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Departament de Matema`tica Econòmico-Empresarial, Universitat de Vale`ncia,
E-46071 Vale`ncia, Spain

~Received 5 November 2002; accepted 12 November 2003!

We give a classification of the type D space–times based on the invariant differen-
tial properties of the Weyl principal structure. Our classification is established using
tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic na-
ture, it is valid for the whole set of the type D metrics and it applies on both,
vacuum and nonvacuum solutions. We consider the Cotton-zero type D metrics and
we study the classes that are compatible with this condition. The subfamily of
space–times with constant argument of the Weyl eigenvalue is analyzed in more
detail by offering a canonical expression for the metric tensor and by giving a
generalization of some results about the nonexistence of purely magnetic solutions.
The usefulness of these results is illustrated in characterizing and classifying a
family of Einstein–Maxwell solutions. Our approach permits us to give intrinsic
and explicit conditions that label every metric, obtaining in this way an operational
algorithm to detect them. In particular a characterization of the Reissner–
Nordström metric is accomplished. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1640795#

I. INTRODUCTION

Type D space–times have been widely considered in literature and we can point out not only
the large number of known families of exact solutions but also the interest of these solutions from
the physical point of view. Let us quote, for example, the Schwarszchild or the Kerr metrics which
model the exterior gravitational field produced, respectively, by a nonrotating or a rotating spheri-
cally symmetric bounded object. Or also the related metrics in the case of a charged object, the
Reissner–Nordstro¨m or the Kerr–Newman solutions. However, although some classes of type D
metrics have been considered taking into account algebraic properties of the Weyl eigenvalue or
differential conditions on the null Weyl principal directions, a classification of the type D solutions
involving all the first-order differential properties of the Weyl tensor geometry is a task which has
not been totally accomplished yet. In this work we present this classification of the type D metrics
and we show the role that it can play in studying geometric properties of known space–times, in
looking for new solutions of Einstein equations or in offering new elements which allow us to give
intrinsic and explicit characterizations of all these space–times.

At an algebraic level, a type D Weyl tensor determines a complex scalar invariant, the eigen-
value, and a 212 almost-product structure defined by its principal 2–planes. Some classes of type
D metrics can be considered by imposing the real or imaginary nature of the Weyl eigenvalue. In
this way we find the so-called purely electric or purely magnetic space–times. The purely electric
character often appears as a consequence of usual geometric or physical restrictions.1 This is the
case of the static type D vacuum spacetimes found by Ehlers and Kundt,2 or the Barnes degenerate
perfect fluid solutions with shear-free normal flow.3 On the other hand, some restrictions are
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known on the existence of purely magnetic solutions.4,5 A wide bibliography about Weyl-electric
and Weyl-magnetic space–times can be found in a recent work6 where these concepts have been
generalized.

The most usual approaches to look for exact solutions of the Einstein equations work in
frames or local coordinates adapted to some outlined direction of the curvature tensor. For ex-
ample, in the case of perfect fluid solutions or static metrics the 311 formalism adapted, respec-
tively, to the fluid flow or to the normal timelike Killing vector can be useful. Sometimes one
considers that some of the kinematic coefficients associated with the unitary vector are zero. This
means that one is searching for new solutions belonging to a class of metrics that are defined by
first-order differential conditions imposed on the curvature tensor. A similar situation appears
when local coordinates adapted to the multiple Debever direction are considered when looking for
algebraically special solutions. Indeed, if the hypotheses of the generalized Goldberg–Sachs theo-
rem hold, the multiple Debever direction defines a shear-free geodesic null congruence. In this
case, or when considering nondiverging or nontwisting restrictions on a Debever direction, we are
imposing differential conditions on the Weyl tensor.

It is worth pointing out that the kinematic coefficients associated with a unitary vector com-
pletely determine the first-order differential properties of the 113 almost-product structure that it
defines. Nevertheless, the conditions usually imposed on the two double Debever directions of a
type D space–time do not cover all the differential properties of the principal 212 almost-product
structure of the Weyl tensor exhaustively. The first goal of this work is to offer a classification of
the type D metrics based on all the first-order differential properties of the principal structure, and
to reinterpret under this view the usual conditions that can be found in the literature. This classi-
fication is not based on the scalar invariants, but on tensorial invariants of the Weyl tensor. These
invariants are well adapted to the generic type D metrics, where a Weyl canonical frame is not
univocally determined, and where the eigenvalues and the 212 principal structure are the only
invariants associated with the Weyl tensor.

The ~proper! Riemannian almost-product structures have been classified according the invari-
ant decomposition of their structure tensor,7 and the classes have been interpreted in terms of the
foliation, minimal and umbilical properties.8 This classification can be generalized to the space–
time structures by also considering the causal character of the planes.9 Almost-product structures
have shown their usefulness in studying the underlying geometry of some physical fields. The 1
13 structures are frequently used in relativity and sometimes the properties of a physical field can
be expressed in terms of the kinematic properties of a unitary vector.10,11 On the other hand, the
212 structure associated with a regular solution of Maxwell equations12 is a basic concept in
building the ‘‘already unified theory’’ for the electromagnetic field.13 It has also allowed a geo-
metric interpretation14 of the Teukolsky–Press relations15 used in analyzing incident electromag-
netic waves on a Kerr black hole.

In General Relativity we can also find almost-product structures attached to the geometric or
physical properties of the spacetime. Indeed, some energy contents~for example, in the Einstein–
Maxwell or perfect fluid solutions! define underlying structures that restrict, via Einstein equa-
tions, the Ricci tensor. On the other hand, the Weyl tensor also defines almost-product structures
associated with its principal bivectors depending on the different Petrov types.16 These structures
determine the Weyl canonical frames.17 In the type D case, only theprincipal structureis outlined.

