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Abstract. A covariant algorithm is given to obtain principal 2-forms, Debever null directions
and canonical frames associated with Petrov type I Weyl tensors. The relationship between
these Weyl elements is explained, and their explicit expressions depending on Weyl invariants
are obtained. These results are used to determine a cosmological observer in type I universes,
and their usefulness in spacetime intrinsic characterization is shown.

PACS numbers: 0240H, 0420C

1. Introduction

Algebraic classification of the Weyl tensor has been considered from two different points of
view. The approach initiated by Petrov [1] studies the eigenvalue and eigenvector problem
for the Weyl tensor regarded as an endomorphism on the 2-form space. This classification
was completed by Ǵeh́eniau [2] and Bel [3] considering, not only the number of independent
invariant subspaces, but also the eigenvalue multiplicity. In this framework we find in a
natural way the notion of principal 2-form which was analysed widely by Bel [4] for the
different algebraic types. An alternative viewpoint [5, 6] consists in the study of the relative
positions between the ‘light cones’ determined on the 2-form space by the canonical metric
and the Weyl tensor as a quadratic form. From this angle, which is equivalent to the
spinorial approach [7], the Weyl classification implies studying the roots of a fourth degree
algebraic equation with complex coefficients. A Debever null direction of the Weyl tensor
corresponds to every root of this equation [8, 9, 7].

Both approaches show a richness and variety of directions and 2-planes associated
with the Weyl tensor. These geometric elements are generically different from either
viewpoint, but the more degenerate the Weyl tensor is, the more common these elements
become. Indeed, the relation between the Debever null directions and the principal 2-forms
is complex, and only the multiple Debever directions are fundamental directions of null
principal 2-forms [4]. In the most regular case, Petrov type I, a Debever direction never
coincides with a principal direction of a principal 2-form, and their relation depends strongly
on the four Weyl scalar invariants.
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Following the work of Sachs [10], where he gave the hierarchy of equations for the
multiplicity of the Debever directions, and the publication of the d’Inverno and Russell-
Clark [11] algorithm, the null direction approach became popular; since then the geometry
of principal 2-forms has seldom been considered in the literature. Therefore, although the
geometric richness of both points of view were underlined and widely studied in pioneering
papers by Penrose [7], Bel [4] and Debever [6] some years ago, until now the relation
between them has not been sufficiently analysed for the type I case. However, when
considering this subject we can quote the papers by Trümper [12] and Narain [13], or those
more recent ones by McIntoshet al [14] and Bonanos [15]. In the latter, a method is given
to determine Weyl canonical frames from null Debever directions. In the other three works,
we can find expressions for Debever directions in terms of an orthonormal canonical frame
in several particular cases: purely electric, purely magnetic and when the four Debever
directions span a 3-plane.

Here we extend these results about Petrov type I and present a geometric interpretation of
them. We show that the Debever directions are the principal directions of two characteristic
2-forms associated to the Weyl tensor. We give a covariant expression for these 2-forms in
terms of principal 2-forms and a complex invariant scalar. Furthermore we also determine
principal 2-forms in a covariant way. These results provide an algorithm to determine the
Debever directions.

The covariant determination of the Ricci eigenvectors and its causal character [16]
is a necessary tool in the characterization of spacetimes obeying their energy content. In
particular its usefulness has been shown in building a Rainich theory for the thermodynamic
perfect fluid [17]. In a similar way, in addition to knowing its classification and giving
algorithms to distinguish every case, a complete algebraic study of the Weyl tensor implies
knowing the covariant determination of the Weyl eigenvectors, i.e. of the principal 2-forms.
A complete analysis of this subject, considering all Petrov types, has been developed
elsewhere [18, 19]. Here we only present the results for type I and we use them to
determine the Weyl canonical frames in an alternative way to the Bonanos method [15]. The
aforementioned paper departs from the Debever directions, whereas here we give covariant
expressions, in terms only of the Weyl tensor, using principal 2-forms.

