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A Rainich-Like Approach to the Killing-Yano Tensors
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The Rainich problem for Killing-Yano tensors posed by Collinson [1] is solved. In
intermediate steps, we first obtain the necessary and sufficient conditions for a 2+2
almost-product structure to determine the principal 2—planes of a Killing-Yano tensor.
Then we give the additional conditions on a symmetric Killing tensor for it to be the
square of a Killing-Yano tensor. We also analyze a similar problem for the conformal
Killing-Yano tensors. Our results show that, in both cases, the principal 2—planes define
a Maxwellian structure. The associated Maxwell fields are obtained and we outline how
this approach is of interest in studying the spacetimes that admit these kind of first
integrals of the geodesic equation.
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1. INTRODUCTION

A second raniKilling-Yano tensoiis a skew-symmetric tenseé,z satisfying the
equation

VAp =0 (1)

Itis known (see, for example, [2] and references therein) that the veetoA(t)
is constant along an affinely parameterized geodesic with tangent vectoen,
the scalap? is a quadratic first integral of the geodesic equation and, consequently,
defines a second rarklling tensor, that is, a symmetric tensdf,z solution to
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the equation
VieKpuy =0 )

This Killing tensorK is in fact the square oA.

Thus, if A is a Killing-Yano tensor, therlk = A? is a Killing tensor. But
the converse is not true for a generic Killing tensor. Then, a question naturally
arises: what conditions a Killing tens&r must satisfy in order to be the square of
a Killing-Yano tensor? This question was established by Collinson [1] who also
pointed out that it poses a problem analogous to that studied by Rainich for the
Maxwell fields.

The energy tensof associated with an electromagnetic fid¢idsolution
of the source-free Maxwell equationMéxwell field, V- F =0, dF =0, is
divergence-freey - T = 0. Conversely, ifT is a conserved symmetric tensor,
what additional conditions must it satisfy in order to be the energy tensor of a
Maxwell field? This problem was posed and solved by Rainich [3] for regular
fields obtaining, as a consequence, a fully geometric characterization of the non-
null Einstein-Maxwell solutions. It is worth pointing out that the Rainich work
[3] also includes other interesting results about the principal planes of a non-null
Maxwell field. More precisely, Rainich theory for the regular electromagnetic field
consists of the following elements: (i) to write the source-free Maxwell equations
in terms of intrinsic variables, namely, the eigenvalues and the principal structure
of the electromagnetic field, (ii) to give the necessary and sufficient conditions on
a 2+2 structure in order to be the principal structure of a Maxwell field, (iii) to
express Maxwell equations for the energetic variables, such, to obtain the algebraic
conditions and the additional differential restrictions for a conserved symmetric
tensor to be the energy tensor of a Maxwell field, and (iv) to write the latter
conditions, via Einstein equations, for the Ricci tensor considered as a metric
concomitant.

The main goal of the Rainich article is, of course, to reach point (iv) which
leads to the so called 'already unified theory’ [4]. Nevertheless, the interest in writ-
ing Maxwell equations in terms of energetic variables (point (iii)) was afterwards
outlined by Witten [5], although the electromagnetic field was not, necessarily,
the source of the gravitational field. On the other hand, the Rainich results for the
principal planes (point (ii)) have shown their usefulness in several situations [6]
[7]1 [8] [9]. All these different aspects of a Rainich theory have been considered
for a perfect fluid energy tensor: the local thermal equilibrium condition has been
expressed in terms of energetic variables and a fully geometrical description of the
thermodynamic perfect fluid solutions has been obtained [10]; in this case point
(i) implies a characterization using the unitary velocity of the fluid, which has
been accomplished for the holonomic [11] and the barotropic [12] perfect fluids.