Until now we have mentioned two different ways of classifying the type D space–times: The
first one is strictly algebraic and takes into account the real or imaginary character of the Weyl
eigenvalues; the second one, which we will present here, involves differential conditions of the
212 principal structure, that is, on the Weyl eigenvectors. Nevertheless, there is a third natural
manner to impose restrictions on the type D metrics: To take into account the relative position
between the principal 2–planes and the gradient of the Weyl scalar invariants. This is a mixed
classification, differential in the eigenvalues and algebraic in the principal structure, which affords
16 different classes of type D metrics. In this work we will show the marked relation that exists
between this classification and the two previous ones.

A classification of type D space–times taking into account the properties of the 212 principal
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structure shows quite interesting advantages. Indeed, the integration of the static type D vacuum
equations using an alternative approach based on the Weyl principal structure has allowed us to
complete the results by Ehlers and Kundt2 in order to accomplish an algorithmic and intrinsic
identification of the solutions and, in particular, to obtain the equations that define the Schwarzs-
child space–time explicitly.18 Moreover, our classification affords a geometric interpretation of the
other families of vacuum type D solutions. Starting from this approach two Killing vectors can be
determined in terms of Weyl concomitants,19 a result which shows that a commutative bidimen-
sional group of isometries exists. Although all the type D vacuum solutions were found by
Kinnersley20 a integration method based on our classification permits their intrinsic label, as well
as a geometric interpretation of the NUT and acceleration parameters.21

In this work we apply our classification to the study of space–times with zero Cotton tensor.
For them, the Bianchi identities impose the same restrictions on the Weyl tensor as the vacuum
condition. We interpret these restrictions in terms of geometric properties of the principal structure
and we show that the compatible classes can be characterized in terms of the relative position
between the gradient of some invariant scalars and the principal 2–planes. From a physical point
of view these metrics have two interesting properties. Firstly, the two double Debever directions
define shear-free geodesic null congruences and, secondly, the principal structure is Maxwellian.
This result can be of interest in order to generalize the Teukolsky–Press relations14,15 and their
applications to type D nonvacuum solutions.

In order to show the usefulness of this approach in analyzing properties of known metrics, in
integrating Einstein equations and in labeling the solutions, here we study the space–times with
the two properties quoted above for the particular classes with integrable structure. In this case, the
space–time metric turns out to be conformal to a product metric. Then, as a first consequence, we
extend the result by Hall4 ~see also McIntoshet al.5! concerning the nonexistence of purely
magnetic type D vacuum solutions in a double sense: The family of solutions where the new result
applies is wider than the vacuum metrics, and the purely magnetic restriction is weakened to an
arbitrary constant argument. Elsewhere22 we have acquired a similar extension for some results
concerning the purely magnetic type I solutions. Moreover, starting from a canonical form we
begin on the integration of the Einstein–Maxwell equations for the compatible classes, and we
recover the charged counterpart of the A, B, C vacuum metrics by Ehlers and Kundt. The inte-
gration method at once provides an algorithm to detect the solutions with intrinsic and explicit
conditions and, in particular, it offers a characterization of the Reissner–Nordstro¨m space–time.
The classification of the Kinnersley rotating type D vacuum solutions will be considered
elsewhere.21

The paper is organized as follows. In Sec. II we introduce some definitions and notations and
we give some results about 212 almost-product structures. In Sec. III we present the classifica-
tion of the type D metrics based on the first-order differential properties of the Weyl principal
structure, as well as the mixed classification involving the eigenvalues gradient and the principal
structure. The Cotton-zero type D metrics are analyzed in Sec. IV, and we show that the principal
2–planes define an umbilical structure and, consequently, we only have 16 compatible classes
which coincide precisely with those defined by the mixed classification. The four classes with
integrable structure are studied in detail in Sec. V: We present a canonical form for them and
generalize a result about the nonexistence of purely magnetic solutions. Finally, in Sec. VI, we
apply our results to recover a family of Einstein–Maxwell solutions, to give an operational algo-
rithm to detect them and to explicitly and intrinsically characterize the Reissner–Nordstro¨m
space–time. Some of the results in this paper were communicated without proof at the Spanish
Relativity Meeting–96.19

II. SPACE–TIME ALMOST-PRODUCT STRUCTURES

On a Riemannian manifold (M ,g) an almost-product structure is defined by a p-plane fieldV
and its orthogonal complementH. Let v andh5g2v the respective projectors, and letQv be the
~2,1!-tensor:
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Qv~x,y!5h~¹vxvy! , ; x,y. ~1!

Let us consider the invariant decomposition ofQv into its antisymmetric partAv and its symmetric
part Sv[Sv

T1 (1/p) v ^ TrSv , whereSv
T is a traceless tensor:

Qv5Av1
1

p
v ^ Tr Sv1Sv

T . ~2!

The planeV is foliation if, and only if,Av50. In this caseQv5Sv and it coincides with the second
fundamental form of the integral manifolds of the foliationV.23 MoreoverV is minimal, umbilical
or geodesic if, and only if, TrSv50, Sv

T50 or Sv50, respectively. Then one can generalize these
geometric concepts for plane fields which are not necessarily foliation:

Definition 1: A plane field V is said to be geodesic, umbilical or minimal if the symmetric part
Sv of its (generalized) second fundamental form Qv satisfies, respectively, Sv50, Sv

T50 or
Tr Sv50.

The ~proper! Riemannian almost-product structures (V,H) have been classified taking into
account the invariant decomposition~2! of the tensorsQv andQh or, equivalently, according with
the foliation, minimal, umbilical, or geodesic character of each plane.7,8 Some of these properties
have also been interpreted in terms of invariance along vector fields.24 A generalization for the
spacetime structures follows taking into account the causal character of the planes. We will say
that a structure is integrable when both planes are foliation and we will say that it is minimal,
umbilical or geodesic if both of the planes are so.