The usefulness of Weyl canonical frames in the metric equivalence problem is well
known. In the algebraically special cases there is a close relationship between canonical
frames and Debever directions, but in the algebraically general one its relation involves Weyl
scalar invariants and, as a consequence, canonical frame determination is more difficult.
Here, we give a geometric interpretation of this relationship and offer an algorithm which
allows us to obtain canonical frames directly without solving any algebraic equation.

The paper is organized as follows. In section 2 we introduce the formalism used in the
paper and recapitulate some properties about 2-forms, in particular the covariant way used
to determine their principal directions. We also point out the bijection and give its covariant
expression between orthonormal frames on the tangent space and orthonormal bases on the
self-dual 2-form space.

In section 3 we summarize the characterization and the canonical expressions of a
type I Weyl tensor, and present the Weyl concomitants that enable us to obtain the three
orthonormal principal 2-forms. From them, and using the results in section 2, we give a
covariant algorithm to determine the Weyl canonical frames.

The connection between principal 2-forms and Debever directions is analysed in
section 4. We give a clear interpretation in the 2-form space framework, and comment
on the relationship between our approach and the previous results quoted above.

Finally, in section 5 we apply our results to determine a cosmological observer in Petrov
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type I universes. This allows us to give an intrinsic characterization of an interesting family
of spacetimes: those that admit an hypersurface orthogonal observer measuring isotropic
radiation.

2. The self-dual 2-forms space

Let (V4, g) be the spacetime of signature{−, +, +, +}. On the six-dimensional vectorial
space of the 2-forms, two different metrics can be considered: the usual one induced by the
spacetime metric,G = 1

2g ∧ g ((g ∧ g)αβγ δ = 2(gαγ gβδ − gαδgβγ )), and that defined by the
metric volume elementη, i.e.

G(F, H) ≡ (F, H) = 1
4GαβµνF

αβHµν; η(F, H) ≡ (∗F, H) = 1
4ηαβµνF

αβHµν.

The scalar invariants of a 2-formF are defined by its squares calculated with these
two metrics: (F, F ) and (∗F, F ). A 2-form is usually named non-null or regular when
(F, F )2+(∗F, F )2 6= 0, and null or singular otherwise. Simple 2-forms satisfy(∗F, F ) = 0.
The principal directionsl± of a regular 2-formF are the common (null) eigenvectors toF

and∗F :

l+ ∧ F(l+) = 0; l+ ∧ ∗F(l+) = 0. (1)

A unitary 2-form is a simple 2-formU such that(U, U) = −1. In terms of its principal
directions, we haveU = l− ∧ l+.

Principal directions of a 2-form may be determined by solving the eigenvector equations
(1). However, we can also use a covariant method that enables us to obtain them without
solving any equations [20]. In particular, principal directions of a unitary 2-formU are:

l+ ∝ [U × U+U ](x) (2)

wherex is an arbitrary timelike direction andU × U = tr23 U ⊗ U .
A self-dual 2-form is a complex 2-formF such that∗F = iF . We can associate to

every real 2-formF the self-dual 2-formF = 1√
2
(F − i ∗ F). The endowed metric on the

three-dimensional complex subspace of the self-dual 2-forms isG = 1
2(G − iη). Then, for

every self-dual 2-form, the complex scalar invariantG(F , F) ≡ (F , F) = (F, F )−i(∗F, F )

may be considered. A self-dual 2-formH is a null vector forG whenH is singular, and a
G-unitary self-dual 2-formU corresponds to every real unitary 2-formU . Then, equations
(1) for the principal directions ofU can be written as:

l+ ∧ U(l+) = 0. (3)

Let {eα}3
α=0 be an oriented and orthochronous orthonormal frame. Then, if we define

Ui = e0 ∧ ei , we obtain a self-dual orthonormal frame{Ui}3
i=1, which has an induced

orientation given by

Uk = i
√

2εijkUi × Uj . (4)

