where Wi are given in (23), a, b, c are the functions of the Weyl scalars �a given
in (26). The scalars Ai , Bi , Ci and Di depend on �a as (20), (21), (22) and (24),
where αi is given in Theorem 1 and I , J and β are given by (7), (8) and (9),
respectively.

The principal transverse frames {l(i), k(i), m(i), m̄(i)} can be determined as a
consequence of Theorem 3:

Corollary 2 Let �a be the components of a type I Weyl tensor in an arbi-
trary null frame {l, k, m, m̄}. We can obtain the principal transverse frames
{l(i), k(i), m(i), m̄(i)} as:

l(i) = 1√
2
(e0 + ei ) , k(i) = 1√

2
(e0 − ei ) , m(i) = 1√

2
(e j + iek) (28)

where i, j, k take the different values of a cyclic permutation and eα are given in
Theorem 3.

From each one of the three principal transverse frames {l(i), k(i), m(i), m̄(i)}
determined in Corollary 2 we can obtain the other (non principal) transverse
null frames {lT , kT , mT , m̄T } by means a special boost φ on the time-like plane
{l(i), k(i)} and a rotation θ on the space-like plane {m(i), m̄(i)}:

lT = eφl(i), kT = e−φk(i), mT = e− i θm(i). (29)

The real functions φ and θ are related to the complex Lorentz transformation z in
(16) by z = eφ+i θ .
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In this section we have obtained all the transverse frames of a type I spacetime
when we know the Weyl scalars in a non transverse frame. But, if we initially
have a transverse frame {lT , nT , mT , m̄T }, we could be interested in knowing all
the other ones. Let �T

2 , �T
0 , �T

4 be the initial transverse scalars. Then, as a conse-
quence of (17), the complex Lorentz transformation z = eφ+i θ leading to a prin-
cipal transverse frame {l(i), k(i), m(i), m̄(i)} by means of (29) can be obtained as:

z =
(

�T
0

�T
4

)1/4

(30)

Then, the transformations (28) and their inverses allow us to obtain the orthonor-
mal canonical Weyl frame {eα} and the other principal transverse frames.

5 Summary and discussion

In this paper we have presented a general algorithm to determine all the el-
ements associated with every transverse frame in a generic type I spacetime
and starting from an arbitrary initial tetrad. Our procedure affords, for each of
the three principal planes: (i) the principal transverse scalars �

(i)
2 , �

(i)
0 , �

(i)
4

(Theorem 1) and the associated (non principal) transverse scalars �T
2 , �T

0 , �T
4

(expression (17)), (ii) the principal bivector transverse base {Wi , Ui , Vi }
(Theorem 2 and Corollary 1) and the associated (non principal) transverse
bases {WT , UT , VT } (expression (16)), and (iii) the principal transverse null
tetrad {l(i), n(i), m(i), m̄(i)} (Theorem 3 and Corollary 2) and the associated (non
principal) transverse null tetrads {lT , nT , mT , m̄T } (expression (29)).

We would like to state that the above results improve previous ones on the
same subject. We can quote an interesting work [6] where a detailed analysis has
been made of the transformations leading to the standard canonical form of the
Weyl tensor for the different Petrov-Bel types. In the mentioned study the authors
present the transformations depending on the initial configuration of the Weyl
components �a , but “certain cases involving the solution of a quartic equation
have not been specified” (see Table 2 in [6]). It is worth mentioning, e.g. the case
of type I spacetimes with non-vanishing initial transverse components. This short-
coming has partially been overcome in a recent paper [7] where a procedure is
presented “to arrive at a transverse frame from the general case of all scalars non-
zero” in a given type I spacetime. The method avoids solving the quartic equation
but “the expressions for �2, �0 and �4 are quite complicated” according to the
authors. Our paper overcomes this shortcoming and we offer simple and clear ex-
pressions for the transverse scalars. Moreover, we also obtain the transverse com-
ponents in the three principal transverse frames (Theorem 1) and in an arbitrary
transverse frame (expression (17)). On the other hand, obtaining the transforma-
tions that were not studied in [6] is a problem that has not been considered in
[7] either. This question is analyzed and solved in this work by offering explicit
expressions for all the transverse frames.
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