This way, on an oriented space–time (V4 ,g) of signature (2111) we have generically
26564 different classes of~almost-product! structures depending on the first-order geometric
properties. Nevertheless, whenp51, V is always an umbilical foliation and, consequently, only 16
possible classes exist. In this caseQv andQh depend on the kinematic coefficients associated with
a unitary vectoru, and the classes are defined by the vanishing or nonvanishing of the accelera-
tion, rotation, shear, and expansion. Elsewhere this kinematical interpretation has been extended to
the 212 space–time structures and, as a consequence, the Maxwell–Rainich equations have been
expressed in terms of kinematical variables.9

In order to be used in next sections, we now analyze the space–time 212 almost-product
structures in detail by giving the characterization of their properties in terms of their canonical
2–formU, and by showing their relation with other usual approaches, the Newmann–Penrose and
the self-dual formalisms. We also study the change of these properties for a conformal transfor-
mation and we summarize some results about Maxwellian structures.

A. 2¿2 structures

In the case of a 212 space–time structure it is useful to work with thecanonicalunitary
2-form U, volume element of the time-like planeV. Then, the respective projectors arev5U2

andh52(* U)2, whereU25U3U5Tr23 U ^ U and* is the Hodge dual operator.
The tensorsQv andQh determine the derivatives of the volume elementsU and* U by means

of

¹aUbl5~Qv!am,[bUm
l]1~Qh!a[b,

m Ul]m ,

¹a* Ubl5~Qh!am,[b* Um
l]1~Qv!a[b,

m
* Ul]m . ~3!

Then, if we denoted52Tr ¹, a straightforward calculation leads to

dU5 i ~Tr Sh!U22~U,Av! d* U5 i ~Tr Sv!* U22~* U,Ah!, ~4!

where 2(U,Av)m5Uab(Av)ab
m . So, the minimal and the foliation character of the planes can be

stated in terms of the projections ofdU andd* U ontoV andH. On the other hand, let us consider
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G'5U ^ U2* U ^ * U1G; h'5U ^̃ * U1h, ~5!

~6!

Then, from expressions~3! and ~4! we get

~2¹U2K !lab5~Sv
T!lm,[a Um

b]1~Sh
T!lm,[a * Um

b] , ~7!

K[ i ~dU !G'2 i ~d* U !h' , ~8!

and so, the umbilicity of each plane is equivalent to the vanishing of the respective projections of
the first member of~7!. We summarize these results in the following lemma:

Lemma 1: Let (V,H) be a212 almost-product structure and let U be its canonical 2-form.
Then, the following conditions hold:

(1) V (resp. H) is f oliation⇔ i (dU)* U50 (resp. i (d* U)U50);
(2) V (resp. H) is minimal⇔ i (d* U)* U50 (resp. i (dU)U50);
(3) V is umbilical⇔U3$2¹U2@ i (dU)G'2 i (d* U)h'#%50

H is umbilical⇔* U3$2¹U2@ i (dU)G'2 i (d* U)h'#%50.

A 212 structure is also determined by the two null directionsl 6 on the planeV. A family of
complex null bases$ l 1 ,l 2 ,m,m̄% exists such thatU5 l 2∧ l 1 . This family is fixed up to change
l 6�e6fl 6 , m�eium. Then, conditions of lemma 1 can be interpreted in terms of the Newman–
Penrose coefficients25 as

Lemma 2: Let U5 l 2∧ l 1 be the canonical 2–form of a212 structure. It holds:

(1) The plane V is umbilical iffk505n;
(2) the plane H is umbilical iffl505s;
(3) the plane V is minimal iffp̄5t;
(4) the plane H is minimal iffr1 r̄505m1m̄;
(5) the plane V is a foliation iffp̄52t;
(6) the plane H is a foliation iffr2 r̄505m2m̄.

Taking into account the significance of the NP coefficients25 this lemma implies that the umbilical
nature of a 212 structure means that its principal directionsl 6 define shear-free geodesic null
congruences. The minimal or foliation character of the spacelike 2-plane have also a kinematical
interpretation and state, respectively, that both principal directions are expansion-free or vorticity-
free. Elsewhere9 all the geometric properties have been interpreted in terms of kinematic coeffi-
cients associated with every direction in a 2–plane~not only the null ones! with respect to the
other 2–plane.

When both planes have a specific differential property, it is more convenient to introduce the
self-dual unitary 2–formU[ (1/&) (U2 i* U) associated withU. We have

2 Re@ i ~dU!U#5 i ~dU !U2 i ~d* U !* U[F~U !,

2 Im@ i ~dU!U#52 i ~dU !* U2 i ~d* U !U[C~U !. ~9!
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So, the complex 1–formdU collects the information about the minimal and foliation character of
the structure. On the other hand, ifG5 1

2(G2 ih) is the metric on the self-dual 2–forms space, and
K[ (1/&) (K2 i* K) is the self-dual 2-form associated to the vector valued 2–formK given in
~8!, we have

K5 i ~dU!@U^ U1G#. ~10!

Consequently, from lemma 1 and Eqs.~9! and ~10!, we have
Lemma 3: Let us consider the212 structure defined byU5 (1/&) (U2 i* U). It holds:

(1) The structure is minimal if, and only if, Re@i(dU)U#50;
(2) the structure is integrable if, and only if, Im@i(dU)U#50;
(3) the structure is umbilical, if, and only if, ¹U5 i (dU)@U^ U1G#.

