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The second order Killing and conformal tensors are analyzed in terms of their
spectral decomposition, and some properties of the eigenvalues and the eigenspaces
are shown. When the tensor is of type I with only two different eigenvalues, the
condition to be a Killing or a conformal tensor is characterized in terms of its
underlying almost-product structure. A canonical expression for the metrics admit-
ting these kinds of symmetries is also presented. The space–time cases 1+3 and
2+2 are analyzed in more detail. Starting from this approach to Killing and con-
formal tensors a geometric interpretation of some results on quadratic first integrals
of the geodesic equation in vacuum Petrov-Bel type D solutions is offered. A
generalization of these results to a wider family of type D space–times is also
obtained. © 2006 American Institute of Physics. �DOI: 10.1063/1.2207717�

. INTRODUCTION

Killing tensors are associated with first integrals to the geodesic equation. In the second order
ase, they define quadratic first integrals and they play a central role in the theory of separability
f the Hamilton-Jacobi equation. The relationship between separability and Killing tensors was
hown by Eisenhart1 and abundant literature exists regarding this property �for example, see Ref.
and references therein�.

Within the relativistic framework the study of Killing tensors grew when Walker and Penrose3

howed how the existence of a Killing tensor explains the Carter results4 on the integrability by
ariable separation of the geodesic equation in the Kerr solution. Since then a lot of studies have
een devoted to determining and classifying the space–times admitting Killing tensors and also to
btaining the Killing tensors of a given metric. A summary of known results on this subject can be
ound in Ref. 5.

The problem of finding the metrics admitting a quadratic integral of the geodesic equation was
stablished by Eisenhart.1 He wrote the intrinsic Killing tensor equations, i.e., the Killing equa-
ions in terms of the eigenvectors ei and the eigenvalues �i of a Killing tensor, and he pointed out
hat �see Ref. 1, p. 129�: “the problem of finding all Vn admitting a quadratic integral consists in
nding a tensor g and an orthogonal ennuple ei that satisfy the conditions obtained by the elimi-
ation of the �’s from the intrinsic Killing tensor equations. The general solution has not been
btained, but we shall consider two particular solutions of the problem.” Later, he considered the
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rivial case when all the �’s are equal, and the case with different eigenvalues and normal principal
ongruences, a case which led to the Stäckel form of the metric.6,1

The general solution to the problem set by Eisenhart is far from being solved, although a
umber of results are known for some classes of Einstein-Maxwell solutions or algebraically
pecial space–times, as well as those for flat metrics.5 Nevertheless, the usual way in which this
ubject is tackled differs from the Eisenhart conception. Indeed, the common approach consists of
tudying the integrability conditions of the Killing tensor equations, whereas the Eisenhart method
nvolves the following: �i� to write the intrinsic Killing tensor equations, �ii� to determine the
quivalent equations involving exclusively the eigenspaces and the metric tensor �the eigenvalues
aving been removed�, and �iii� to study the integrability conditions of the aforementioned equa-
ions. Both procedures, the usual one and Eisenhart’s, may be suitable depending on the different
ituations. In this work we adopt the Eisenhart approach and we will show how useful it is by
onsidering the case of Killing tensors with two complementary eigenspaces.

The conformal extension of the Killing tensor equation determines the conformal tensors
hich define first integrals to the null geodesic equation. Here we also analyze the Eisenhart
roblem for the class of conformal tensors with two complementary eigenspaces.

In the problem of finding the Riemannian spaces admitting a Killing or a conformal tensor
wo different aspects can be considered. On the one hand, we can look for a general canonical
xpression for the metric tensors with these kinds of first integrals. In this case, we must also
btain the expression of the Killing or conformal tensors in terms of the elements appearing in this
anonical form. This approach may be useful in working in spaces with these symmetries, the
dapted coordinates allowing calculations to be simplified and throwing light on the geometric
nterpretation of the expressions we can find.

On the other hand, we can give explicit and intrinsic conditions that characterize the metric
ensors, and then we must offer the expression of the Killing or conformal tensors in terms of

etric concomitants �namely, the Riemann tensor and its covariant derivatives�. This approach is
elpful in analyzing when a metric, which is known in an arbitrary coordinate system, has these
inds of symmetries. Moreover, we can obtain these tensorial symmetries without solving the
illing or conformal equations.

In this work we analyze both viewpoints. Regarding the first one, we can quote several results
reviously obtained in the relativistic framework. Thus, canonical forms for the four-dimensional
pace–time metrics admitting a Killing or a conformal tensor of type 2+2 have been proposed in
iterature.7,8 In this case the Killing or conformal tensor admits two complementary eigenplanes.
ere we generalize these results by considering a general p+q tensor �with two complementary

igenspaces of dimensions p and q, respectively� in a generic Riemannian space with arbitrary
ignature and dimension.

