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We give a classification of the type D space—times based on the invariant differen-
tial properties of the Weyl principal structure. Our classification is established using
tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic na-
ture, it is valid for the whole set of the type D metrics and it applies on both,
vacuum and nonvacuum solutions. We consider the Cotton-zero type D metrics and
we study the classes that are compatible with this condition. The subfamily of
space—times with constant argument of the Weyl eigenvalue is analyzed in more
detail by offering a canonical expression for the metric tensor and by giving a
generalization of some results about the nonexistence of purely magnetic solutions.
The usefulness of these results is illustrated in characterizing and classifying a
family of Einstein—Maxwell solutions. Our approach permits us to give intrinsic
and explicit conditions that label every metric, obtaining in this way an operational
algorithm to detect them. In particular a characterization of the Reissner—
Nordstran metric is accomplished. @004 American Institute of Physics.
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I. INTRODUCTION

Type D space—times have been widely considered in literature and we can point out not only
the large number of known families of exact solutions but also the interest of these solutions from
the physical point of view. Let us quote, for example, the Schwarszchild or the Kerr metrics which
model the exterior gravitational field produced, respectively, by a nonrotating or a rotating spheri-
cally symmetric bounded object. Or also the related metrics in the case of a charged object, the
Reissner—Nordstro or the Kerr—Newman solutions. However, although some classes of type D
metrics have been considered taking into account algebraic properties of the Weyl eigenvalue or
differential conditions on the null Weyl principal directions, a classification of the type D solutions
involving all the first-order differential properties of the Weyl tensor geometry is a task which has
not been totally accomplished yet. In this work we present this classification of the type D metrics
and we show the role that it can play in studying geometric properties of known space—times, in
looking for new solutions of Einstein equations or in offering new elements which allow us to give
intrinsic and explicit characterizations of all these space—times.

At an algebraic level, a type D Weyl tensor determines a complex scalar invariant, the eigen-
value, and a 2 2 almost-product structure defined by its principal 2—planes. Some classes of type
D metrics can be considered by imposing the real or imaginary nature of the Weyl eigenvalue. In
this way we find the so-called purely electric or purely magnetic space—times. The purely electric
character often appears as a consequence of usual geometric or physical restrittisris. the
case of the static type D vacuum spacetimes found by Ehlers and Kanttie Barnes degenerate
perfect fluid solutions with shear-free normal fldvdn the other hand, some restrictions are
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known on the existence of purely magnetic solutibRé wide bibliography about Weyl-electric
and Weyl-magnetic space—times can be found in a recent®wdhkre these concepts have been
generalized.

The most usual approaches to look for exact solutions of the Einstein equations work in
frames or local coordinates adapted to some outlined direction of the curvature tensor. For ex-
ample, in the case of perfect fluid solutions or static metrics thd 3ormalism adapted, respec-
tively, to the fluid flow or to the normal timelike Killing vector can be useful. Sometimes one
considers that some of the kinematic coefficients associated with the unitary vector are zero. This
means that one is searching for new solutions belonging to a class of metrics that are defined by
first-order differential conditions imposed on the curvature tensor. A similar situation appears
when local coordinates adapted to the multiple Debever direction are considered when looking for
algebraically special solutions. Indeed, if the hypotheses of the generalized Goldberg—Sachs theo-
rem hold, the multiple Debever direction defines a shear-free geodesic null congruence. In this
case, or when considering nondiverging or nontwisting restrictions on a Debever direction, we are
imposing differential conditions on the Weyl tensor.

It is worth pointing out that the kinematic coefficients associated with a unitary vector com-
pletely determine the first-order differential properties of the3lalmost-product structure that it
defines. Nevertheless, the conditions usually imposed on the two double Debever directions of a
type D space—time do not cover all the differential properties of the princip& almost-product
structure of the Weyl tensor exhaustively. The first goal of this work is to offer a classification of
the type D metrics based on all the first-order differential properties of the principal structure, and
to reinterpret under this view the usual conditions that can be found in the literature. This classi-
fication is not based on the scalar invariants, but on tensorial invariants of the Weyl tensor. These
invariants are well adapted to the generic type D metrics, where a Weyl canonical frame is not
univocally determined, and where the eigenvalues and th& Principal structure are the only
invariants associated with the Weyl tensor.

The (proped Riemannian almost-product structures have been classified according the invari-
ant decomposition of their structure tend@md the classes have been interpreted in terms of the
foliation, minimal and umbilical propertiésThis classification can be generalized to the space—
time structures by also considering the causal character of the plafe®st-product structures
have shown their usefulness in studying the underlying geometry of some physical fields. The 1
+ 3 structures are frequently used in relativity and sometimes the properties of a physical field can
be expressed in terms of the kinematic properties of a unitary vEctbOn the other hand, the
2+2 structure associated with a regular solution of Maxwell equalfaissa basic concept in
building the “already unified theory” for the electromagnetic fiéfdt has also allowed a geo-
metric interpretatiotf of the Teukolsky—Press relatidigised in analyzing incident electromag-
netic waves on a Kerr black hole.

In General Relativity we can also find almost-product structures attached to the geometric or
physical properties of the spacetime. Indeed, some energy coffieanéxample, in the Einstein—
Maxwell or perfect fluid solutionsdefine underlying structures that restrict, via Einstein equa-
tions, the Ricci tensor. On the other hand, the Weyl tensor also defines almost-product structures
associated with its principal bivectors depending on the different Petrov ¥{fémse structures
determine the Weyl canonical fram¥dn the type D case, only tharincipal structureis outlined.