B. Almost-product structures and conformal transformations

If ( V,H) is a p1q almost-product structure for a metricg, then (V,H) is also an almost-
product structure for every conformal metricĝ5e2lg, and the projectors are related by the
conformal factor: Ifg5v1h, then ĝ5 v̂1ĥ, wherev̂5e2lv, ĥ5e2lh. The generalized second
fundamental form change as

Qv̂5e2l ~Qv2v ^ h~dl!!. ~11!

So, the foliation and the umbilical character are conformal invariants, but the minimal character is
not. Indeed, taking the trace of the expression above, we have

Tr Qv̂5Tr Qv2ph~dl!. ~12!

These expressions immediately lead to the following result.
Lemma 4: Let (V,H) be a p1q almost-product structure for a metric g5v1h. The structure

(V,H) is minimal for a conformal metric gˆ 5e2lg if, and only if,

1

p
Tr Qv1

1

q
Tr Qh5dl. ~13!

If p5q ~as happens for the space–time 212 structures!, we conclude that the necessary and
sufficient condition for a structure to be minimal for a conformal metric is the sum of the traces of
the second fundamental forms to be a closed 1-form, d(TrQv1Tr Qh)50. Thus, taking into
account~4! and the expression~9! for F(U), lemma 4 can be stated for the 212 case as

Lemma 5: Let U be the canonical 2–form of a212 structure for the space–time metric g.
The structure is minimal for a conformal metric if, and only if, dF(U)50. More precisely, when
this condition hold, letl be such that2dl5F(U). Then, the structure is minimal for the con-
formal metric ĝ5e2lg.

The most degenerated class of almost-product structures are the product ones, which means,
those that satisfyQv505Qh . A metric that admits a product structure is called a product metric.
Then, and only then, local coordinates (xA,xi), A50,1, i 52,3, exist such thatg̃5s21s1, being
s25sAB

2 (xC)dxAdxB ands15s i j
1(xk)dxidxj bidimensional metrics, hyperbolic and elliptic, re-

spectively. Then, ifg̃ is a 212 product metric andg5e22lg̃, lemma 5 and expression~11! lead
to the following result.

Lemma 6: The necessary and sufficient condition for a metric g to be conformal to a product
metric g̃, is that an integrable and umbilical almost-product structure U exists such that
dF(U)50. More precisely, if2dl5F(U), then g̃5e2lg is a product metric.
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C. Maxwellian structures

A regular 2-formF takes the canonical expressionF5ef@coscU1sinc*U#, whereU defines
the 212 associated structure,f is the energetic indexand c is the Rainich index. When F is
solution of the source-free Maxwell equations,dF50, d* F50, one says thatU defines aMax-
wellian structure. In terms of the canonical elements (U,f,c), Maxwell equations become:12,14

df5F~U ![ i ~dU !U2 i ~d* U !* U, ~14!

dc5C~U ![2 i ~dU !* U2 i ~d* U !U. ~15!

Then, from~14! and ~15! the Rainich theorem12 follows:
Lemma 7: A unitary 2-form U defines a Maxwellian structure if, and only if, it satisfies:

dF~U !50; dC~U !50. ~16!

The Maxwell–Rainich equations~14! and ~15! have a simple expression in the self-dual formal-
ism. Indeed, the self-dual 2 –formF5 (1/&) (F2 i* F) may be written asF5ef1 ic U. Then,
from Maxwell equations,dF50, and taking into account that 2U 25g,

d~f1 ic!52i ~dU!U. ~17!

This last equation is equivalent to~14! and~15! if we take into account~9!. Moreover, from here
we recover the complex version of~16! easily

di ~dU!U50. ~18!

III. CLASSIFYING TYPE D SPACE–TIMES

The self–dual Weyl tensorW5 1
2(W2 i* W) of a type D space–time takes the canonical

expression17

W53aU^ U1aG, ~19!

wherea52 Tr_W 3/Tr_W 2 is the double eigenvalue andU is the self-dual principal 2–form. This
principal 2–form defines a 212 almost-product structure which is called theprincipal structureof
a type D space–time. In terms of the canonical 2–formU of the principal structure the self-dual
2–form U becomesU5 (1/&) (U2 i* U). So, at the algebraic level, a type D Weyl tensor only
determines the complex scalara and the principal structureU. Consequently, any generic classi-
fication of the type D metrics must depend on these invariants associated with the Weyl tensor.

The families of purely electric or purely magnetic type D spacetimes are defined, at first
glance, by means of alternative conditions, namely, the nullity of the magnetic or the electric Weyl
fields associated with an observeru. But, actually, they admit a simple intrinsic characterization in
terms of the Weyl scalar invariant: The eigenvalue is real or imaginary.5 In spite of these strong
conditions, the family of Weyl-electric type D space–times contains quite interesting solutions. We
can quote, for example, the static vacuum metrics2 or the degenerate perfect fluids with shear-free
normal flow.3 All the type D silent universes are also known26,27as well as other families of purely
electric type D perfect fluid solutions.28,30Nevertheless, few Weyl-magnetic type D solutions have
been found,29 and some restrictions about their existence are known. Indeed, there are not vacuum
metrics with purely magnetic type D Weyl tensor.4,5 The classification that we present below
allows us to give an extension of this result in Sec. 5. On the other hand, the generalization of the
purely electric or magnetic concepts to the spacelike or null directions does not afford new classes
in the type D case.6

But the purely electric or magnetic properties define very narrow subsets of the generic type
D metrics because they impose one of the two real scalar invariants to be zero. The large family
of known solutions of the Einstein equation recommends us to consider other classifications, based
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on less restrictive properties, which afford new intrinsic elements that increase the knowledge of
the metrics and permit their explicit characterization. Besides theintrinsic nature, the classification
must begeneric, that is, valid for the whole set of the type D metrics. Consequently, it will be
independent of the energy content and it will have to be built on the intrinsic geometry associated
with a type D Weyl tensor.