Conversely, every oriented (by (4)) orthonormal frame{Ui} on the self-dual 2-forms space
has a unique oriented and orthochronous orthonormal frame{eα} associated with it such
that Ui = e0 ∧ ei . This one-to-one map follows from the isomorphism between the
proper orthochronous Lorentz group,L↑

+, and the groupSO(3, C) of the proper orthogonal
transformations on the self-dual 2-forms space:

L↑
+ −→ SO(3, C); L −→ 1

2[L ∧ L − i ∗ (L ∧ L)].
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We know explicitly {Ui} in terms of {eα}; we will now determine covariant expressions
which give {eα} in terms of {Ui}. The associated real 2-form,Ui = Re(

√
2Ui ), verifies

Ui × Ui = − e0 ⊗ e0 + ei ⊗ ei . Then, it is easy to show that

e0 ⊗ e0 = 1
2

(
g −

3∑
i=1

Ui × Ui

)
≡ P0. (5)

Thus, we arrive at the following

Lemma 1. If {eα} is an oriented and orthochronous orthonormal frame andUi = e0 ∧ ei ,
then the term{Ui}, Ui = 1√

2
(Ui − i ∗ Ui), is an oriented frame on the self-dual 2-forms

space. This is a one-to-one map and its inverse is given by:

e0 = −P0(x)√
P0(x, x)

; ei = Ui(e0)

with

P0 ≡ 1
2

(
g −

3∑
i=1

Ui × Ui

)
and wherex is an arbitrary future-pointing vector.

3. Principal 2-forms and canonical frames

The algebraic classification of the Weyl tensorW can be obtained [2] by studying the linear
map defined by the self-dual Weyl tensorW = 1

2(W − i ∗W) on the self-dual 2-form space.
In terms of its complex scalar invariants,a = tr W2, b = tr W3, the characteristic equation
reads

x3 − 1
2ax − 1

3b = 0 (6)

and their roots are

αk = βe
2πk

3 i + a

6β
e− 2πk

3 i,

with

β = 3

√
1

6

(
b +

√
b2 − a3

6

)
.

The Weyl tensor is Petrov type I if (6) has three different roots{αi}, which is equivalent
to the condition 6b2 6= a3. In this case an orthonormal frame{Ui}, built up with eigenvectors
of W, exists: they are theprincipal 2-formsof the Weyl tensor [4]. Then, the self-dual
Weyl tensor takes the canonical expression

W = −
3∑

i=1

αiUi ⊗ Ui . (7)

Now we consider the determination of the principal 2-forms{Ui} in terms of the Weyl
tensor. From the characteristic equation,

3∏
i=1

(W − αiG) = 0,
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it follows that (W − αiG) (Pi (X )) = 0 for every self-dual 2-formX , where

Pi =
∏
j 6=i

(W − αjG).

Thus Pi (X ) belongs to the eigenspace corresponding to the eigenvalueαi , that is to say,
Pi is the projection map on this eigenspace. In consequence, we are lead to the following

Proposition 1. Let W be the self-dual Weyl tensor of a Petrov type I spacetime. The
principal 2-formUi corresponding to the eigenvalueαi may be obtained as

Ui = Pi (X )√
−P2

i (X , X )

(8)

with Pi = W2 + αiW + (α2
i − 1

2a)G, and whereX is an arbitrary self-dual 2-form such
that Pi (X ) 6= 0.

This proposition provides a covariant algorithm to obtain the principal 2-forms of a type
I Weyl tensor. They are given by (8) and are determined up to sign and permutation. Thus,
we can consider 24 oriented eigenframes{Ui}: for every permutation, the sign of two of
them gives us four possibilities, the third being given by (4).

The one-to-one map defined in lemma 1 associates an oriented and orthochronous
orthonormal frame{eα} to every oriented eigenframe{Ui}: they are the 24canonical frames
of the Weyl tensor [4, 21]. Then lemma 1 and proposition 1 offer us a covariant algorithm
to determine these canonical frames.