The second approach, the intrinsic characterization of the metrics admitting Killing and con-
ormal tensors, has also been partially considered in relativity. Thus, it is known that every
etrov-Bel type D vacuum solution admits a conformal tensor of type 2+2 which may be obtained
orm the Weyl tensor.5 Here we extend this result by characterizing all the Petrov-Bel type D
etrics with conformal tensors. Moreover we also identify the type D solutions admitting a
illing tensor, thus generalizing some results that are known for the vacuum case.5

It is worth remarking that the Eisenhart approach used here allows the intrinsic and explicit
abeling of the metrics to be obtained easily. Indeed, in this approach we give conditions for the
nderlying 2+2 structure of the Killing or conformal tensors. Moreover, for the Petrov-Bel type D
etrics, this is the principal structure one of the Weyl tensor, and it is explicitly known in terms

f the metric tensor.9 The reason why it is of interest to obtain an explicit and intrinsic character-
zation of a space–time metric has been pointed out elsewhere10 and the method used here has
een useful in labeling the Schwarszchild10 and Reissner-Nordström11 solutions, the static Petrov
ype I space–times9 and the Petrov type I space–times admitting isotropic radiation.12

Here we show that the eigenspaces of a Killing or a conformal tensor are umbilical planes.
oreover they are totally geodesic for a conformal metric. This geometric interpretation could be
seful in clarifying the role played by the Killing tensor in the separability theory.
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The paper is organized as follows. Some notation, definitions and properties related to regular
iemannian p planes are introduced in Sec. II. In Sec. III we study some properties of the
igenvectors and eigenvalues of a Killing or a conformal tensor. The type I case �when the tensor
dmits an orthonormal basis of eigenvectors� is analyzed in detail in Sec. IV and we write the
isenhart intrinsic Killing tensor equations in a form that is more useful to our purposes. In Sec.
we use this new form for the Killing tensor equations to analyze the Eisenhart problem when the
illing or the conformal tensor has two complementary eigenspaces. A canonical form for the
etrics admitting these kinds of first integrals is presented in Sec. VI. In Sec. VII we study the
+ �n−1� case and outline when these Killing or conformal tensors are not reducible. In the last

wo sections some results concerning the usual four-dimensional space–time are obtained. The
+2 space–time structures associated to a Killing or conformal tensor are analyzed in detail in
ec. VIII. Finally, Sec. IX is devoted to obtaining an intrinsic and explicit characterization of the
etrov-Bel type D metrics admitting Killing or conformal tensors attached to its principal struc-

ure, and we also present an algorithm to obtain these quadratic first integrals in a given type D
pace–time.

I. SOME NOTATION AND USEFUL CONCEPTS

On an n-dimensional Riemannian manifold �M ,g� we shall refer to a �regular� p-dimensional
istribution V as a p plane. Let v be the projector on V and h=g−v the projector on the plane
rthogonal to V. The generalized second fundamental form of V is defined as the �2,1�-tensor Qv
iven by

Qv�x,y� = h��v�x�v�y�� �1�

or every pair of vector fields x, y. We can consider the decomposition of Qv into its antisymmetric
art Av and its symmetric part Sv�Sv

T+ �1/ p�v � Tr Sv, where Sv
T is a traceless tensor:

Qv = Av +
1

p
v � Tr Sv + Sv

T. �2�

he plane V is a foliation if, and only if, Av=0. In this case Qv=Sv and it coincides with the
econd fundamental form of the integral manifolds of the foliation V.13 Moreover V is minimal,
mbilical or geodesic if, and only if, Tr Sv=0, Sv

T=0 or Sv=0, respectively. Then one can gener-
lize these geometric concepts for plane fields which are not necessarily a foliation.

Definition 1: A plane field V is said to be geodesic, umbilical or minimal if the symmetric part

v of its (generalized) second fundamental form Qv satisfies Sv=0, Sv
T=0 or Tr Sv=0, respectively.

From these definitions, and defining �x ,y�=�xy+�yx, a lemma easily follows.
Lemma 1: A plane field V is umbilical for the metric g if, and only if, a vector field a exists

uch that h��x ,y��=g�x ,y� a for every x ,y�V, h being the projector on the plane orthogonal to V.
On a n-dimensional Riemannian manifold �M ,g� an almost-product structure is defined by a

p-plane field V and its orthogonal complement H. The almost-product structures can be classified
aking into account the invariant decomposition of the covariant derivative of the structure tensor

=v−h. Likewise, they can be classified according to the foliation, minimal, umbilical or geo-
esic character of each plane.14,15 We will say that a structure �V ,H� is integrable when both
lanes are foliations and we will say that it is minimal, umbilical or geodesic if both of the planes
re so.