The first classification that we propose is based on the geometric properties of the principal
2–planes, that is, it is induced by the geometric classification of the principal structure. Every
principal 2–plane can be submitted or not to three properties, so 26564 classes can be considered.

Definition 2: Taking into account the foliation, minimal, or umbilical character of each prin-
cipal 2–plane we distinguish64 different classes of type D space–times.

We denote the classes as Dlmn
pqr , where the superscripts p,q,r take the value 0 if the time-like

principal plane is, respectively, a foliation, a minimal or an umbilical distribution, and they take
the value 1 otherwise. In the same way, the subscripts l,m,n collect the foliation, minimal or
umbilical nature of the space-like plane.

The most degenerated class that we can consider is D000
000 which corresponds to a type D

product metric, and the most regular one is D111
111 which means that neitherV nor H are foliation,

minimal or umbilical distributions. We will put a dot in place of a fixed script~1 or 0! to indicate
the set of metrics that cover both possibilities. So, for example, the metrics of type D11 •

111 are the
union of the classes D111

111 and D110
111; or a metric is of type D

• • •

0 • • if the timelike 2–plane is a
foliation.

Taking into account lemma 1, every class is defined by means of first-order differential
equations imposed on the canonical 2–formU. On the other hand,U can be written explicitly in
terms of the Weyl tensor17 and, consequently, every class admits an intrinsic and explicit charac-
terization.

The above classification depends on the derivatives of the principal 2–formU. An alternative
classification at first order in the Weyl eigenvalues can also be considered by taking into account
the four 1-forms defined by the principal 2–planes and the gradient of the modulus and the
argument of the eigenvalue. So, we will have 24516 classes.

Definition 3: Let a5e
3
2(r1 iu) be the Weyl eigenvalue. Taking into account the relative

position between the gradients du,dr and each principal 2–plane we distinguish16 different
classes of type Dspace–times.

We denote the classes D@pq,rs# where p,q,r ,s take the values0 or 1 to indicate, respectively,
that one of the 1-forms U(du),U(dr),* U(du),* U(dr) is zero or nonzero.

The most degenerated class D@00;00# is occupied by the type D metrics with constant eigen-
values, and the most general one D@11;11# by those type D space–times for which both, the
modulus and the argument of the Weyl eigenvalue, have nonzero projection onto the principal
planes. As above, a dot means that a condition is not fixed. So, for example, we write D@0 • ; • •#
to indicate the type D metrics for which the argument of the eigenvalues have zero projection onto
the timelike principal 2–plane.

The type D metrics with constant modulus,dr50, correspond to the classesD@ •0; •0#, and
those with constant argument,du50, are the metrics of typeD@0 •;0 •#. This last family contains
the Weyl-electric and the Weyl-magnetic space–times because a real or imaginary eigenvalue
means that the argument takes the constant value 0,p or p/2, 3p/2, respectively.

In the next section we will show the marked relation between the two classifications given in
definitions 2 and 3 when some usual restrictions are imposed on the Ricci tensor.

IV. TYPE D METRICS WITH ZERO COTTON TENSOR

The space–time Cotton tensorP is a vector valued 2–form which depends on the Ricci tensor
as

Pmn,b[¹[mQn]b , 2Q[Ric2 1
6 ~Tr Ric!g. ~20!
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The Bianchi identities equal the Cotton tensor with the divergence of the Weyl tensor. Indeed, ifW
is the self-dual Weyl tensor andP5 1

2(P2 i* P) is the self-dual 2–form associated with the Cotton
tensor, Bianchi identities become

P52dW. ~21!

So, the vanishing of the Cotton tensor is equivalent to the Weyl tensor to be divergence free,
dW50. Taking into account the canonical expression of a type D Weyl tensor~19!, a straightfor-
ward calculation leads to the following:

Proposition 1: Let U anda52 Tr_W 3/Tr_W 2 be the principal 2–form and the double eigen-
value of a type D Weyl tensor. Then, the space–time Cotton tensor is zero if, and only if,

¹U5 i ~dU!@U^ U1G# ; i ~dU!U5 1
3d lna. ~22!

From the results of the previous section, we know that the first condition means that the principal
structure is umbilical, that is, the principal directions are shear free null geodesics accordingly to
the Goldberg–Sachs theorem. Consequently, every type D space–time with zero Cotton tensor is
of type D

••0
••0. The second equation in~22! shows that the principal structure is Maxwellian and the

electromagnetic invariant scalars depend on the Weyl eigenvalue. If we take the real and the
imaginary parts of this equation and writer1 iu5 2

3 ln a, we get

F~U !5dr ; C~U !5du. ~23!

So the modulus and the argument of the Weyl eigenvalue govern, respectively, the minimal and
the foliation character of the principal planes. This relation establishes a bijection between the
classes of the two classifications that we have presented. More precisely, we have:

Theorem 1: Every type D spacetime with zero Cotton tensor is of type D
••0
••0. Moreover, it is

of class Dlm0
pq0 if, and only if, it is of class D@ lm,pq#.

So we have just 16 classes of type D space–times with zero Cotton tensor and each one is
characterized by the vanishing or not of the projections of the gradient of the Weyl eigenvalue
onto the principal planes. The second condition in~22! implies that a solution of the Maxwell
equations exists that hasU as its associated structure. Then, taking into account the results of Sec.
II C, it holds:

Proposition 2: The principal structure of a type D space–time with zero Cotton tensor is
Maxwellian. More precisely, ifU and a52 Tr_W 3/Tr_W 2 are the principal 2–form and the
double eigenvalue of the Weyl tensor, the self–dual 2–form

FM5a2/3U, ~24!

is a solution of the source-free Maxwell equations, dFM50.
In the following D~M! denotes the type D space–times with Maxwellian principal structure,

and D~M!lmn
pqr expresses the type D~M! space–times of class Dlmn

pqr . With this notation, from theo-
rem 1 and proposition 2 it follows:Every type D space–time with zero Cotton tensor is of type
D(M )

••0
••0.