Until now we have mentioned two different ways of classifying the type D space—times: The
first one is strictly algebraic and takes into account the real or imaginary character of the Weyl
eigenvalues; the second one, which we will present here, involves differential conditions of the
2+ 2 principal structure, that is, on the Weyl eigenvectors. Nevertheless, there is a third natural
manner to impose restrictions on the type D metrics: To take into account the relative position
between the principal 2—planes and the gradient of the Weyl scalar invariants. This is a mixed
classification, differential in the eigenvalues and algebraic in the principal structure, which affords
16 different classes of type D metrics. In this work we will show the marked relation that exists
between this classification and the two previous ones.

A classification of type D space—times taking into account the properties ofitleincipal
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structure shows quite interesting advantages. Indeed, the integration of the static type D vacuum
equations using an alternative approach based on the Weyl principal structure has allowed us to
complete the results by Ehlers and Kunit order to accomplish an algorithmic and intrinsic
identification of the solutions and, in particular, to obtain the equations that define the Schwarzs-
child space—time explicitly® Moreover, our classification affords a geometric interpretation of the
other families of vacuum type D solutions. Starting from this approach two Killing vectors can be
determined in terms of Weyl concomitarifsa result which shows that a commutative bidimen-
sional group of isometries exists. Although all the type D vacuum solutions were found by
Kinnersley° a integration method based on our classification permits their intrinsic label, as well
as a geometric interpretation of the NUT and acceleration paranféters.

In this work we apply our classification to the study of space—times with zero Cotton tensor.
For them, the Bianchi identities impose the same restrictions on the Weyl tensor as the vacuum
condition. We interpret these restrictions in terms of geometric properties of the principal structure
and we show that the compatible classes can be characterized in terms of the relative position
between the gradient of some invariant scalars and the principal 2—planes. From a physical point
of view these metrics have two interesting properties. Firstly, the two double Debever directions
define shear-free geodesic null congruences and, secondly, the principal structure is Maxwellian.
This result can be of interest in order to generalize the Teukolsky—Press reftatioasd their
applications to type D nonvacuum solutions.

In order to show the usefulness of this approach in analyzing properties of known metrics, in
integrating Einstein equations and in labeling the solutions, here we study the space—times with
the two properties quoted above for the particular classes with integrable structure. In this case, the
space—time metric turns out to be conformal to a product metric. Then, as a first consequence, we
extend the result by Héll(see also Mcintostet al®) concerning the nonexistence of purely
magnetic type D vacuum solutions in a double sense: The family of solutions where the new result
applies is wider than the vacuum metrics, and the purely magnetic restriction is weakened to an
arbitrary constant argument. Elsewtérere have acquired a similar extension for some results
concerning the purely magnetic type | solutions. Moreover, starting from a canonical form we
begin on the integration of the Einstein—Maxwell equations for the compatible classes, and we
recover the charged counterpart of the A, B, C vacuum metrics by Ehlers and Kundt. The inte-
gration method at once provides an algorithm to detect the solutions with intrinsic and explicit
conditions and, in particular, it offers a characterization of the Reissner—Nardsfrace—time.

The classification of the Kinnersley rotating type D vacuum solutions will be considered
elsewheré?!

The paper is organized as follows. In Sec. Il we introduce some definitions and notations and
we give some results about+2 almost-product structures. In Sec. Il we present the classifica-
tion of the type D metrics based on the first-order differential properties of the Weyl principal
structure, as well as the mixed classification involving the eigenvalues gradient and the principal
structure. The Cotton-zero type D metrics are analyzed in Sec. IV, and we show that the principal
2—planes define an umbilical structure and, consequently, we only have 16 compatible classes
which coincide precisely with those defined by the mixed classification. The four classes with
integrable structure are studied in detail in Sec. V: We present a canonical form for them and
generalize a result about the nonexistence of purely magnetic solutions. Finally, in Sec. VI, we
apply our results to recover a family of Einstein—Maxwell solutions, to give an operational algo-
rithm to detect them and to explicitly and intrinsically characterize the Reissner—Nandstro
space—time. Some of the results in this paper were communicated without proof at the Spanish
Relativity Meeting—96°

II. SPACE-TIME ALMOST-PRODUCT STRUCTURES

On a Riemannian manifold\{,g) an almost-product structure is defined by a p-plane field
and its orthogonal complemeHt. Letv andh=g—uv the respective projectors, and @} be the
(2,D-tensor:
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Q,(X,y)=h(V,,vy), V Xxy. (1)

Let us consider the invariant decompositior(f into its antisymmetric par, and its symmetric
partSvESIJr (1p) v TrS,, whereSI is a traceless tensor:

1
QU:AU+EU®TrSU+SI. 2)

The planeV is foliation if, and only if,A,=0. In this cas&),=S, and it coincides with the second
fundamental form of the integral manifolds of the foliatigr?> MoreoverV is minimal, umbilical

or geodesic if, and only if, T8,=0, ST=0 or S,=0, respectively. Then one can generalize these
geometric concepts for plane fields which are not necessarily foliation:

Definition I A plane field V is said to be geodesic, umbilical or minimal if the symmetric part
S, of its (generalized) second fundamental form atisfies, respectivelys,=0, ST=0 or
Tr S,=0.

The (prope) Riemannian almost-product structurég,il) have been classified taking into
account the invariant decompositi@®) of the tensor®), andQ,, or, equivalently, according with
the foliation, minimal, umbilical, or geodesic character of each pldr@ome of these properties
have also been interpreted in terms of invariance along vector fiellgieneralization for the
spacetime structures follows taking into account the causal character of the planes. We will say
that a structure is integrable when both planes are foliation and we will say that it is minimal,
umbilical or geodesic if both of the planes are so.