In an oriented four-dimensional space–time �V4 ,g� of signature �� � ��� a more accurate
lassification for the almost-product structures follows taking into account the causal character of
he planes.16 Elsewhere11 we have classified the Petrov-Bel type D space–times in accordance with

he class of the 2+2 principal structure of the Weyl tensor.
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II. SECOND ORDER KILLING AND CONFORMAL TENSORS

The quadratic first integrals of the geodesic equation are associated with second rank Killing
ensors.1 Indeed, if K is a solution to the generalized Killing equation

�K,g� = 0 ��K,g�abc = ��a�K�bc�� , �3�

hen the scalar K�v ,v� is constant along an affine parametrized geodesic with tangent vector v.
It is known5 that if K is a Killing tensor, its traceless part P=K− �1/n�Tr Kg is a conformal

ensor, i.e., it satisfies the conformal equation

�P,g� = S�g � t� , �4�

here t is, up to a factor, the divergence of P, t= �2/ �n+2��� · P, and S�B� denotes the total
ymmetrization of a tensor B. Then, the scalar P�v ,v� is constant along an affinely parametrized
ull geodesic with tangent vector v. Moreover, Killing equation �3� implies

2n � · P + �n + 2�d Tr K = 0. �5�

hen, we have the following.
Lemma 2: If K is a second rank Killing tensor [solution to (3)] then its traceless part P=K

�1/n�Tr Kg is a conformal tensor [solutions to (4)] and it satisfies

d � · P = 0. �6�

onversely if a traceless conformal tensor P satisfies (6), a scalar � exists such that d�=� · P.
hen, K= P− �2/ �n+2���g is a Killing tensor.

In this work we analyze some properties of the eigenvalues and eigenspaces of Killing and
onformal tensors and we present some of their properties. We proceed by studying both classes of
ensors simultaneously and we will comment on the differences when they exist. So, if we con-
ider a second rank tensor T solution to �4� the consequences on its eigenspaces and eigenvalues
pply to both, Killing and conformal tensors. We particularize the conformal case by taking T as
traceless tensor. If we add condition �6�, then T is the traceless part of a Killing tensor. But we

an also recover the Killing tensor case by taking the vector t to be zero. It is worth pointing out
hat if P is a traceless conformal tensor, then P+�g is a conformal tensor, and both define the
ame first integrals of the null geodesic equation. Nevertheless, here we will always work with the
raceless representative.

We denote E� the eigenspace of T corresponding to the eigenvalue �. Then, if x ,y�E�, a
traightforward calculation leads to

�T,g��x,y, · � = x���y + y���x + g�x,y�d� − �T − �g��x,y� . �7�

n the other hand,

S�g � t��x,y, · � = g�x,y�t + g�t,x�y + g�t,y�x . �8�

o, for two eigenvectors x ,y�E�, the conformal condition �4� implies

�T − �g��x,y� = g�x,y�s + g�s,x�y + g�s,y�x, s � d� − t . �9�

On the other hand, if we consider three eigenvectors x ,y ,z corresponding to three different
igenvalues, a similar calculation leads to

T�x,�y,z�� + T�z,�x,y�� + T�y,�z,x�� = 0. �10�

hus, we can state the following.
Lemma 3: Let T be a Killing �respectively, conformal� tensor. Then we have the following.
i� If x ,y�E� are eigenvectors associated with the eigenvalue �, Eq. (9) holds, where the
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vector t is zero �respectively, t= �2/ �n+2��� ·T�.
ii� If x ,y ,z are eigenvectors corresponding to three different eigenvalues, Eq. (10) holds.

A consequence of Lemma 3 follows by taking x=y in Eq. �9�. Indeed, if one makes a new
roduct with x one obtains

x2g�d� − t,x� = 0 �11�

nd so, if x ,y are non-null vectors, Eq. �9� becomes

�T − �g��x,y� = g�x,y��d� − t� . �12�

If E� is a regular eigenspace of T, then a basis of E� formed with non-null eigenvectors exists
nd, consequently, �12� holds even for the null eigenvectors. Moreover, taking into account �11�
e have the following.

Lemma 4: Let E� be a regular eigenspace of a Killing (respectively, conformal) tensor T. Then
12� with t=0 �respectively, t= �2/ �n+2��� ·T� holds for every x ,y�E�.

Moreover, d��E�
� [respectively, 2� ·T− �n+2�d��E�

�].

V. EIGENVALUES AND EIGENVECTORS OF SECOND ORDER KILLING
ND CONFORMAL TENSORS OF TYPE I

Let us now go to type I Killing and conformal tensors, that is, those admitting an orthonormal
asis of eigenvectors. In this case every eigenspace is regular and then the Killing �or conformal�
quation implies �10� and �12�. Moreover a basis of eigenvectors exists and, consequently, these
estrictions are also sufficient conditions for T to be a Killing �or conformal� tensor. Thus, we have
he following.

Proposition 1: Let T be a symmetric 2-tensor of type I and let Ei be the eigenspaces corre-
ponding to the eigenvalues �i. Then, T is a Killing �respectively, conformal� tensor if, and only if

i� �T−�ig��x ,y�=g�x ,y��d�i− t�, for every x ,y�Ei, where the vector t is zero �respectively,
t= �2/ �n+2��� ·T�.

ii� T�x , �y ,z��+T�z , �x ,y��+T�y , �z ,x��=0, for x, y, z, eigenvectors with different eigenvalue.