It is worth pointing out that the family of type D metrics admitting a conformal Killing–Yano
tensor attached to its principal structure are those of type D~M!

••0
••0,31 and this family includes the

Cotton-zero type D metrics.
The results of this section have been used elsewhere21 in offering a new approach to the

Kinnersley type D vacuum solutions. An integration of the Einstein vacuum equations based on
the classification given above permits the explicit and intrinsic labeling of the solutions as well as
to put over interesting geometric properties of these space–times.
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V. SOME RESULTS ABOUT TYPE D „M…0"0
0"0 SPACE–TIMES

Now, in this section, we restrict our study to the type D metrics with Maxwellian, integrable
and umbilical structure, that is, those of type D~M!0•0

0•0. We can easily obtain a canonical form for
these metrics. Indeed, lemma 6 states that the metric is conformal to a product one with a
conformal factor determined by the potential of the closed 1–formF(U). More precisely, the
metric can be written as

g5
1

V2 @sAB
2 ~xC! dxAdxB1s i j

1~xk! dxidxj #, ~25!

whereV satisfies

2 d lnV5F~U ![ i ~dU !U2 i ~d* U !* U. ~26!

Conversely, we can analyze the Petrov type of the metric~25! by studying a product metric
g̃5s21s1. Let X2 andX1 be the Gaussian curvatures of the arbitrary bidimensional metrics,
s2 and s1, hyperbolic and elliptic, respectively. The Gauss–Codazzi equations show that the
Riemann and the Ricci tensors ofg̃ are

~27!

So, the Weyl tensor of a product metric is Petrov-type O precisely whenX21X150, and then
both curvatures are constant. On the other hand, whenX21X1Þ0, the space–time is type D.
MoreoverU determines the principal structure and the double eigenvalue is given by

ã52 1
6 ~X21X1!. ~28!

So, we have
Lemma 8: Every212 product metrics21s1 is of type D~or O) with real eigenvalues, and

the double eigenvalue is given by (28), where X2 and X1 are the Gaussian curvatures ofs2 and
s1, respectively. Moreover, it is of type O if, and only if, X252X15constant.

A conformal transformationg̃5V2g preserves the Petrov type and the Weyl eigenvalues
change asã5V22 a. Consequently, from Eq.~26! and taking into account lemmas 1 and 8, we
can conclude:

Proposition 3: A space–time is of type D(M )0•0
0•0 if, and only if, there exist local coordinates

such that the metric g takes the expression (25) with X21X1Þ0, where X2 and X1 are the
Gaussian curvatures ofs2 and s1, respectively. Moreover, it is of class D010

010, D010
000, D000

010, or
D000

000 if, and only if, s2(dV)Þ0Þs1(dV), s1(dV)50Þs2(dV), s1(dV)Þ05s2(dV), or
dV50, respectively.

Furthermore, taking into account the expressions~27! for the Ricci and~28! for the eigenvalue
of a product metric, and considering the change of these metric concomitants for a conformal
transformation, we can state:

Proposition 4: The Weyl eigenvalue of the metric (25) is real and it is given by

a52 1
6 V2~X21X1!. ~29!

The Ricci tensor of this metric is

Ric~g!5
2

V
¹dV1X2s21X1s11F 1

V
DV2

3

V2 g̃~dV,dV!G g̃, ~30!

where¹5¹s21¹s1 is the connection of the product metric g˜5s21s1.
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Let us consider metrics with zero Cotton tensor again. If they have a constant argument,
theorem 1 implies that the principal structure is integrable and so, the space–times are of type
D~M!0•0

0•0. Consequently, from proposition 4 the Weyl tensor has real eigenvalues. So we can state:
Theorem 2: The Weyl eigenvalues of a type D space–time with zero Cotton tensor have

constant argument if, and only if, they are real.
This result generalizes a previous one by Hall4 ~see also McIntoshet al.5!. He showed that

there are no purely magnetic Type D vacuum metrics. But the purely magnetic case occurs when
the eigenvalue argument is3

2u56p/2 , that is to say, a particular value of constant argument. So,
from theorem 2 it follows:

Corollary 1: There is no purely magnetic Type D metric with zero Cotton tensor.
This corollary shows that not only the purely magnetic vacuum solutions are forbidden, but

also the Weyl-magnetic space–times with zero Cotton tensor. On the other hand the Hall result is
also generalized in the sense that theorem 2 excludes all the constant arguments that differ from 0
or p. Although this approach could be of interest in studying the existence of purely magnetic type
I solutions, the recent results on this subject have been obtained by using the 113
formalism.22,32,33

From the results above it is easy to recover the canonical form for the metrics with zero
Cotton tensor and real Weyl eigenvalues. Indeed, expressions~23! and~26! show that the confor-
mal factor and the Weyl eigenvalue are related byV25c2er5c2a2/3, c being an arbitrary con-
stant. On the other hand they also satisfy expression~29! and, consequently,V coincides, up to a
constant factor, withX21X1 . So we have

Proposition 5: Every type D metric with real eigenvalues and zero Cotton tensor may be
written

g5
1

~X21X1!2 ~s21s1!,

wheres25sAB
2 (xC)dxAdxB, s15s i j

1(xk)dxidxj , are two arbitrary bidimensional metrics, s2

hyperbolic ands1 elliptic, with Gaussian curvatures X2 and X1 , respectively.
This canonical expression was obtained in a previous work18 where it was used to integrate

the Einstein vacuum equations, in this way getting an intrinsic algorithm to identify every A, B,
and C-metric of Ehlers and Kundt.2 In the following section, starting from the propositions 3 and
4 we present a similar study for the charged counterpart of these vacuum solutions.