This way, on an oriented space—tim¥,(g) of signature ¢+ ++) we have generically
25=64 different classes ofalmost-produdt structures depending on the first-order geometric
properties. Nevertheless, whpr 1, V is always an umbilical foliation and, consequently, only 16
possible classes exist. In this ca@gandQ;, depend on the kinematic coefficients associated with
a unitary vectow, and the classes are defined by the vanishing or nonvanishing of the accelera-
tion, rotation, shear, and expansion. Elsewhere this kinematical interpretation has been extended to
the 2+ 2 space—time structures and, as a consequence, the Maxwell-Rainich equations have been
expressed in terms of kinematical variables.

In order to be used in next sections, we now analyze the space—tin2e @most-product
structures in detail by giving the characterization of their properties in terms of their canonical
2—formU, and by showing their relation with other usual approaches, the Newmann—Penrose and
the self-dual formalisms. We also study the change of these properties for a conformal transfor-
mation and we summarize some results about Maxwellian structures.

A. 2+2 structures

In the case of a 22 space—time structure it is useful to work with tb@nonical unitary
2-form U, volume element of the time-like plané. Then, the respective projectors are-U?
andh=—(*U)2, whereU2=UXU=Tr,; U®U and* is the Hodge dual operator.

The tensor®), andQy, determine the derivatives of the volume elemdntand* U by means
of

VU= (Q) au, 18U N\ H(Qn) urp, ¥ Unjws
Vor U gy = (Qn) au,18* VN1 +(Qu) g, “* U - )
Then, if we denoted=—Tr V, a straightforward calculation leads to
SU=i(Tr $,)U—2(U,A,) &U=i(TrS,)*U—2(*U,A), (4)

where 2(U,A,)#= U“B(Av)aﬁ“. So, the minimal and the foliation character of the planes can be
stated in terms of the projections 8f) and5* U ontoV andH. On the other hand, let us consider
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G, =UU—*Ue*U+G; 75, =U*U+7, 5

where 7 is the metric volume element of the space—time, G=5g Qg is the metric on the 2—forms
space, and ® denotes the double-forms exterior product, (ADB), Buv=AauB g T Ag,B oy
—AyBg—ApuB .. The tensors (5) satisfy G, (U)=G  (*U)=0, 5, (U)=n,(*U)=0 and
they can be calculated as

G, =vQ®hr, 75 =UD=*U. (6)

Then, from expression@) and(4) we get
(2VU~K)yap=(SDruia U a1+ (SDrue *U¥ g, (7
K=i(6U)G, —i(6*U) 7, , 8

and so, the umbilicity of each plane is equivalent to the vanishing of the respective projections of
the first member of7). We summarize these results in the following lemma:

Lemma 1Let(V,H) be a2+ 2 almost-product structure and let U be its canonical 2-form.
Then, the following conditions hald

(1) V (resp. H) is foliationei(sU)*U=0 (resp. i(sxU)U=0);
(2) V (resp. H) is minimak=i(sx*U)*U=0 (resp i(6U)U=0);
(3) V is umbilicalkbUX{2VU—[i(8U)G, —i(é*U) %, ]}=0

H is umbilicale*UX{2VU—-[i(8U)G, —i(é*U) 5, ]} =0.

A 2+ 2 structure is also determined by the two null directibnson the plane/. A family of
complex null base$l , ,| _,m,m} exists such thaty=1_0l . . This family is fixed up to change
l.—e*?l., m—e'’m. Then, conditions of lemma 1 can be interpreted in terms of the Newman—
Penrose coefficiemtsas

Lemma 2Let U=I|_[l, be the canonical 2form of a2+ 2 structure. It holds

(1) The plane V is umbilical ifk=0=v;

(2) the plane H is umbilical ifh =0=0¢;

(3) the plane V is minimal iffr=r;

(4) the plane H is minimal ifp+p=0=u+ u;
(5) the plane V is a foliation iffr= —7;

(6) the plane H is a foliation ifp—p=0=u— u.

Taking into account the significance of the NP coefficightisis lemma implies that the umbilical
nature of a 2-2 structure means that its principal directidns define shear-free geodesic null
congruences. The minimal or foliation character of the spacelike 2-plane have also a kinematical
interpretation and state, respectively, that both principal directions are expansion-free or vorticity-
free. Elsewher®all the geometric properties have been interpreted in terms of kinematic coeffi-
cients associated with every direction in a 2—pl&net only the null oneswith respect to the
other 2—plane.

When both planes have a specific differential property, it is more convenient to introduce the
self-dual unitary 2—fornd/= (1#2) (U—i*U) associated withJ. We have

2RI (SUU=i(U)U—i(5+U)*U=d(U),

2 Im[i (SU)U]=—i(SU)*U—i(8*U)U=T(U). (9)
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So, the complex 1—forndl{ collects the information about the minimal and foliation character of
the structure. On the other handgi& 3(G — i) is the metric on the self-dual 2—forms space, and
K= (1M2) (K—i*K) is the self-dual 2-form associated to the vector valued 2—fidrgiven in

(8), we have

K=i(sU[UsU+G). (10)

Consequently, from lemma 1 and E@8) and (10), we have
Lemma 3 Let us consider th@ + 2 structure defined by= (1~2) (U—i*U). It holds

(1) The structure is minimal if, and only, IRgi(&4)U]=0;
(2) the structure is integrable if, and only; iim[i(&A)U]=0;
(3) the structure is umbilical, if, and only, IV U=i(oU)[USU+ G].