Let K be a Killing tensor of type I and let �ea� and ��a� be an orthonormal basis of eigenvec-
ors and the corresponding eigenvalues. A straightforward calculation allows us to write the two
onditions in Proposition 1 in terms of �ea� and ��a� obtaining, in this way

�asbca + �bscab + �csabc = 0, a,b,c � , �13�

ea
2eb��a� − ��b − �a�saab = 0, a � b , �14�

eb��b� = 0, �15�

here sabc are the symmetrized rotation coefficients, sabc=g�ec , �ea ,eb��. If we set Eqs. �13�–�15�
n terms of the rotation coefficients we easily recover the intrinsic Killing tensor equations ob-
ained by Eisenhart.1 In order to study the metrics which admit a second order Killing tensor,
isenhart1 started from these intrinsic equations and he looked for a set of equivalent conditions

nvolving the eigenvectors exclusively. He considered the case when all the eigenvalues are equal
nd the case with different eigenvalues and normal principal congruences.1 In this work we solve
his Eisenhart problem for both the Killing and conformal tensors, when the second order tensor
dmits two complementary eigenspaces. We could also start from Eqs. �13�–�15� and similar
onditions for the conformal case, but we will choose an alternative approach that makes the
eometric properties of the eigenspaces of the Killing and conformal tensors more evident.

Let �i and hi be the eigenvalue and the projector associated with the eigenspace Ei, and let pi
e its dimension. Then
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T = � �ihi, g = � hi, Tr hi = pi. �16�

ith this notation, the second statement of Lemma 4 becomes hi�d�i− t�=0 and, consequently,

t = � hi�d�i� . �17�

n the other hand, by projecting condition �i� in Proposition 1 on every eigenspace Ej one obtains

�� j − �i�hj��x,y�� = g�x,y�hj�d�i − t� . �18�

o, if vi denotes the projection on the orthogonal space Ei
�, one has

vi��x,y�� = g�x,y��
j�i

1

� j − �i
hj�d�i − t� �19�

or every x ,y�Ei. Then, according to Lemma 1 and taking into account that t is zero for a Killing
ensor and it can be written as �17� for a conformal one, we arrive to the following:

Theorem 1: Let T be a symmetric 2-tensor of type I and let hi be the projector corresponding
o the eigenvalue �i. Then, T is a Killing or a conformal tensor if, and only if,

i� The eigenspaces are umbilical subspaces, that is, their second fundamental form can be
written as Si=

1
2hi � ai.

ii� For every eigenspace the trace of its second fundamental form Tr Si= �pi /2�ai satisfies

ai = �
j�i

1

� j − �i
hj�d�i�, hi�d�i� = 0, for a Killing tensor, �20�

ai = − �
j�i

hj�d ln	�i − � j	�, � pi�i = 0, for a conformal tensor. �21�

iii� T�x , �y ,z��+T�z , �x ,y��+T�y , �z ,x��=0, for x, y, z, eigenvectors with different eigenvalues.

The first condition of this theorem gives a geometric property involving the eigenvectors
xclusively: every eigenspace is an umbilical subspace. Thus, it offers a decoupled equation that
artially solves the Eisenhart problem. In the next section we will analyze the other two conditions
n Theorem 1 for the case of two complementary eigenspaces. The last condition makes no sense
n this case and we will see that the second one can be easily decoupled.

. GEOMETRY OF KILLING AND CONFORMAL TENSORS OF TYPE p+q

A particular case of type I second order tensors are those having two complementary eigen-
paces of dimensions p and q=n− p. So, a p+q almost-product structure �V ,H� is associated with
hese tensors, and we say that they are of type p+q. If v and h are the projectors onto the
igenspaces and � and � are the eigenvalues, such a tensor takes the form T=�v+�h. In this case
he previous theorem can be stated concisely in terms of the canonical elements �v ,h ;� ,�� as

Proposition 2: A symmetric 2-tensor K=�v+�h of type p+q is a Killing tensor if, and only if,
he following conditions hold:

i� The eigenstructure �V ,H� is umbilical, that is, the second fundamental forms can be written
as

Sv = 1
2v � a, Sh = 1

2h � b . �22�

ii� The traces of the second fundamental forms, Tr Sv= �p /2�a and Tr Sh= �q /2�b, and the

eigenvalues � ,� are related by
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a =
1

� − �
d�, b =

1

� − �
d� . �23�

similar result takes place for conformal tensors as the following proposition says.
Proposition 3: A traceless symmetric 2-tensor P=��qv− ph� of type p+q is a conformal

ensor if, and only if, the following conditions hold:

i� The eigenstructure �V ,H� is umbilical, that is, the second fundamental forms can be written
as

Sv = 1
2v � a, Sh = 1

2h � b . �24�

ii� The traces of the second fundamental forms, Tr Sv= �p /2�a and Tr Sh= �q /2�b, and the
scalar � are related by

a + b = − d ln	�	 . �25�

It is worth remembering that, for the space-time 2+2 case, the umbilical nature of the struc-
ure is equivalent to the geodesic and shear-free character of its two null principal directions.11

onsequently, the above propositions generalize some results for the space–time Killing and
onformal tensors of type 2+2 �see Ref. 5, theorem 35.4� to an arbitrary dimension n and an
rbitrary type p+q. Now we want to remark that the covariant formalism used here allows us to
ccomplish the second step in the Eisenhart method: the characterization of the Killing and
onformal tensors in terms of their eigenspaces.

