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The Leibniz bracket of an operator on a~graded! algebra is defined and some of its
properties are studied. A basic theorem relating the Leibniz bracket of the commu-
tator of two operators to the Leibniz bracket of them is obtained. Under some
natural conditions, the Leibniz bracket gives rise to a~graded! Lie algebra structure.
In particular, those algebras generated by the Leibniz bracket of the divergence and
the Laplacian operators on the exterior algebra are considered, and the expression
of the Laplacian for the product of two functions is generalized for arbitrary exte-
rior forms. © 2004 American Institute of Physics.@DOI: 10.1063/1.1738188#

I. INTRODUCTION

In mathematical physics, some operators of interest are not derivations of the underlying
algebraic structures. Their complement to the Leibniz rule of derivation defines then a product,
called the Leibniz bracket. The Leibniz bracket of a linear operator on an algebra is thus a bilinear
form that gives rise to a new algebra, called the Leibniz algebra. Leibniz algebras present inter-
esting properties, and this work concerns them.

In particular, if the Leibniz bracket of an operator~its adjoint action! is a derivation, the
operator is of degree odd and its square vanishes or is also a derivation, then the Leibniz bracket
is a Lie bracket.

This is the case, for example, in the antibracket formalism context,1 for the exterior derivative
considered as a second order differential operator on the differential forms of finite codimension:
the antibracket can then be defined as the corresponding Leibniz bracket, and some of its known
properties are simple consequences of the general results obtained here.

A similar situation occurs for the divergence operator over the exterior algebra, for which the
Leibniz bracket is nothing but the Schouten2,3 bracket~in another different context, an equivalent
result has been obtained by Koszul4!. The expression obtained here relating the Schouten bracket
to the divergence operator is of interest in mathematical physics. It allows, for example, to express
Maxwell equations in terms of Schouten bracket and to studyproper variationsof Maxwell
fields.5,6 It has been also used to express the electromagnetic field equations in a non linear theory
which solves, in part, an old problem concerning the existence and physical multiplicity of null
electromagnetic fields in general relativity.6,7

The Leibniz bracket of the commutator of two operators admits a simple expression: It is the
commutator of the Leibniz bracket of every one of them with respect to the operation defined by
the Leibniz bracket of the other one. For the Laplacian operator, whichappearsas the~graded!
commutator of the divergence and the exterior derivative, the above expression may be applied
directly to it, giving the following interesting result: The Leibniz bracket of the Laplace operator
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acting over the exterior algebra equals the Leibniz bracket of the exterior derivative acting over
the Schouten algebra. This gives an interesting generalization to the exterior algebra of the well
known expression for the Laplacian of a product of functions, and it has been applied in the
analysis of harmonic coordinates in General Relativity.8

II. LEIBNIZ ALGEBRA OF A GRADED OPERATOR

~a! Let E5 % Ea be a commutative graded group and+:E3E→E an operation verifyingEa

+Eb#Ea1b1k . Although it is always possible to regraduateE so that k vanishes, we shall retain the
above graduation to avoid confusion when using different operations, as we shall do; such a k will
be called thedegreeof the operation+ ~with respect to this graduation!.

The known properties~and concepts! on a graded groupE concerning an operation+ of degree
zero admit an equivalent form, depending generically on the degree k, when an arbitrary gradua-
tion is considered. Thus, the k-graded operation+ is commutative~resp.anticommutative! if it
verifies A+B5e(21)(a1k)(b1k)B+A with e51 ~resp.e521), and it isassociativeif A+(B+C)
5(A+B)+C.

If E is a module and+ is bilinear,~E, +! is said a k-graded algebra. A derivation of degreer is
a r-graded endomorphismD on E, D(Ea)#Ea1r , verifying the Leibniz ruleD(A+B)5DA+B1
(21)(a1k)rA+DB. An anticommutative k-graded algebra~E, @,#! verifying the Jacobi identityr
(21)(a1k)(c1k)@@A,B#,C#50 is said a k-graded Lie algebra. Jacobi identity states, equivalently,
that the (a1k)-graded endomorphism adA, adA(B)5@A,B#, is a derivation on~E, @,#!. If ~E, +! is
a k-graded associative algebra, the commutator defines a k-graded Lie algebra.