B. Almost-product structures and conformal transformations

If (V,H) is ap+q almost-product structure for a metri; then (V,H) is also an almost-
product structure for every conformal metii=e?"g, and the projectors are related by the
conformal factor: Ifg=v+h, theng=0o+h, wheret =e?*v, h=e?*h. The generalized second
fundamental form change as

Q; =€ (Q,—v®h(d\)). (11)

So, the foliation and the umbilical character are conformal invariants, but the minimal character is
not. Indeed, taking the trace of the expression above, we have

Tr Q;=Tr Q,—ph(d\). (12

These expressions immediately lead to the following result.
Lemma 4Let(V,H) be a p+ g almost-product structure for a metricegu +h. The structure
(V,H) is minimal for a conformal metri¢ g e®g if, and only if

1 1
BTI' QU+ aTI’ thd)\- (13)

If p=q (as happens for the space—time-2 structures we conclude that the necessary and
sufficient condition for a structure to be minimal for a conformal metric is the sum of the traces of
the second fundamental forms to be a closed 1-form, @ Tr Q,)=0. Thus, taking into
account(4) and the expressio(®) for ®(U), lemma 4 can be stated for thet2 case as

Lemma 5Let U be the canonical Zorm of a2+ 2 structure for the spaceime metric g
The structure is minimal for a conformal metric if, and onlyd® (U)=0. More precisely, when
this condition hold, lefx be such thad\=®(U). Then, the structure is minimal for the con-
formal metric g=e?'g.

The most degenerated class of almost-product structures are the product ones, which means,
those that satisf), =0=Qy,. A metric that admits a product structure is called a product metric.
Then, and only then, local coordinated\(x'), A=0,1,i=2,3, exist such th&=o~ + o, being
o~ =opg(x9)dx*dx® and ot = o} (x¥)dx'dx! bidimensional metrics, hyperbolic and elliptic, re-
spectively. Then, ifj is a2+2 product metric andy=e g, lemma 5 and expressiqil) lead
to the following result.

Lemma 6 The necessary and sufficient condition for a metric g to be conformal to a product
metric g, is that an integrable and umbilical almost-product structure U exists such that
dd(U)=0. More precisely, i2d\=®(U), theng=e?*g is a product metric
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C. Maxwellian structures

Aregular 2-formF takes the canonical expressibr e?[ cosyU+siny*U], whereU defines
the 2+2 associated structurej is the energetic indexand ¢ is the Rainich index WhenF is
solution of the source-free Maxwell equatiord®; =0, 6* F=0, one says that) defines aViax-
wellian structure In terms of the canonical elements (¢, ), Maxwell equations becom&:**

dp=D(U)=i(sU)U—i(5*U)*U, (14)
dy=T(U)=—i(8U)*U—i(s*U)U. (15)

Then, from(14) and(15) the Rainich theorefd follows:
Lemma 7 A unitary 2-form U defines a Maxwellian structure if, and only if, it satisfies

dd(U)=0; d¥(U)=0. (16)

The Maxwell-Rainich equationd4) and(15) have a simple expression in the self-dual formal-
ism. Indeed, the self-dual 2—fordi= (1/2) (F—i*F) may be written asF=e?*'¥ i4/. Then,
from Maxwell equationsgF=0, and taking into account that’2?=g,

d(p+iy)=2i(UU. a7

This last equation is equivalent t@4) and(15) if we take into account9). Moreover, from here
we recover the complex version (£6) easily

di (sU)U=0. (18

lll. CLASSIFYING TYPE D SPACE-TIMES

The self—dual Weyl tensovW=3(W—i*W) of a type D space—time takes the canonical
expressioh’

W=3alUSU+ ag, (19

wherea=— Tr W3/Tr W2 is the double eigenvalue andlis the self-dual principal 2—form. This
principal 2—form defines a-22 almost-product structure which is called ttvéncipal structureof
a type D space—time. In terms of the canonical 2—faimof the principal structure the self-dual
2—formU becomed/= (1V2) (U—i*U). So, at the algebraic level, a type D Weyl tensor only
determines the complex scalarand the principal structurd. Consequently, any generic classi-
fication of the type D metrics must depend on these invariants associated with the Weyl tensor.

The families of purely electric or purely magnetic type D spacetimes are defined, at first
glance, by means of alternative conditions, namely, the nullity of the magnetic or the electric Weyl
fields associated with an observerBut, actually, they admit a simple intrinsic characterization in
terms of the Weyl scalar invariant: The eigenvalue is real or imagmhhanspite of these strong
conditions, the family of Weyl-electric type D space—times contains quite interesting solutions. We
can quote, for example, the static vacuum metrizsthe degenerate perfect fluids with shear-free
normal flow? All the type D silent universes are also knat¥A’ as well as other families of purely
electric type D perfect fluid solutiorf§:*° Nevertheless, few Weyl-magnetic type D solutions have
been found? and some restrictions about their existence are known. Indeed, there are not vacuum
metrics with purely magnetic type D Weyl tenddrThe classification that we present below
allows us to give an extension of this result in Sec. 5. On the other hand, the generalization of the
purely electric or magnetic concepts to the spacelike or null directions does not afford new classes
in the type D casé.

But the purely electric or magnetic properties define very narrow subsets of the generic type
D metrics because they impose one of the two real scalar invariants to be zero. The large family
of known solutions of the Einstein equation recommends us to consider other classifications, based
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on less restrictive properties, which afford new intrinsic elements that increase the knowledge of
the metrics and permit their explicit characterization. Besidegthi@sic nature, the classification
must begeneric that is, valid for the whole set of the type D metrics. Consequently, it will be
independent of the energy content and it will have to be built on the intrinsic geometry associated
with a type D Weyl tensor.