Corollary 1. The Weyl canonical frames{eα} of a Petrov type I spacetime may be determined
to be

e0 = −P0(x)√
P0(x, x)

; ei = Ui(e0) (9)

with

P0 ≡ 1

2

(
g −

3∑
i=1

Ui × Ui

)
, Ui = Re(

√
2 Ui )

and Ui , the principal 2-forms given in proposition 1, and wherex is an arbitrary future-
pointing vector.

Although there are 24 canonical frames, they define four unique orthogonal directions:
one timelike principal directionand threespacelike principal directions.

4. Principal 2-forms and Debever directions

The ‘light cones’ defined by the metricG and the self-dual Weyl tensorW cut, generically,
on four null directions of the self-dual 2-form space. Each one defines a null direction
on the spacetime, usually called Weyl principal null direction orDebever direction[9].
These characteristic directions may be determined by solving a fourth degree algebraic
equation with coefficients given by the components ofW in a complex null frame. Then,
an alternative approach to the Weyl algebraic classification follows analysing the multiplicity
of the roots of this equation [9]. Type I appears as the case where four simple Debever
directions exist. Depending on their multiplicity, these vectors satisfy an equation of the
Sachs [10] hierarchy; for a simple Debever vectorl this equation can be written as:

(l ∧ W(l; l) ∧ l)αβγ δ ≡ −l[αWβ]λµ[γ lδ] l
λlµ = 0. (10)
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A multiple Debever direction is always a principal direction of a Weyl principal 2-form
[4], but a simple one has a more complicated relationship with principal 2-forms or with
canonical frames. In Petrov type I, explicit expressions giving Debever directions in terms
of a Weyl canonical frame{eα} have been obtained in particular cases [12, 13, 14]. Here we
generalize these results, presenting general expressions of the Debever directions in terms
of principal 2-forms, so that, after results in the above section, a covariant algorithm to
obtain Debever directions follows.

Every null vectorl satisfiesl ∧ G(l; l) ∧ l = 0. Thus, Sachs equation (10) implies that
the simple Debever vectors may be characterized by the condition

l ∧ Ai (l; l) ∧ l = 0 (11)

where, for every eigenvalueαi , Ai ≡ W − αiG. Let us consider, for example,i = 3. Then
canonical form (7) implies

A3 =
∑
A6=3

(α3 − αA)UA ⊗ UA.

So, A3 is a second-order tensor on the orthogonal toU3 subspace. In this subspace, two
unique directions exist such that their bisectors are the principal 2-formsUA and they form
an angle 2�, where

cos2 � = α3 − α1

α2 − α1
.

This complex invariant scalar coincides with the cross-ratio considered by Penrose [7]. If
Vε (ε = +1) are the unitary 2-forms in these characteristic directions, we have

A3 = α2 − α1

2
V+⊗̃V−. (12)

Thus, from (3), (11) and (12), it follows that Debever directions are the principal directions
of the self-dual 2-formsVε . Then, from (2), and taking into account that the angle between
U1 andVε is �, we can state

Proposition 2. Let αi be the Weyl eigenvalues of a Petrov type I spacetime and letUi be
the principal 2-forms determined in proposition 1. Debever directions may be obtained as

lε+ ∝ [
Vε × Vε+Vε

]
(x) (13)

with Vε = Re(
√

2Vε) and

Vε = cos�U1 + ε sin�U2, ε = +1; cos2 � = α3 − α1

α2 − α1
(14)

and wherex is an arbitrary timelike vector.

Proposition 2 gives Debever directions from principal 2-forms and, after proposition 1,
provides a covariant algorithm to obtain them. On the other hand, writingUi = e0 ∧ ei and
taking x = e0 in expressions (13) and (14), a straightforward calculation gives us Debever
directions in terms of canonical frames.