As we have mentioned above, Collinson [1] analyzed in his work aspect (iii)
of the Rainich problem for the Killing-Yano tensors. He gave algebraic intrinsic
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conditions for a tensor to be the square of a skew-symmetric tensor. He also wrote
the Killing-Yano equations in terms of the eigenvalues and eigenvectors (point (i))
and he discriminated between equations derived from the Killing tensor equations
and those that the Killing-Yano condition adds. Here, we improve the Collinson
results in two ways: firstly, we undertake the aspect (ii) of the Rainich theory
characterizing the Killing-Yano almost-product structures and, secondly, we give
both, the algebraic and the additional differential conditions for a Killing tensor
K to be the square of a Killing-Yano tensor, as explicit equationk atself and

the metric tensog.

A conformal Killing-Yano tensor As a solution to the conformal invariant
extension to the Killing-Yano equation (1). Conformal Killing-Yano tensors define
firstintegrals along affinely parameterized null geodesics with tangent \eatat,
in particular, A%(k, k) is a quadratic one. So, the squd?e= A? is aconformal
Killing tensor. But there are conformal Killing tensors that are not the square of
conformal Killing-Yano ones. Consequently, in this case we can state a Rainich-
like problem similar to the one previously posed for the Killing-Yano tensors, a
guestion that we also analyze here in the three aspects remarked above.

In studying both Rainich problems, for the Killing-Yano and for the conformal
Killing-Yano tensors, we show that the underlying 2+2 structures are Maxwellian
and, in both cases, we obtain the associated Maxwell fields. This fact leads us
to analyze the Rainich results about the electromagnetic field exhaustively, not
only to better understand its different aspects, but also to introduce notation and
concepts that enable us to fulfill the objectives of our work.

The spacetimes admitting second rank Killing-Yano tensors were considered
by Collinson in his article showing that, in the vacuum case, the Weyl tensor is
Petrov type D, N or O [1]. This result was generalized later by Stephani for the
non vacuum case [13]. The same restrictions for the existence of solutions to the
conformal Killing-Yano equation have been shown more recently [14]. The inte-
grability conditions of the Killing-Yano equations and some of their consequences
were analyzed by Dietz andudiger [15], who also studied the canonical form
of families of metrics admitting second rank Killing-Yano tensors [16]. We can
also quote the work by Hall [17] about Killing-Yano tensors in General Relativity.
The role played in these results by the Maxwellian character of the 2+2 structure
associated with the Killing-Yano tensor is pointed out in the present work. Some
comments about the intrinsic characterization of these families of spacetimes are
also presented.

In section 2 of the present paper we summarize in appropriate form the orig-
inal Rainich theory for the non-null electromagnetic field in order to gain better
understanding of its different aspects and, at once, we present notation and some
essential results about 2+2 spacetime structures. In section 3 we solve the Rainich-
like problem for the conformal Killing-Yano tensors. A similar Rainich problem
for the Killing-Yano tensors is undertaken in section 4 improving, in this way, the
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Collinson results concerning this subject. Finally, section 5 is devoted to pointing
out the interest of our results in characterizing the spacetimes that admit Killing-
Yano or conformal Killing-Yano tensors.

2. ASUMMARY OF THE RAINICH THEORY

On an oriented spacetim&/4, g) of signature ¢ + ++) a 2+ 2 almost-
product structure is defined by a time-like plavieand its space-like orthogonal
complementH. Let v andh = g — v be the respective projectors and Iétbe
the structure tensarIl = v — h. Almost-product structures can be classified by
taking into account the invariant decomposition of the covariant derivatiié of
[18] or, equivalently, according to the foliation, minimal or umbilical character of
each plane [19] [8]. We will say that a structure is integrable when both planes are
foliation and we will say that it is minimal or umbilical if both planes are so.

A 2 + 2 spacetime structure is also determined bydheonicalunitary 2-
form U, volume element of the time-like plane Then, the respective projectors
arev = U2andh = —(xU)?, whereU? = U x U = tr,3U @U and«is the Hodge
dual operator.