The characterization of a p+q Killing or conformal tensor presented in the propositions above
nvolves the structure tensor �conditions �i� and �ii�� and the eigenvalues �condition �ii��. The next
tep consists of removing the eigenvalues in order to obtain the conditions that an almost product
tructure must satisfy in order to be the eigenstructure of a Killing or a conformal tensor. Condi-
ion �ii� of Proposition 2 can be written as

�� − ��a = − d�, �� − ��b = d� . �26�

hen we have ��−���a+b�=d��−��. If we differentiate �26� and make the substitution of
��−�� we get

da + a Ù b = 0, db + b Ù a = 0. �27�

onversely, if a, b satisfy Eqs. �27�, two functions x, y exist such that

a + b = dx, a − b = exdy .

hen, taking �=e−x−y and �=−e−x−y, Eq. �26� is satisfied and K=�v+�h is a Killing tensor
rovided that �22� holds. The freedom in choosing x and y leads to the family of Killing tensors
K+Dg, C and D being arbitrary constants.

In the same way, condition �25� for a conformal tensor implies that d�a+b�=0. Conversely, if
�a+b�=0, a function x exists such that a+b=dx. Then, the traceless tensor P=e−x�qv− ph� is a
onformal Killing tensor provided that �24� holds. The freedom in choosing x leads to the family
P, C being an arbitrary constant. Thus, we have obtained the following.

Theorem 2: The necessary and sufficient conditions for a p+q almost-product structure
V ,H� to be the eigenstructure of a Killing or a conformal tensor are the following.

i� �V ,H� is umbilical, that is, the second fundamental forms take the expression

Sv = 1
2v � a, Sh = 1

2h � b . �28�

ii� The traces, Tr Sv= �p /2�a and Tr Sh= �q /2�b, of the second fundamental forms satisfy
da + a Ù b = 0, db + b Ù a = 0 for Killing tensors, �29�
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d�a + b� = 0 for conformal tensors. �30�

If �28� and �29� hold, two functions x, y exist such that a+b=dx, a−b=ex dy. Then taking
=e−x−y, �=−e−x−y, K=C��v+�h�+Dg is a Killing tensor, C and D being two arbitrary

onstants.
If �28� and �30� hold, a function x exists such that dx=a+b. Then, P=Ce−x�qv− ph� is a

onformal Killing tensor, C being an arbitrary constant.
This theorem offers the second step in solving the Eisenhart problem for Killing or conformal

ensors with two complementary eigenspaces. In fact, once the eigenvalues have been removed,
e have obtained necessary and sufficient conditions involving the sole eigenspaces. In Sec. VIII
e will see that, for the space–time 2+2 case, these conditions can be written as tensorial condi-

ions on the structure tensor �or on the canonical 2-form associated with the structure�. This fact
llows us to give an intrinsic and explicit characterization of the four-dimensional Petrov-Bel type

space–times admitting a Killing or a conformal tensor in Sec. IX.

I. METRICS ADMITTING A KILLING OR A CONFORMAL TENSOR OF TYPE p+q

In this section we show that a metric admitting a Killing or a conformal tensor of type p+q
dmits a canonical expression in terms of a particular conformal metric and a specific conformal
actor. First we state a corollary which trivially follows on from Propositions 2 and 3.

Corollary 1: Let �V ,H� be a p+q almost-product structure for the metric tensor g. The
ollowing statements are equivalent:

i� �V ,H� is a p+q totally geodesic almost-product structure.
ii� Cv+Dh is a Killing tensor, C and D being arbitrary constants.
iii� C�qv− ph� is a conformal tensor, C being an arbitrary constant.

This corollary states that the Riemannian spaces admitting a second order Killing tensor with
onstant eigenvalues are those admitting a p+q totally geodesic structure �V ,H�. We will show
ow that these Riemannian spaces generate all the spaces admitting Killing or conformal tensors
y using an adequate conformal transformation.

The umbilical property is known to be a conformal invariant.15,11 Moreover, if we take into
ccount the change of the second fundamental form through a conformal transformation,11 condi-
ion �25� for a conformal tensor states that the eigenstructure �V ,H� is minimal for the conformal
etric g̃= 	�	−1g. Consequently, the family of metrics that admit a p+q conformal tensor are those

hat are conformal to a metric which admits a totally geodesic p+q structure. More precisely, we
ave the following.

Proposition 4. The metrics g that admit a p+q conformal tensor are those that may be written
s g= 	�	g̃, where g̃ is a metric admitting a totally geodesic p+q structure �V ,H�.

Then the conformal tensor for g is P=C��qv− ph�, C being an arbitrary constant.
This proposition and Corollary 1 generalize to an arbitrary dimension n and an arbitrary type

p+q a result by Hauser and Malhiot8 concerning the 2+2 space–time case. Moreover we also
ecover another known result easily:17 a �contravariant� conformal tensor for a metric is a confor-
al tensor for every conformally related metric.

A similar result holds for Killing tensors. In fact, the sum of expressions �29� says that
�a+b�=0, which is exactly the condition necessary for �V ,H� to be the eigenstructure of a
onformal tensor, and so the metric is conformal to a metric admitting a p+ p totally geodesic
tructure. But now, the conformal factor is not arbitrary because it must satisfy the two equations
n �29�. A detailed analysis of these conditions leads to the following.