The first classification that we propose is based on the geometric properties of the principal
2—planes, that is, it is induced by the geometric classification of the principal structure. Every
principal 2—plane can be submitted or not to three properties$s®2 classes can be considered.

Definition 2 Taking into account the foliation, minimal, or umbilical character of each prin-
cipal 2—plane we distinguisi®4 different classes of type D spad@mes

We denote the classes a$y, where the superscripts,g,r take the value 0 if the time-like
principal plane is, respectively, a foliation, a minimal or an umbilical distribution, and they take
the value 1 otherwise. In the same way, the subscriptsn collect the foliation, minimal or
umbilical nature of the space-like plane

The most degenerated class that we can considefyd$ Which corresponds to a type D
product metric, and the most regular one g Pwhich means that neithat nor H are foliation,
minimal or umbilical distributions. We will put a dot in place of a fixed scfiptor 0) to indicate
the set of metrics that cover both possibilities. So, for example, the metrics of tjlsi].l)eaEe the
union of the classes B and Dl15; or a metric is of type B " if the timelike 2—plane is a
foliation.

Taking into account lemma 1, every class is defined by means of first-order differential
equations imposed on the canonical 2—fddmOn the other hand) can be written explicitly in
terms of the Weyl tensbf and, consequently, every class admits an intrinsic and explicit charac-
terization.

The above classification depends on the derivatives of the principal 24form alternative
classification at first order in the Weyl eigenvalues can also be considered by taking into account
the four 1-forms defined by the principal 2—planes and the gradient of the modulus and the
argument of the eigenvalue. So, we will have=216 classes.

Definition 3 Let a=eg(P+"9) be the Weyl eigenvalue. Taking into account the relative
position between the gradientsfglp and each principal 2plane we distinguistii6 different
classes of type Bpace—times.

We denote the classed pq,rs] where pq,r,s take the value8 or 1 to indicate, respectively,
that one of the 1-forms (#19),U(dp),*U(d6),*U(dp) is zero or nonzero

The most degenerated clasf0D;0Q] is occupied by the type D metrics with constant eigen-
values, and the most general on¢lD,11] by those type D space—times for which both, the
modulus and the argument of the Weyl eigenvalue, have nonzero projection onto the principal
planes. As above, a dot means that a condition is not fixed. So, for example, we {@rite-D]
to indicate the type D metrics for which the argument of the eigenvalues have zero projection onto
the timelike principal 2—plane.

The type D metrics with constant modululy =0, correspond to the classB$ -0; - 0], and
those with constant argumendtd=0, are the metrics of typP[ 0 -;0 - ]. This last family contains
the Weyl-electric and the Weyl-magnetic space—times because a real or imaginary eigenvalue
means that the argument takes the constant valweod,n/2, 37/2, respectively.

In the next section we will show the marked relation between the two classifications given in
definitions 2 and 3 when some usual restrictions are imposed on the Ricci tensor.

IV. TYPE D METRICS WITH ZERO COTTON TENSOR

The space—time Cotton tend®ris a vector valued 2—form which depends on the Ricci tensor
as

P s=V.Q,s  2Q=Ric— §(Tr Ric)g. (20
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The Bianchi identities equal the Cotton tensor with the divergence of the Weyl tensor. Indééd, if
is the self-dual Weyl tensor arfé=3(P—i* P) is the self-dual 2—form associated with the Cotton
tensor, Bianchi identities become

P=—0OoW. (21

So, the vanishing of the Cotton tensor is equivalent to the Weyl tensor to be divergence free,
oW=0. Taking into account the canonical expression of a type D Wey! tddSpra straightfor-
ward calculation leads to the following:

Proposition 1 LetZ/ and a=— Tr W3/Tr W? be the principal 2form and the double eigen-
value of a type D Weyl tensor. Then, the spatee Cotton tensor is zero if, and only if

VUu=i(sUh)[UU+G] ; (U= 3dIna. (22

From the results of the previous section, we know that the first condition means that the principal
structure is umbilical, that is, the principal directions are shear free null geodesics accordingly to
the Goldberg—Sachs theorem. Consequently, every type D space—time with zero Cotton tensor is
of type D j8. The second equation i22) shows that the principal structure is Maxwellian and the
electromagnetic invariant scalars depend on the Weyl eigenvalue. If we take the real and the
imaginary parts of this equation and write-i0=5In «, we get

d(U)=dp;  W(U)=do. (23)

So the modulus and the argument of the Weyl eigenvalue govern, respectively, the minimal and
the foliation character of the principal planes. This relation establishes a bijection between the
classes of the two classifications that we have presented. More precisely, we have:

Theorem 1 Every type D spacetime with zero Cotton tensor is of typﬁ%.D\/loreover, it is
of class B if, and only if, it is of class DPIm,pq].

So we have just 16 classes of type D space—times with zero Cotton tensor and each one is
characterized by the vanishing or not of the projections of the gradient of the Weyl eigenvalue
onto the principal planes. The second conditiond2) implies that a solution of the Maxwell
equations exists that hésas its associated structure. Then, taking into account the results of Sec.
IIC, it holds:

Proposition 2 The principal structure of a type D spaeeme with zero Cotton tensor is
Maxwellian. More precisely, it/ and a=— Tr W3/Tr W? are the principal 2form and the
double eigenvalue of the Weyl tensor, the-ssilial 2-form

Fu=a?U, (24)

is a solution of the source-free Maxwell equatipag,,=0.