Corollary 2. Debever vectors of a Petrov type I spacetime can be written as

lε+ = coshψe0+ cosφe1+ε sinφe2 + ε sinhψe3, ε = +1 (15)

with

cos2(φ − iψ) = α3 − α1

α2 − α1
,

where{eα} is a Weyl canonical frame.
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It is easy to show the consistency between our expressions (15) and the results obtained
by Debever in his early papers [6, 9].

Notice that in the above study we have takeni = 3 but we could equally have opted for
any other eigenvalue. For each selection a different pair of unitary 2-forms like (14) exists,
with Debever directions as principal directions: we call themDebever 2-forms. Thus, there
are six Debever 2-forms, in accordance with all the possible pairs that may be considered
with the four Debever directions of a type I spacetime.

Now let us pose the inverse problem: the determination of principal 2-forms and
canonical frames using Debever vectors. Bonanos has given a geometric interpretation
of the relationship between Debever vectors and canonical frames [15]. Here we present an
alternative approach using our results, and offer a simple algorithm to calculate canonical
frames in terms of Debever vectors.

Let lε+ be the four Debever vectors normalized in such a way that(lε+, lε−) = −2,
and consider the Debever 2-formsVε = 1√

2
(lε− ∧ lε+ − i ∗ (lε− ∧ lε+)). Then, taking into

account proposition 2, the bisectors ofVε are eigendirections of the Weyl tensor. Therefore,
it follows

Proposition 3.Let Vε = 1√
2
(lε− ∧ lε+ − i ∗ (lε− ∧ lε+)) be two Debever 2-forms of a Petrov

type I spacetime. Principal 2-forms{Ui} may be calculated as

U1 = 1√
2

V+ + V−√
1 − (V+, V−)

,

U2 = 1√
2

V+ − V−√
1 + (V+, V−)

,

U3 = i
√

2 U1 × U2.

(16)

Once the principal 2-forms have been determined by (16), we can use (9) to calculate
the canonical frames. However, a more straightforward calculation follows reversing
expressions (15). To sum up, we can state

Corollary 3. Let ka, a = 1, 2, 3, 4, be the Debever vectors of a Petrov type I spacetime.
Let us normalize them as follows:

l1 =
√

κ42κ43

κ12κ13
k1, l2 =

√
κ41κ43

κ21κ23
k2,

l3 =
√

κ41κ42

κ31κ32
k3, l4 = k4

(17)

where κab = (ka, kb). Then, the timelike and the spacelike principal directions may be
obtained as

e0 ∝
4∑

a=1

la, ei ∝ l4 −
3∑

a=1

(−1)δia la (18)

Finally, from our above analysis we will obtain the known results for type I degenerate
cases (see [14] and references therein). The four Debever vectors span a three-dimensional
space if, and only if, the real part of the Debever 2-forms (14) satisfyV+∧V− = 0, i.e. when
(V+, V−) = cos 2� is real. So, (14) implies that the ratio between every two eigenvalues is
real or, equivalently, the scalar invariantM = a3

b2 − 6 is a positive real or infinity (I (M+)

or I (M∞) in the Arianrhodet al classification [22]). In this case the eigenvalues may
be strictly ordered by their modulus, and� is real (ψ = 0) if we takeα3 as the shortest
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eigenvalue. As a consequence, (15) implies that the orthogonal toe3 subspace contains the
four Debever directions. Therefore, we can conclude

Corollary 4. In a Petrov type I spacetime, the four Debever vectors span a three-dimensional
space iffM = a3

b2 − 6 is a positive real or infinity. This space is the orthogonal subspace to
the spacelike principal direction associated with the shortest eigenvalue.

Thus we have recovered some previous results on this subject [14, 23]. Moreover, the
known expressions for the Debever vectors in the degenerate type I cases [12, 13, 14] may
also be easily deduced by takingψ = 0 in (15).