Proposition 5: The metrics g that admit a p+q Killing tensor are those that may be written as
= 	�−�	g̃, where g̃ is a metric admitting a totally geodesic p+q structure �V ,H�, and � and � are

unctions such that v�d��=0, h�d��=0.
Moreover, the Killing tensor for g is K=C��v+�h�+Dg, C and D being arbitrary constants.

The two propositions above imply that the study of the Riemannian spaces admitting a Killing
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r a conformal tensor reduces to the study of the metrics g̃ admitting a totally geodesic p+q
tructure. As Proposition 4 states, for every metric g̃ of this type we obtain a metric g admitting a
onformal tensor by using an arbitrary conformal factor, g=	2g̃.

Nevertheless, Proposition 5 states that the richness of metrics admitting a Killing tensor
onformally related to a g̃ of this type depends on the quantity of normal directions aligned with
ne of the planes of the structure. This fact induces a classification of the metrics admitting a
otally geodesic p+q structure.

In the more regular metrics no aligned normal direction exists and only constant conformal
actors can be considered, the Killing tensor then have constant eigenvalues.

The more degenerate class corresponds to the product metrics g̃= ṽ+ h̃, ṽAB�xC� and h̃ij�xk�
eing two arbitrary p and q dimensional metrics, respectively; then, the available conformal
actors are 	2= 	�−�	, ��xk� and ��xC� being arbitrary functions depending on the product coor-
inates and they coincide with the Killing tensor eigenvalues.

An intermediate situation occurs when, for example, only one normal aligned direction exists
n each plane. Then, through the adequate conformal transformation we can obtain a metric
dmitting a Killing tensor with nonconstant eigenvalues. In dealing with 2+2 space–time Killing
ensors this case leads to the Hauser and Malhiot7,8 canonical form for the metric.

II. KILLING AND CONFORMAL TENSORS OF TYPE 1+ „n−1…

Let us consider the case of a 1+ �n−1� structure �V ,H� defined by the unitary direction u
u2=
= ±1� and its orthogonal complement. Then g=v+h where v=
u � u and h=g−
u � u. In
erms of the usual kinematic coefficients of u ��u=
u � u̇+ �1/ �n−1���h+�+	� the �generalized�
econd fundamental forms are

Qv = u � u � u̇, Qh = − 

 1

n − 1
�h + � + 	� � u . �31�

he condition for �V ,H� to be an umbilical structure just states �=0, and then

Sv = u � u � u̇, Sh = − 

1

n − 1
�h � u . �32�

hus taking into account Theorem 2, we find that the necessary and sufficient condition for u to
efine the eigenstructure of a conformal tensor is

� = 0, d
u̇ −
�

n − 1
u� = 0. �33�

ut these conditions state that u defines the direction of a conformal Killing vector.18 Thus, we
ave the following.

Proposition 6: A 1+ �n−1� structure defined by the unitary direction u is the eigenstructure of
conformal Killing tensor if, and only if, u defines the direction of a conformal Killing vector, that

s, it satisfies (33).
This proposition implies that every traceless conformal tensor of type 1+ �n−1� is the trace-

ess part of 
 � 
, 
 being a Killing conformal vector. In other words, every 1+ �n−1� conformal
ensor is reducible

A similar procedure allows us to characterize the fact that u defines the eigenstructure of a
+ �n−1� Killing tensor. But in this case we find that it is not, necessarily, reducible. Indeed,
aking into account �32� the condition �29� of Theorem 2 is equivalent to
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d
u̇ −
�

n − 1
u� = 0, � du + d� Ù u + 2
�u Ù u̇ = 0.

hen �=0 these equations hold if du̇=0, that is, if u defines the direction of a Killing vector. On
he contrary, if ��0, the second equation implies duÙu=0, and so du=
uÙ u̇. In this case, u
efines the direction of a normal conformal Killing vector and the second equation can be written
s

d��1/3u� = 0. �34�

hese results are summarized in the following.
Proposition 7: The 1+ �n−1� structure defined by the unitary direction u is the eigenstructure

f a Killing tensor if, and only if, one of the following conditions hold:

i� u defines the direction of a Killing vector, that is, it satisfies �=0=�, du̇=0.
ii� u defines the direction of a normal conformal Killing vector with integrant factor �1/3, that

is, it satisfies equations (33) and (34).

This proposition shows that we can distinguish two classes of Killing tensors of type 1+ �n
1�. On the one hand, we have the reducible ones, that is, those that can be written as 
 � 

Bg, 
 being a Killing vector and B an arbitrary constant. On the other hand, a class of irreducible
illing tensors that can be obtained from normal conformal Killing vectors. This last class has
een considered by Koutras19 and Rani et al.17

The results in the preceding section allow us to give the canonical form for the metric tensors
dmitting irreducible Killing tensors of type 1+ �n−1�. Indeed, as the eigenstructure is integrable,
he metric will be conformally related to a 1+ �n−1� product metric. Moreover Proposition 5 gives
he conformal factor. Finally, we can state the following

Proposition 8: The metrics admitting an irreducible Killing tensor of type 1+ �n−1� are those
hat may be written as

g = 	��xi� − ��x0�	�
 dx0
� dx0 + ��xi�� , �35�

here ��xi� is an arbitrary �n−1�-dimensional metric.
The Killing tensor is then given by C	�−�	�
� dx0 � dx0+���xi��+Dg, C and D being arbi-

rary constants.