In the following D(M) denotes the type D space—times with Maxwellian principal structure,
and DM)PIT expresses the type(Bt) space—times of classPf,. With this notation, from theo-
rem 1 a(l)nd proposition 2 it followsEvery type D spacdime with zero Cotton tensor is of type
D(M) 6.

It is worth pointing out that the family of type D metrics admitting a conformal Killing—Yano
tensor attached to its principal structure are those of tyCM)DS,31 and this family includes the
Cotton-zero type D metrics.

The results of this section have been used elsewhémeoffering a new approach to the
Kinnersley type D vacuum solutions. An integration of the Einstein vacuum equations based on
the classification given above permits the explicit and intrinsic labeling of the solutions as well as
to put over interesting geometric properties of these space—times.
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V. SOME RESULTS ABOUT TYPE D (M)5:5 SPACE-TIMES

Now, in this section, we restrict our study to the type D metrics with Maxwellian, integrable
and umbilical structure, that is, those of typel\,ngg. We can easily obtain a canonical form for
these metrics. Indeed, lemma 6 states that the metric is conformal to a product one with a
conformal factor determined by the potential of the closed 1-fdr(tJ). More precisely, the
metric can be written as

1 o
g:m[agB(xC) dxAdx®+ o] (x4) dx'dx], (25

where() satisfies
2dInQ=d(U)=i(sU)U—i(sxU)*U. (26)

Conversely, we can analyze the Petrov type of the méaig by studying a product metric
=0 +o". Let X_ and X, be the Gaussian curvatures of the arbitrary bidimensional metrics,
o~ and o™, hyperbolic and elliptic, respectively. The Gauss—Codazzi equations show that the
Riemann and the Ricci tensors Gfare

Riem(3)=3X_o ®o +iX.0'®o’; Ric(g)=X_o +X,0". 27

So, the Weyl tensor of a product metric is Petrov-type O precisely wheit X, =0, and then
both curvatures are constant. On the other hand, whe X, # 0, the space—time is type D.
MoreoverU determines the principal structure and the double eigenvalue is given by

a=— 2(X_+X,). (29)

So, we have

Lemma 8Every2+2 product metrica™ + o™ is of type D(or O) with real eigenvalues, and
the double eigenvalue is given by (28), where ahd X, are the Gaussian curvatures of and
o, respectively. Moreover, it is of type O if, and onlyXf_=— X, =constant

A conformal transformatiorfj=(?g preserves the Petrov type and the Weyl eigenvalues
change ag&=0"? a. Consequently, from Eq26) and taking into account lemmas 1 and 8, we
can conclude:

Proposition 3 A space-time is of type mM)g:g if, and only if, there exist local coordinates
such that the metric g takes the expression (25) withtX, #0, where X_ and X, are the
Gaussian curvatures af ~ and 0", respectively. Moreover, it is of classdE, D599, Do, or
DO if, and only if o~ (dQ) #0# ot (dQ), o™ (dQ)=0+# ¢ (dQ), o*(dQ)#0=0"(dQ), or
dQ =0, respectively

Furthermore, taking into account the expressi@m for the Ricci and28) for the eigenvalue
of a product metric, and considering the change of these metric concomitants for a conformal
transformation, we can state:

Proposition 4 The Weyl eigenvalue of the metric (25) is real and it is given by

a=—2OAX_+X,). (29
The Ricci tensor of this metric is
_ 2 1 3
Rlc(g)=5VdQ+X,a‘+X+a++ EAQ—Q—{g(dQ,dQ) g, (30

whereV=V,_-+V_+ is the connection of the product metfiegr +o ™.
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Let us consider metrics with zero Cotton tensor again. If they have a constant argument,
theorem 1 implies that the principal structure is integrable and so, the space—times are of type
D(M)3:9. Consequently, from proposition 4 the Weyl tensor has real eigenvalues. So we can state:

Theorem 2 The Weyl eigenvalues of a type D spaiime with zero Cotton tensor have
constant argument if, and only if, they are real

This result generalizes a previous one by fié&ee also McIntoslet al®). He showed that
there are no purely magnetic Type D vacuum metrics. But the purely magnetic case occurs when
the eigenvalue argument 3¥= + /2, that is to say, a particular value of constant argument. So,
from theorem 2 it follows:

Corollary 1: There is no purely magnetic Type D metric with zero Cotton tensor

This corollary shows that not only the purely magnetic vacuum solutions are forbidden, but
also the Weyl-magnetic space—times with zero Cotton tensor. On the other hand the Hall result is
also generalized in the sense that theorem 2 excludes all the constant arguments that differ from 0
or . Although this approach could be of interest in studying the existence of purely magnetic type
| solutions, the recent results on this subject have been obtained by using -tl3e 1
formalism?232:33

From the results above it is easy to recover the canonical form for the metrics with zero
Cotton tensor and real Weyl eigenvalues. Indeed, expres&8hand(26) show that the confor-
mal factor and the Weyl eigenvalue are related(b3=c?e”’=c?a??® c being an arbitrary con-
stant. On the other hand they also satisfy expres&@8nand, consequently) coincides, up to a
constant factor, wittX_+X, . So we have

Proposition 5 Every type D metric with real eigenvalues and zero Cotton tensor may be
written

1 - +

9= m((r +o7),
where o™ = o,5(x)dx*dX®, o =0 (x)dX'dX), are two arbitrary bidimensional metricsr
hyperbolic ando™ elliptic, with Gaussian curvatures Xand X, , respectively

This canonical expression was obtained in a previous Wavkere it was used to integrate
the Einstein vacuum equations, in this way getting an intrinsic algorithm to identify every A, B,
and C-metric of Ehlers and Kunétn the following section, starting from the propositions 3 and
4 we present a similar study for the charged counterpart of these vacuum solutions.