5. Type I spacetimes admitting isotropic radiation

The spacetimes admitting isotropic radiation with respect to a vorticity-free observer have
been studied elsewhere [24], and their value for modelling the present universe has also
been widely pointed out. These spacetimes may be characterized [25] as those admitting a
timelike hypersurface-orthogonal conformal Killing vector or, in terms of the unitary vector
field u, by conditions:

ω = 0, σ = 0, d(u̇ − 1
3θu) = 0 (19)

ω, σ , θ and u̇ being, respectively, the rotation vector, the shear, the expansion and the
acceleration ofu. Therefore, the two first conditions (19) state thatu defines a shear-free
and vorticity-free congruence, and so the Weyl tensor has real eigenvalues and is of Petrov
type I, D or 0 [12]. In type I,u is the unitary vector in the timelike principal direction,
which will be called theWeyl principal observer. We summarize some of these known
results [25, 12] in a lemma.

Lemma 2.In a Petrov type I spacetime, one has the following three equivalent statements.

(i) A hypersurface-orthogonal timelike conformal Killing vector exists.
(ii) A solution of Liouville equation, isotropic for a vorticity-free observer, exists.
(iii) The Weyl principal observer satisfies conditions (19).

In these spacetimes the Weyl principal observer keeps some of the main properties of the
Robertson–Walker cosmological observer, in particular, that of observing isotropic radiation.
Consequently it could play a similar role in building and interpreting type I cosmological
models. Even, in generic type I universes, we can consider a privilegedcosmological
observer: the Weyl principal one. Thus, the interest in determining the timelike principal
direction of a Petrov type I spacetime is plainly evident, a question that we have solved in
corollary 1.

Let us go back to the spacetimes considered in lemma 2. The three statements
characterize them, but only the third gives us aninvariant characterizationbecause it asserts
conditions on an invariant direction of the Weyl tensor. But this characterization is only
useful after using our corollary 1 in order to calculate the timelike principal direction in
terms of the Weyl tensor, and so obtain anintrinsic characterizationof these spacetimes.

Indeed, conditions (19) may be easily written as equations on the projector tensor
h = u ⊗ u + g:

ω = 0, σ = 0 ⇐⇒ hλ
αh

µ
β∇λh

ν
µ = hαβhλµ∇λh

ν
µ (20)

d(u̇ − 1
3θu) = 0 ⇐⇒ d[4h(δh) − δh] = 0 (21)
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δh being (δh)α = −∇λh
λ
α. On the other hand, taking into account our above results, we

can writeh in terms of principal 2-forms by using (5) and, after proposition 1, we obtain
an expression ofh involving exclusively the metric tensor, Weyl concomitants and arbitrary
directions:h = h(W). Then we can conclude

Proposition 4. A Petrov type I spacetime admits an hypersurface-orthogonal timelike
conformal Killing vector if, and only if, the Weyl tensor satisfies

hλ
αh

µ
β∇λh

ν
µ = hαβhλµ∇λh

ν
µ, d[4h(δh) − δh] = 0 (22)

with h = h(W) ≡ 1
2[3g −∑3

i=1 Ui ×Ui ], Ui = Ui(W) ≡ Re(
√

2 Ui ), Ui being the principal
2-forms determined in proposition 1. Then, the conformal Killing direction is

u ∝ (h − g)(x) (23)

wherex is an arbitrary future-pointing vector.

This proposition affords an intrinsic characterization, through equations involving
exclusively Weyl concomitants, of the type I universes admitting a solution of the Liouville
equation isotropic for a vorticity-free cosmological observer. A wider family of spacetimes,
where there exist solutions of the Boltzmann equation which are isotropic for a vorticity-
free observer [26], may be useful in modelling the pre-recombination epoch [27]. In these
spacetimes an umbilical synchronization exists [24] and, in the type I case, they may be
characterized as those where the Weyl tensor satisfies the first equation in (22).
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