III. SPACE–TIME KILLING AND CONFORMAL TENSORS OF TYPE †„11… „11…‡

Let T be a Killing or a conformal tensor of type ��11� �11�� in an oriented four-dimensional
pace–time �V4 ,g� of signature ������. Then T has two eigenspaces: a timelike two-plane V
nd its spacelike orthogonal complement H. The almost-product eigenstructure �V ,H� is deter-
ined by the canonical unitary 2-form U, volume element of the timelike plane V. Then, the

espective projectors are v=U2 and h=−��U�2, where U2=U�U=Tr23 U � U and � is the Hodge
ual operator.

In order to study the geometric properties of a 2+2 structure it is useful to introduce the
elf-dual unitary 2-form U��1/�2��U− i�U� associated with U. The metric on the self-dual
-forms space is G= 1

2 �G− i��, where � is the metric volume element of the space–time,
= 1

2gÙg is the metric on the 2-forms space, and Ù denotes the double-forms exterior product,
AÙB�����=A��B��+A��B��−A��B��−A��B��. Then, we can consider some first order differen-
ial concomitants of U that determine the geometric properties of the structure. Indeed, if i�·�
enotes the interior product and � the exterior codifferential, �= �d�, we have the following
emma.11

Lemma 5: Let us consider the 2+2 structure defined by U= �1/�2��U− i�U�. Then

i� The traces of the second fundamental forms take the expression
Tr Qv = a�U� � − i�� � U� � U, Tr Qh = b�U� � i��U�U . �36�
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ii� The structure is umbilical, if, and only if,

��U� � �U − i��U�U � U − i��U�G = 0. �37�

With this notation, we can write the intrinsic equations in Propositions 2 and 3 for the case of
illing or conformal tensors of type ��11� �11�� by using the eigenvalues and the canonical 2-form
exclusively.

Proposition 9: The traceless symmetric tensor P=��U2+ ��U�2� is a conformal tensor if, and
nly if, the canonical elements �� ,U� satisfy (37) and

− d ln	�	 = ��U� � i��U�U − i�� � U� � U . �38�

Proposition 10: The symmetric tensor K=�U2+���U�2 is a Killing tensor if, and only if, the
anonical elements �� ,� ,U� satisfy (37) and (38) and

d� = �� − ��i�� � U� � U . �39�

This last proposition is the tensorial version of the intrinsic equations for a Killing tensor that
re known in Newmann-Penrose formalism �Ref. 5, Theorem 35.4�. Now we can easily write the
onditions in Theorem 2 in terms of the canonical 2-form U, that is, we obtain the characterization
f the Killing and conformal tensor in the sole variable U.

Theorem 3: The 2+2 structure defined by the unitary simple 2-form U is the eigenstructure
f a conformal tensor if, and only if, U satisfies

��U� � �U − i��U�U � U − i��U�G = 0, �40�

d��U� � d�i��U�U − i�� � U� � U� = 0. �41�

f these conditions hold, a function � exists such that ��U�=−d ln	�	. Then, the conformal tensor
s P=C��U2+ ��U�2�, C being an arbitrary constant.

Theorem 4: The 2+2 structure defined by the unitary simple 2-form U is the eigenstructure of
Killing tensor if, and only if, U satisfies

��U� � �U − i��U�U � U − i��U�G = 0, �42�

d��U� � d�i��U�U − i�� � U� � U� = 0, �43�

di��U�U = i��U�U Ù i�� � U� � U . �44�

f these conditions hold, two functions � and � exist such that ��U�=−d ln	�−�	 and d��+��
2��−���i��U�U+ i���U��U�. Then, the Killing tensor is K=C��U2−���U�2�+Dg, C and D
eing two arbitrary constants

It is worth pointing out that the first order differential properties of a 2+2 structure admit a
inematical interpretation16 and, in particular, the umbilical conditions �40� and �42� equivalently
mply that the two principal null directions of the structure are geodesic and shear-free
ongruences.11 Thus, we recover a known result obtained independently by Hauser and Malhiot7

nd by Collinson.20

On the other hand, condition �41� states that the structure is pre-Maxwellian.21,22 Then, taking
nto account the study of these structures given in Ref. 22 we have the following.

Corollary 2: The 2+2 traceless tensor P=��v−h� is a conformal tensor if, and only if, T
�−2�v−h� is a conservative Maxwell-Minkowski energy tensor and the principal directions of the

ssociated electromagnetic field are geodesic and shear-free congruences.
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X. PETROV-BEL TYPE D SPACE–TIMES ADMITTING KILLING OR CONFORMAL
ENSORS

The results in the preceding sections help us to characterize intrinsically and explicitly some
amilies of metrics. More precisely, in this section: �i� we obtain necessary and sufficient condi-
ions on the metric concomitants for a four-dimensional space–time to be a Petrov-Bel type D
olution admitting a 2+2 Killing or conformal tensor and, when they hold, �ii� we give an
lgorithm to determine these tensors.