VI. ALIGNED EINSTEIN-MAXWELL SOLUTIONS OF TYPE D J:3

If (v,h) is the principal structure of the Weyl tensor, the aligned Einstein—Maxwell solutions
satisfy

Ric(g)=x(v—h)=k (c"—0c™), (31

where the second equality is satisfied for the ty@eglbnetrics as a consequence of proposition 3:
x=«xQ? o~ =0%, o"=02h. Moreover, as the principal structure is integrable, it is Maxwell-
ian and the associated Rainich index is a constant(&8pjs a necessary and sufficient condition
for the metric(25) to be an aligned solution of the Einstein—Maxwell equations. Taking into
account the expressidi80) for the Ricci tensor, conditiof31) becomes

Q=N_(x+r,(xH, (32
Vd\ .=B.0°, (33

2
&5 (XX +Q (B+B.)=0 (dh_ L)+ ot (dhy N L), (34)
dB.+X_d\ =0. (35)
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Equations(35) are the integrability conditions dB3). Moreover, if we differentiat€34), project
on o_, differentiate again and take into accoub), we have

2(X_+X,)dn _Od\ ;. +Q[dX, Odh - —dX_Odn . ]=0. (36)

Then a simple analysis of the expressid@8)—(36) leads to
Lemma 9The following conditions are equivalerft) dX,=0, (ii) B.=0, (iii) d\.=0, (iv)
o€(dQ)=0. Moreover, these conditions holdéf(d\ .,d\ ) =0 everywhere

A. The solutions: A, B, and C charged metrics

Proposition 3 states that the classeg9can be discriminated using the vectar§(d().
Then, lemma 9 implies that, as happens in the vacuum’€ake four classes can be characterized
by o~ or " to be bidimensional metrics that have constant curvature or not.

If g is in class [§19, lemma 9 implies thak . can be taken as coordinate in the plarfe
Then, Egs.(34)—(36) say thatB,., X., and o¢(d\.,d\,.) depend just on\., and thatX,
=—B.. Then, from(34) we haveg” (\_) + B’/ (A +)=0 and, consequently, is a polynomial in
\. of degree less than or equal to three. But lemma 9 also stateslXhas not a null vector
everywhere. Then, Einstein—Maxwell equatidB8)—(36) finally lead to

o= ! d\2+f(en,)dZ? (37)
ef(en,) ¢ € '

with f(\) a fourth degree polynomial. Then, puttif@j7) and(32) into (25) we recover the known
expression of the charged C-metrics.

If g is in class [§50, lemma 9 implies thak _ can be taken as a coordinate in the plane
and, moreoverg* must be of constant curvature. Thus, a redefinitiofilcdnd o~ allows us to
considerX, e{—1,0,1} and Q=X_. Then, if we introduce the coordinate transformation
=—1/n_, a similar procedure that leads in the general case to the charged counterpart of the
A;-metrics:

g=—a(r)dt*+ idr2+r2da2 a(r)EX—EJrE (38)
a(r) ’ roor®
do? being the bidimensional elliptic metric of constant curvatdrewith X=1,—1,0 depending
on theA;, A,, or A; case.
If g isin the class lg%g, in a similar wayA , can be taken as a coordinate in the plarie and
o~ must be of constant curvatur¥_e{—1,0,1}. Then, the coordinate transformatian
=—1/\, , leads to the charged counterpart of thenietrics:

g=r2do?+a(r)dz®+ Ldr2 a(r)EX—E+ o (39
a(r)y =’ roor2

do? being the bidimensional hyperbolic metric of constant curva¥yrevith X=1,—1,0 depend-

ing on theB,, B,, or B; case.

Finally, in class 33 both bidimensional metrics have a constant curvature and(E.
implies thatX_+ X, =0. This means that the space—times is conformally flat and the metric
becomesi=c~ +0c", whereo® are bidimensional metrics, hyperbolic, and elliptic, respectively,
with a constant curvatureX. The metrics of this more degenerated class are the only ones that
have zero Cotton tensor.

B. The intrinsic characterization

The metrics of type D\/l)gig, which take the canonical forrf25), admit an intrinsic identi-
fication by means of conditions involving the principal 2—-fotinThese characterization equa-
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tions that we have given in previous sections could be written explicitly in terms of metric
concomitants becausécan be determined from the Weyl tendbNevertheless, as a consequence

of the Bianchi identities some of the above conditions can be satisfied identically taking into
account the properties of the Ricci tensor. This is the case of vacuum metriBacAD implies

the nullity of the Cotton tensor, the principal planes always define an umbilical and Maxwellian
structure as a consequence of the results in Sec. IV. Actually we want to characterize aligned
Einstein—Maxwell solutions that are conformal to a product metric. So, the Weyl tensor must have
real eigenvalues and the principal planes are the eigenspaces of the Ricci tensor, that is,

W=3a(U’U—-*U®*U)+aG, Ric=y(v—h), (40)

wherev =U?, h=—+U?2. Then, taking into account the expressions in Sec. |l abet® 2imost-
product structures, a straightforward calculation shows that the Bianchi idenfitiesan be
written

(3a+2y) Q,=v®h(da); (3a—2x) Q,=h®v(da), (41
v(dy)—2xi(8U)U=0; h(dy)+2yi(éxU)*U=0. (42