Let E be a graded group,+ a k-graded operation andP a p-graded operator. WhenP does not
satisfy the Leibniz rule, its ‘‘deviation’’ interests us. So we give the following definition: the
Leibniz bracketLP^+& of P with respect to+ is the (p1k)-graded operation given by

LP^+&~A,B!5A+P~B!1~21!p(a1k)@P~A!+B2P~A+B!#. ~1!

Of course,P verifies the Leibniz rule iff the Leibniz bracketLP^+& vanishes identically.
The Leibniz bracket of a linear operator with respect to a bilinear operation is a bilinear

operation, so that:when ~E, +! is a k-graded algebra andP is a p-graded endomorphism,
(E,LP^+&) is a (k1p)-graded algebra. We call it theLeibniz algebraof P on ~E, +!. If P andQ are,
respectively, p- and q-graded endomorphisms, their commutator@P,Q#5PQ2(21)pqQP is a
(p1q)-graded endomorphism. Then, taking into account thatLP^+& andLQ^+& are, respectively,
(p1k)- and (q1k)-graded bilinear operations, and applying successively relation~1!, one obtains
the fundamental result:

Theorem 1: In a k-graded algebra~E, +!, the Leibniz bracket of the commutator of two
endomorphisms is related to the Leibniz bracket of every one of them by

L[P,Q]^+&5LQ^LP^+&&2~21!pqLP^LQ^+&&. ~2!

In Marx’s style:9 The Leibniz bracket of the commutator@P, Q# of two endomorphismsP andQ
on the algebra~E, +! equals the graded difference between the Leibniz bracket ofQ on the Leibniz
algebra (E,LP^+&) of P and the Leibniz bracket ofP on the Leibniz algebra (E,LQ^+&) of Q.

In particular, asP25P"P is a 2p-graded operator, it follows thatfor any odd-graded operator
P, one has

LP2^+&5LP^LP^+&& , ~3!

Let us note thatLP^x& may be thought asan operatorLP over any operation x onE. In this sense,
theorem 1 says thatL[P,Q]^x&5@LQ ,LP#^x&, and relation~3! says thatLP2^x&5(LP)2^x&.

Theorem 1 shows directly the well known result that ifP andQ are derivations on~E, +!, so
is @P, Q#. Also, from ~3!, it follows:

Lemma 1: The squareP2 of an endomorphismP of odd degree is a derivation on~E, +! iff P
is a derivation on(E,LP^+&).
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On the other hand, if the operation+ is commutative or anticommutative, i.e.,A+B5e
(21)(a1k)(b1k)B+A, one can find the following result:

LP^+&~A,B!5e~21!(a1k1p)(b1k1q)1pLP^+&~B,A!, ~4!

that is to say, for a k-graded commutative (resp. anticommutative) algebra~E, +!, the
(k1p)-graded Leibniz algebra(E,LP^+&) is commutative (resp. anticommutative) ifP is even-
graded, and it is anticommutative (resp. commutative) ifP is odd-graded.

Let us denote, for simplicity,$A,B%P5LP^+&(A,B). Then, when~E, +! is a k-graded associa-
tive algebra andP an endomorphism, one has

$A,B+C%P2$A,B%P+C5~21!p(b1k)@$A+B,C%P2A+$B,C%P#. ~5!

~b! Let (F,+) be a 0-graded associative and commutative algebra generated by its sub-
module F1 , $,%P be the Leibniz bracket of the p-graded endomorphismP on (F,+), $A,B%P
[LP^+&(A,B), and ad$A%P be the adjoint of A in the Leibniz algebra (F,$,%P), i.e., ad$A%P(B)
[$A,B%P .

From the commutativity of (F,+) and relation~4!, Eq. ~5! may be written$C,B%ad$A%P

5(21)ca$A,B%ad$C%P
. Then, it follows:for any p-graded endomorphismP in (F,+), one has

ad$C%ad$A%P
5~21!ca1a1pad$A%ad$C%P

. ~6!

In particular, ad$A%P obeys the Leibniz rule on the set$C%3F iff ad$C%P does it on the set
$A%3F. Thus, iff ad$X%P is a derivation for everyXPF1 , ad$A%P verifies the Leibniz rule on
F13F. But an endomorphism that verifies the Leibniz rule onF1+F is a derivation on (F,+), so
that one has:

Lemma 2: Ifad$X%P is a derivation on(F,+) for any X ofF1 , thenad$A%P is a derivation on
(F,+) for every A ofF.