VI. ALIGNED EINSTEIN–MAXWELL SOLUTIONS OF TYPE D 0"0
0"0

If ( v,h) is the principal structure of the Weyl tensor, the aligned Einstein–Maxwell solutions
satisfy

Ric~g!5x~v2h!5k ~s22s1!, ~31!

where the second equality is satisfied for the type D0•0
0•0 metrics as a consequence of proposition 3:

x5kV2, s25V2v, s15V2h. Moreover, as the principal structure is integrable, it is Maxwell-
ian and the associated Rainich index is a constant. So,~31! is a necessary and sufficient condition
for the metric ~25! to be an aligned solution of the Einstein–Maxwell equations. Taking into
account the expression~30! for the Ricci tensor, condition~31! becomes

V5l2~xA!1l1~xi !, ~32!

¹dle5bes
e, ~33!

V2

6
~X21X1!1V ~b21b1!5s2~dl2 ,dl2!1s1~dl1 ,dl1!, ~34!

dbe1Xedle50. ~35!
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Equations~35! are the integrability conditions of~33!. Moreover, if we differentiate~34!, project
on s2 , differentiate again and take into account~35!, we have

2~X21X1!dl2∧dl11V@dX1∧dl22dX2∧dl1#50. ~36!

Then a simple analysis of the expressions~32!–~36! leads to
Lemma 9: The following conditions are equivalent: ( i ) dXe50, (i i ) be50, (i i i ) dle50, (iv)

se(dV)50. Moreover, these conditions hold ifse(dle ,dle)50 everywhere.

A. The solutions: A, B, and C charged metrics

Proposition 3 states that the classes D0m0
0q0 can be discriminated using the vectorsse(dV).

Then, lemma 9 implies that, as happens in the vacuum case,18 the four classes can be characterized
by s2 or s1 to be bidimensional metrics that have constant curvature or not.

If g is in class D010
010, lemma 9 implies thatle can be taken as coordinate in the planese.

Then, Eqs.~34!–~36! say thatbe , Xe , and se(dle ,dle) depend just onle , and thatXe

52be8 . Then, from~34! we haveb2-(l2)1b1-(l1)50 and, consequently,be is a polynomial in
le of degree less than or equal to three. But lemma 9 also states thatdle is not a null vector
everywhere. Then, Einstein–Maxwell equations~32!–~36! finally lead to

se5
1

e f ~ele!
dle

21 f ~ele!dZ2, ~37!

with f (l) a fourth degree polynomial. Then, putting~37! and~32! into ~25! we recover the known
expression of the charged C-metrics.25

If g is in class D010
000, lemma 9 implies thatl2 can be taken as a coordinate in the planes2

and, moreover,s1 must be of constant curvature. Thus, a redefinition ofV ands2 allows us to
considerX1P$21,0,1% and V5l2 . Then, if we introduce the coordinate transformationr
52 1/l2 , a similar procedure that leads in the general case to the charged counterpart of the
Ai-metrics:

g52a~r !dt21
1

a~r !
dr 21r 2ds2, a~r ![X2

C

r
1

D

r 2 , ~38!

ds2 being the bidimensional elliptic metric of constant curvatureX, with X51,21,0 depending
on theA1 , A2 , or A3 case.

If g is in the class D000
010, in a similar wayl1 can be taken as a coordinate in the planes1, and

s2 must be of constant curvatureX2P$21,0,1%. Then, the coordinate transformationr
52 1/l1 , leads to the charged counterpart of the Bi-metrics:

g5r 2ds21a~r !dz21
1

a~r !
dr 2, a~r ![X2

C

r
1

D

r 2 , ~39!

ds2 being the bidimensional hyperbolic metric of constant curvatureX, with X51,21,0 depend-
ing on theB1 , B2 , or B3 case.

Finally, in class D000
000 both bidimensional metrics have a constant curvature and Eq.~34!

implies thatX21X150. This means that the space–times is conformally flat and the metric
becomesg5s21s1, wherese are bidimensional metrics, hyperbolic, and elliptic, respectively,
with a constant curvatureeX. The metrics of this more degenerated class are the only ones that
have zero Cotton tensor.

B. The intrinsic characterization

The metrics of type D~M!0•0
0•0, which take the canonical form~25!, admit an intrinsic identi-

fication by means of conditions involving the principal 2 –formU. These characterization equa-
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tions that we have given in previous sections could be written explicitly in terms of metric
concomitants becauseU can be determined from the Weyl tensor.17 Nevertheless, as a consequence
of the Bianchi identities some of the above conditions can be satisfied identically taking into
account the properties of the Ricci tensor. This is the case of vacuum metrics: AsRic50 implies
the nullity of the Cotton tensor, the principal planes always define an umbilical and Maxwellian
structure as a consequence of the results in Sec. IV. Actually we want to characterize aligned
Einstein–Maxwell solutions that are conformal to a product metric. So, the Weyl tensor must have
real eigenvalues and the principal planes are the eigenspaces of the Ricci tensor, that is,

W53a~U ^ U2* U ^ * U !1aG, Ric5x~v2h!, ~40!

wherev5U2, h52* U2. Then, taking into account the expressions in Sec. II about 212 almost-
product structures, a straightforward calculation shows that the Bianchi identities~21! can be
written

~3a12x! Qv5v ^ h~da!; ~3a22x! Qh5h^ v~da!, ~41!

v~dx!22x i ~dU !U50; h~dx!12x i ~d* U !* U50. ~42!