From these expressions we find that, under the scalar restrictio)f¢32x)?, the properties of
the structure follow just by imposing that the Weyl and the Ricci tensor take expre$4@n&n
the other hand, the case ¢}°=(2x)? leads to theexceptionalmetrics considered by Plebski
and Hacyari* Nevertheless, it can easily be shown that 3+ (2x)? for the solutions recovered
in the subsection above. So we get the following characterization:

Lemma 10 The charged counterpart of the,M, and C-metrics are the only aligned
Einstein-Maxwell solutions of type D with real eigenvalues that sat{§)?+ (2x)?, « and x
being, respectively, the Weyl and the Ricci eigenvalues

Elsewheré? conditions forg to be of type D with real eigenvalues have been given in terms
of Weyl concomitants. In order to impose the Ricci tensor to take the fdGnwe can use the
algebraic Rainich condition'€.But if the Weyl tensor is of type D with real eigenvalues, a part of
these Rainich conditions hold identically when we impose the aligned restriction. From these
considerations and lemma 10 we have:

Theorem 3 The A B, and C EinsteirMaxwell solutions can be characterized by conditions

a#0; S?+S=0; Ric(x,x)=0,
Tr Ric=0, SRic]+Ric=0; (3a)?—(2x)?#0.

W=W(g) and Ric=Ric(g) being the Weyl and Ricci tensors of the metric g, and where «

= ()= (& W), x=x(g) =—KTiRic)'?, §=5(g)= Ha 'W—1gBg), S[Riclus
=S aupR"” and x is an arbitrary time-like vector.

This theorem offers an intrinsic and explicit description of the aligned Einstein—Maxwell
solutions of type @:3. Now we look for an intrinsic and explicit way to identify every metric of
this family, that is, to distinguish thd;, B;, and C charged metrics. In a first step we must
discriminate between the cIasse&?@and, as a consequence of proposition 3, this depends on the
nullity of the vectorsv(d() andh(d()). But the expressioii29) for the Weyl eigenvalue and
lemma 9 imply that, equivalently, the vectaréda) andh(d«) determine these properties. So,
the same scheme as in the vacuum ¥asen be used to distinguish between the classes.

The last step to obtain the intrinsic and explicit characterization of the solutions is to get an
invariant that provides the sign of the bidimensional curvature when this is constant. A straight-
forward calculation shows that X, is constant, then

X 0?%=w.=t(dIn(a+x))2—2a— €. (43
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So, we have a characterization of the Einstein—MaxwelB, andC-metrics, and we recover the
type D static vacuum solutions making= 0.

Theorem 4 Let g be an aligned EinsteiMaxwell solution of type § 9 (characterized in
theorem 3). Let us take the metric concomitants

M=+W(da, ,da,-) N=S(de,-,da,-),

and let x be an arbitrary unitary timelike vector. Then

(i) g is a charged Gmetric if, and only if M #0;

(i) g is a charged Ametric if, and only if M=0 and 2N(x,x) +trN>0.
Furthermore, it is of type A, A, or Az if w,>0, 0, <0 or w, =0, respectively, where
o, =5(dIn(atx))*—2a—x;

(i) g is a charged Bmetric if, and only if M=0 and 2N(x,x) +trN<O0.
Furthermore, it is of type B, B, or B; if w_>0, w_<0 or w_=0, respectively, where
w_=3dIn(a+y))*—2a+y.

This theorem provides an algorithm to identify, in the set of all metrics, the charged counterpart of
the Ehlers and Kundtvacuum solutions. The particular case of the metrics corresponds to a
charged spherically symmetric spacetime, that is, to the Reissner—Naondsthation. In this case
the metric takes the forng38) with X=1, and the mass and the charge are related with the
constantsC and D, respectively. Moreover, these constants can be given in terms of Weyl and
Ricci invariants. Then, from the last theorem and previous subsection it follows:

Theorem 5 Let Ric=Ric(g) and W=W(g) be the Ricci and the Weyl tensors of a spacetime
metric g, and let us take the metric concomitants

a=—(&Tr W3)13, x=—5(Tr Ric)Y? o= fg(dina,dina)—2a—y, (44)

1 1
S=3-(W-}tag®g), M=*W(da, da,-), N=S(da, da,-). (45

The necessary and sufficient conditions for g to be the Reisbiogdstran metric are
a#0, $*+S=0, Ric(x,x)=0,
Tr Ric=0, SRic]+Ric=0, (3a)?—(2y)?#0,
M=0, 2N(X,x)+trN>0, >0,

where x is an arbitrary unitary time-like vector. Moreover, the mass m and the electric charge e
are given, respectively, by m(a+ x)/w®? and €= — y/w?, and the timelike Killing vector by

&= [Vo(3a+2x) ] IN)/YN(X,X)] .

C. A summary in algorithmic form

Finally, in order to emphasize the algorithmic nature of our results, we present them as a flow
diagram that identifies, among all metrics, every A, B, or C Einstein—Maxwell soldtiothe
following flow chart we denote theA*, B*, andC* -metricg. The exceptional metrics studied
by Plebaski are also identified and they are denofedc-metrics. This operational algorithm
involves an arbitrary unitary timelike vectotr, and some metric concomitants that may be ob-
tained from the components of the metric tengan arbitrary local coordinates: The invariants
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X, o, S, M, andN are given in(43)—(45) in terms of the Ricci and Weyl tensors. Making
=0, we recover the vacuum solutidfis

Ric(g), x, o, S
M, N, w_, wy

S(Ric) + Ric =
Ric(z,z) >0

> l Ezc-metrics |

> i C*-metrics |

——| Bj-metrics
——| B3-metrics
‘—| Bj-metrics

—| Aj-metrics

[ |
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