If P is a derivation on its induced Leibniz algebra (F,$,%P), the Leibniz rule may be written
@P,ad$A%P#5ad$P(A)%P . Then, applying theorem 1 it follows that ad$A%P is a derivation on
(F,$,%P) when ad$A%P and ad$P(A)%P are derivations on (F,+). From this result and lemma 2 one
has:

Lemma 3: Ifad$X%P is a derivation on(F,+) for any XPF1 and if P is a derivation on
(F,$,%P), thenad$A%P is a derivation on(F,$,%P) for any APF.

For p odd, lemma 1 states thatP is a derivation on (F,$,%P) iff P2 do it on (F,+). On the other
hand, it follows from relation~4! that (F,$,%P) is a p-graded anticommutative algebra. But under
this condition Jacobi identity says equivalently that ad$A%P is a derivation on (F,$,%P). All that
and lemma 3 lead to the following result:

Theorem 2: For p odd, ifP2 andad$X%P , for any X inF1 , are derivations on(F,+) then the
Leibniz algebra(F,$,%P) is a p-graded Lie algebra.

III. SCHOUTEN BRACKET, DIVERGENCE OPERATOR, AND LAPLACIAN

~a! Let Lp ~resp.L!p) be the set of p-forms~resp.p-tensors! over the differential manifoldM ,
that is to say, the set of completely antisymmetric covariant~resp. contravariant! tensor fields.
Then, L5 % Lp ~resp. L!5 % L!p) with the exterior product∧ is a 0-graded associative and
commutative algebra over the function ringx5x(M ): the exterior covariant algebra~resp. ex-
terior contravariant algebra!. We shall denote bya, b, g the elements ofL, and byA,B,C those
of L!, with corresponding degreesa,b,c.

Denote the interior producti (A)b, @ i (A)b#b2a5(1/a!) AaI baI ,b2a if a<b, by (A,b) and put
(b,A)5(21)a(b2a)(A,b). When XPL1, one has the usual interior producti (X) which is a
derivation of degree21 on ~L, ∧!. Moreover, one has

~g,A∧B!5~~A,g!,B!1~21!ab~~B,g!,A! if c5a1b21, ~7!
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~A∧B,g!5~B,~A,g!!, ~g,A∧B!5~~g,B!,A! if c>a1b. ~8!

Suppose now thatM is a n-dimensional and oriented manifold, and leth be a ~covariant!

volume element,h! being its ~contravariant! dual: hp,n2ph!p8,n2p5e(n2p)21dp
p8 ,e561.

Then, the Hodge operators are given by* A5(h,A), * a5(h!,a) and verify ** A5e
(21)a(n2a)A. Therefore, ifa1b<n,

* ~A∧B!5~* B,A!, * A∧b5* ~b,A! . ~9!

The set of real numbersR being a sub-ring of the set of functionsx, ~L, ∧! and (L!,∧) are
x-algebras andR-algebras. The exterior differentiationd is a 1-gradedR-derivation on~L, ∧!,
and the codifferentiation~divergence up to sign! is a (21)-gradedR-endomorphism given byd
5e(21)na* d* . Then, from~9! it follows,

d~A,b!5~dA,b!1~21!r~A,db!, r 5a2b.0. ~10!

~b! It is known that forX,YPL!1, d(X∧Y)5(dX)Y2(dY)X2LXY, whereLX denotes the
Lie derivative operator with respect to the vector fieldX. So that the operatord is not a derivation
on (L!,∧). Thus, it is possible to consider the Leibniz bracket$ , %d of the codifferential operator
on the exterior contravariant algebra (L!,∧),

~21!a$A,B%d5dA∧B1~21!aA∧dB2d~A∧B! . ~11!

Taking into account relations~7!, ~8!, and~10!, it is not difficult to show that, for any~a1b21!-
form g, one has

~21!ai ~$A,B%d!g5~d~g,B!,A!1~21!ab~d~g,A!,B!2~dg,A∧B! . ~12!