From these expressions we find that, under the scalar restriction (3a)2Þ(2x)2, the properties of
the structure follow just by imposing that the Weyl and the Ricci tensor take expressions~40!. On
the other hand, the case (3a)25(2x)2 leads to theexceptionalmetrics considered by Pleban´ski
and Hacyan.34 Nevertheless, it can easily be shown that (3a)2Þ(2x)2 for the solutions recovered
in the subsection above. So we get the following characterization:

Lemma 10: The charged counterpart of the A, B, and C-metrics are the only aligned
Einstein–Maxwell solutions of type D with real eigenvalues that satisfy(3a)2Þ(2x)2, a and x
being, respectively, the Weyl and the Ricci eigenvalues.

Elsewhere,18 conditions forg to be of type D with real eigenvalues have been given in terms
of Weyl concomitants. In order to impose the Ricci tensor to take the form~40! we can use the
algebraic Rainich conditions.12 But if the Weyl tensor is of type D with real eigenvalues, a part of
these Rainich conditions hold identically when we impose the aligned restriction. From these
considerations and lemma 10 we have:

Theorem 3: The A, B, and C Einstein–Maxwell solutions can be characterized by conditions

aÞ0; S21S50; Ric~x,x!>0,

Tr Ric50, S@Ric#1Ric50; ~3a!22~2x!2Þ0.

This theorem offers an intrinsic and explicit description of the aligned Einstein–Maxwell
solutions of type D0•0

0•0. Now we look for an intrinsic and explicit way to identify every metric of
this family, that is, to distinguish theAi , Bi , and C charged metrics. In a first step we must
discriminate between the classes D0m0

0p0 and, as a consequence of proposition 3, this depends on the
nullity of the vectorsv(dV) and h(dV). But the expression~29! for the Weyl eigenvalue and
lemma 9 imply that, equivalently, the vectorsv(da) andh(da) determine these properties. So,
the same scheme as in the vacuum case18 can be used to distinguish between the classes.

The last step to obtain the intrinsic and explicit characterization of the solutions is to get an
invariant that provides the sign of the bidimensional curvature when this is constant. A straight-
forward calculation shows that ifXe is constant, then

XeV
25ve[

1
9 ~d ln~a1x!!222a2ex. ~43!
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So, we have a characterization of the Einstein–MaxwellA, B, andC-metrics, and we recover the
type D static vacuum solutions makingx50.

Theorem 4: Let g be an aligned Einstein–Maxwell solution of type D0•0
0•0 (characterized in

theorem 3). Let us take the metric concomitants

M[* W~da,•,da,• ! N[S~da,•,da,• !,

and let x be an arbitrary unitary timelike vector. Then,

~i! g is a charged C-metric if, and only if, MÞ0;
~ii ! g is a charged A-metric if, and only if, M50 and 2N(x,x)1trN.0.

Furthermore, it is of type A1 , A2 or A3 if v1.0, v1,0 or v150, respectively, where
v1[ 1

9(d ln(a1x))222a2x;
~iii ! g is a charged B-metric if, and only if, M50 and 2N(x,x)1trN,0.

Furthermore, it is of type B1 , B2 or B3 if v2.0, v2,0 or v250, respectively, where
v2[ 1

9(d ln(a1x))222a1x.

This theorem provides an algorithm to identify, in the set of all metrics, the charged counterpart of
the Ehlers and Kundt2 vacuum solutions. The particular case of theA1 metrics corresponds to a
charged spherically symmetric spacetime, that is, to the Reissner–Nordstro¨m solution. In this case
the metric takes the form~38! with X51, and the mass and the charge are related with the
constantsC and D, respectively. Moreover, these constants can be given in terms of Weyl and
Ricci invariants. Then, from the last theorem and previous subsection it follows:

Theorem 5: Let Ric[Ric(g) and W[W(g) be the Ricci and the Weyl tensors of a spacetime
metric g, and let us take the metric concomitants:

a[2~ 1
12Tr W3!1/3, x[2 1

2 ~Tr Ric2!1/2, v[ 1
9 g~d ln a,d ln a!22a2x, ~44!

~45!

The necessary and sufficient conditions for g to be the Reissner–Nordström metric are

aÞ0, S21S50, Ric~x,x!>0,

Tr Ric50, S@Ric#1Ric50, ~3a!22~2x!2Þ0,

M50, 2N~x,x!1trN.0, v.0,

where x is an arbitrary unitary time-like vector. Moreover, the mass m and the electric charge e
are given, respectively, by m5 (a1x)/v3/2 and e252 x/v2 , and the timelike Killing vector by
j5 @Av(3a12x)#21@N(x)/AN(x,x)# .

C. A summary in algorithmic form

Finally, in order to emphasize the algorithmic nature of our results, we present them as a flow
diagram that identifies, among all metrics, every A, B, or C Einstein–Maxwell solution~in the
following flow chart we denote themA* , B* , andC* -metrics!. The exceptional metrics studied
by Pleban´ski are also identified and they are denotedExc-metrics. This operational algorithm
involves an arbitrary unitary timelike vector,x, and some metric concomitants that may be ob-
tained from the components of the metric tensorg in arbitrary local coordinates: The invariantsa,

665J. Math. Phys., Vol. 45, No. 2, February 2004 On the classification of type D space–times

Downloaded 23 May 2005 to 147.156.125.102. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



x, ve , S, M , andN are given in~43!–~45! in terms of the Ricci and Weyl tensors. Makingx
50, we recover the vacuum solutions18
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