In the preceding section we have characterized the 2+2 Killing and conformal tensors in
erms of the volume element U of their timelike eigenplane. Moreover, for the case of Petrov-Bel
ype D metrics, this 2-plane determines the Weyl principal structure and, consequently, U can be
btained from the Weyl tensor. The intrinsic and explicit characterization of type D solutions and
he covariant obtaining of the Weyl canonical bivector have been given in Ref. 9. Consequently we
an state the following invariant characterizations.

Proposition 11: A Petrov-Bel type D metric admits a conformal tensor if, and only if, the Weyl
rincipal null directions define geodesic shear-free congruences and the Weyl canonical 2-form
atisfies (43).

A Petrov-Bel type D metric admits a Killing tensor if, and only if, the Weyl principal null
irections define geodesic shear-free congruences and the Weyl canonical 2-form satisfies (43) and
44).

Finally, taking into account the algebraic results for Petrov-Bel type D metrics quoted above
see Ref. 9�, we obtain from Theorems 3 and 4 the explicit expression of the conditions in
roposition 11 and the algorithm for obtaining the conformal or Killing tensors.

Theorem 5: Let W�W�g�= 1
2 �W�g�−i�W�g�� and G�G�g�= 1

2
� 1

2gÙg−i��g�� the self-dual
eyl tensor and self-dual metric associated with a space–time metric g, and let us take the metric

oncomitants

� � −
TrW3

TrW2 , S �
1

3�
�W − �G�, U �

S�X�
�S�X,X�

, �45�

� � �U − i��U�U � U − i��U�G , �46�

U � �2 Re�U�, a � − i�� � U� � U, b � i��U�U , �47�

here X is an arbitrary self-dual bivector.
The necessary and sufficient conditions for g to be a Petrov-Bel type D solution admitting a

+2 conformal tensor are

� � 0, S2 + S = 0, � = 0, d�a + b� = 0. �48�

hen (48) hold, a function � exists such that −d ln	�	=a+b. Then, the conformal tensor is P
C��U2+ ��U�2�, C being an arbitrary constant.

The necessary and sufficient conditions for g to be a type D solution admitting a 2+2 Killing
ensor are 48 and

db + b Ù a = 0. �49�

hen (48) and (49) hold, two functions � and � exist such that −d ln	�−�	=a+b and d��+��
2��−���b−a�. Then, the Killing tensor is K=C��U2−���U�2�+Dg, C and D being two arbi-

rary constants.
For Petrov-Bel type D solutions with a vanishing Cotton tensor �the Weyl tensor is

11
ivergence-free� the Bianchi identities take the expression
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�U = i��U��U � U + G�, i��U�U = 1
3d ln � , �50�

here U is the Weyl canonical bivector and � the double Weyl eigenvalue. The real part of the
econd equation in �50� states

2
3d ln	�	 = ��U� � i��U�U − i�� � U� � U . �51�

hus, the principal structure of a type D divergence-free Weyl tensor is umbilical and pre-
axwellian and, as a consequence of Theorem 3, it is the structure of a conformal tensor. More-

ver, in this case the eigenvalue of the conformal tensor can be obtained algebraically from the
eyl eigenvalues if we take into account Proposition 9. Thus, we have the following.

Theorem 6: Every Petrov-Bel type D solution with vanishing Cotton tensor admits a confor-
al tensor. Let �, S, and U be the Weyl concomitants given in �45�. Then we have the following.

i� These space–times are characterized by the conditions

� � 0, S2 + S = 0, �W = 0. �52�

ii� The conformal tensor is given by

P = C	�	−2/3U � Ũ . �53�

his theorem generalizes the result about the existence of conformal tensors in Petrov-Bel type D
acuum solutions �see Ref. 5, Theorem 35.2�.

We finish with two comments. The characterization of the Killing or conformal tensors in
erms of their underlying structure has allowed us to give an explicit and intrinsic labeling of the
etrov-Bel type D space–times admitting Killing or conformal tensors, as well as to generalize
ome known results on the existence of these symmetries. Furthermore, our Eisenhart-type ap-
roach to the Killing and conformal tensor may also be useful in analyzing and extending other
roperties. For example, it is known that all type D vacuum solutions that admit a Killing tensor,
lso admit a Killing-Yano tensor.20,23 Our result here and those given in Ref. 22 allow us to
eneralize this property. This question and other related topics will be considered elsewhere.24

Our study of the geometry of the Killing and conformal tensors and the canonical expressions
f the metric tensor in terms of this geometry can be applied, in particular, to n-dimensional
orentzian metrics. We know that, for four-dimensional Petrov-Bel type D space–times, this
nderlying geometry is closely related with the Weyl tensor and, this fact allows us to determine
he 2+2 Killing and conformal tensors �see Theorems 5 and 6�. The generalization of these results
o higher dimensions is an open problem that could be fruitful in some classes of the Weyl tensor.
ut this study will require a further analysis of the Weyl classification in higher dimensions.25,26
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