The Schouten bracket$ , % of two contravariant tensors2 is a first order differential concomitant
that generalize the Lie derivative.3 For p-tensors~antisymmetric contravariant tensors! this bracket
is defined by its action over the closed forms,10 i ($A,B%)g5(d(g,B),A)1(21)ab(d(g,A),B).
Comparing this relation and~12!, it follows $A,B%5(21)a$A,B%d , and one has the following
form of the Koszul4 result:

Theorem 3: The Schouten bracket is, up to a graded factor, the Leibniz bracket of the
operatord on the exterior contravariant algebra(L!,∧): $,%5(21)a$,%d . Explicitly:

$A,B%5dA∧B1~21!aA∧dB2d~A∧B!, ~13!

This result justifies that we nameLeibniz–Schouten bracketthe Leibniz bracket$,%d of the op-
eratord on the exterior contravariant algebra. Is is worth pointing out that both, the Schouten
bracket and the Leibniz–Schouten bracket, define on the exterior contravariant algebra two
equivalentstructures of (21)-graded algebra, which we name, respectively,Schouten algebraand
Leibniz–Schouten algebra. Althought equivalent, it is to be noted that the Schouten algebra does
not satisfies the standard writing of a Lie algebra properties, meanwhile the Leibniz-Schouten
algebra does. Let us see that.

It is not difficult to see that;XPL!1, ;APL!p, one has$X,A%5LXA; that shows how the
Schouten bracket generalizes the Lie derivative. Let us write$A,B%[LAB, ;A,BPL!; as it is
known, LX ,XPL!1, is a derivation andd is a (21)-graded endomorphism on the 0-graded
associative and commutative algebra (L!p,∧) such thatd250. As a consequence, the Leibniz–
Schouten bracket$,%d satisfies the hypothesis of theorem 2 and sothe Leibniz–Schouten algebra
(L!,$,%d) is a (21)-graded Lie algebra, that is,$L!a,L!b%d#L!a1b21 and

$A,B%d52~21!(a21)(b21)$B,A%d , R ~21!(a21)(c21)$$A,B%d ,C%d50. ~14!
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The Schouten bracket$,% also satisfies$L!a,L!b%#L!a1b21, and the properties of the Leibniz–
Schouten Lie algebra~14! can equivalently be written in terms of the Schouten bracket as

$A,B%5~21!ab$B,A%, R ~21!ac$$A,B%,C%50 . ~15!

Let us note that these last relations~15! satisfied by the Schouten algebra do not reduce, by any
regraduation, to the standard ones of a Lie algebra.

Jacobi identity equivalently states, the following generalization for the Lie derivative with
respect to the Lie bracket:

L $A,B%52~21!a@LA ,LB#.

Also, from lemmas 1 and 2 and taking into account the properties of the codifferential operator, it
follows that:(i) The codifferential operatord is a R-derivation on the Leibniz–Schouten algebra:

2d$A,B%5$dA,B%1~21!a$A,dB%.

(ii) The operator LA is a R-derivation on the exterior contravariant algebra:

LA~B∧C!5LAB∧C1~21!b(a21)B∧LAC.

The property~i! gives the generalization of the commutator of the codifferential and Lie derivative
operators:

@d,LA#[dLA1~21!aLAd52LdA .

On the other hand, Eq.~10! may be written@ i (b),d#5 i (db). But i (v) is a derivation on
(L!,∧) for any 1-form v. Then, taking into account theorem 1, we haveLi (v)^$ %d&
5Li (dv)^∧&. In particular, whenv is a closed 1-form, theni (v) is a derivation on the Leibniz–
Schouten algebra.

~c! Suppose nowM endowed with a~pseudo-!Riemannian metricg, allowing to identify~L,
∧! and (L!,∧). The Laplacian operator is then thegradedcommutator of the differential and
codifferential operators:

D5@d,d#[dd1dd .

It is known thatD is not a derivation on the exterior algebra. From theorem 1 its Leibniz bracket
is given by:

Theorem 4: The Leibniz bracket of the Laplacian operator on the exterior algebra equals the
Leibniz bracket of the exterior derivative on the Leibniz–Schouten algebra: LD^∧&5Ld^$ %d&.
Explicitly:

Da∧b1a∧Db2D~a∧b!5$da,b%1~21!a$a,db%1d$a,b%, ~16!

wherea and b are arbitrary a- and b-forms, respectively.
This theorem gives the generalization to the exterior algebra of the expression for the

Laplacian of a product of functions:D f .h1 f .Dh2D( f .h)52(d f ,dh).
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