When both planes have a specific differential property, itis useful to introduce
the self-dual unitary 2—forif = %(U — i x U) associated withJ. The metric

on the self-dual 2—-forms spacegs= %(G — in), wheren is the metric volume
element of the spacetime arl is the metric on the space of 2—forns,=

%g A g, A denoting the double-forms exterior produd,  B)eg.w = Awu By +

Ay Byy — AuuBgu — A By, Then, we can consider some first order differential
concomitants ot/ that determine the geometric properties of the structure [8].
Indeed, ifi (-) denotes the interior product afithe exterior codifferentiab, = «dx,

we have the following lemma [8]

Lemma 1. Let us consider the 2+2 structure definedlby= %(U —ixU). It
holds:
(i) The structure is minimal if, and only if,

& =2Rqi (U)U] = d[U] =i(BU)U —i(6xU)«xU =0 3
(ii) The structure is integrable if, and only if,
W =2Im[i (U)U] = Y[U]=—-i@U)*xU —i(§xU)U =0 4)

(i) The structure is umbilical, if, and only if,
Ul =VU —-i(UHU QU —i1(8U)G =0 (5)

When the three conditions in lemma 1 hold we have a product structurt and
satisfiesvU = 0. It is worth pointing out that the first order differential properties
of a 2+ 2 structure admit a kinematical interpretation [20] and, in particular, the
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umbilical nature is equivalent to the geodesic and shear-free character of the two
principal null directions of the structure [8].

On the other hand, taking into account expressions (3) (4) and considering
the fact thatll = U2 + xU?, a straightforward calculation allows us to write the
first-order differential concomitantd andW in terms of the structure tensor:

® = O[] = —%n(v -TI) (6)

W:W[H]E%*(VHXH) @)

In equation (7) and in the following, we put to indicate the action of the Hodge

dual operator on the skew-symmetric part of a terisdloreover the umbilical
condition can also be expressed as a restriction on the structure tensor. Indeed, let
us consider the totally symmetric tengok= o[I1]:

o[M=SE2VIO+II(V - QI —(V-1) R g} (8)
whereS{t} denotes the total symmetrization of a tensdfhen, we have:

Lemma 2. LetIl be a 2+2 structure tensor. It holds:
(i) The structure is minimal if, and only i®[T1] = 0

(ii) The structure is integrable if, and only i/[T1] = 0

(i) The structure is umbilical, if, and only if[T1] = 0

The last property in lemma 2 can be directly inferred applying the geometric defi-
nition of umbilical structure [8]. It also follows from the Dietz andidder results
about the tensors with two geodesic and shear-free null principal directions [21].

2.1. Maxwell-Rainich Equations

A regular 2-formF takes the canonical expressiBn= €?[cosyU + siny
U], where thecanonical unitary 2—form Wletermines the 2+2 associated structure,
¢ is theenergetic indexandy is theRainich index

Let us go on to the first point (i) of the Rainich work. We must express
Maxwell equations in terms of theanonical element§U, ¢, ). Let F be a
Maxwell field that is, a solution of the source-free Maxwell equatids,= 0,
8 % F = 0. The self-dual 2—fornf = %(F — i xF) writes F = e**'V 14. Then,

taking into account that@? = g, Maxwell equation$ F = 0, write
d(g +ivy) = 2i (sU)U 9)

Therealandimaginary parts of this equation lead tdthgwell-Rainich equations
[3]1[22]:
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Proposition 1. In terms of the canonical elemenfd, ¢, v) of a non-null
Maxwell field, the source-free Maxwell equatiodB, = 0, § * F = 0, write:

dp = ®[U] =i(fU)U —i(sxU)*xU (20)
dyy = V[U]=—-i(U)xU —i(6 xU)U (12)
2.2. Maxwellian Structures

Given a 2+ 2 spacetime structure with canonical 2—fotun every pair
of functions ¢, ¥) complete the canonical elements defining a regular 2—form
F = (U, ¢, ¥). Nevertheless, a gived is not always the canonical 2—form of a
Maxwell field. WhenF is a non-null solution of the source-free Maxwell equa-
tions one says that its underlyingt22 structure is Maxwellian. Then, we can
ask the following question: Is it possible to express, solely in term$ ahd its
derivatives, the necessary and sufficient conditiondfdo define aviaxwellian
structure? The answer to this question is affirmative and we can easily find these
conditions starting from the Maxwell-Rainich equations (10-11). Indeed, applying
the Poincag’lemma to these equations, the Rainich theorem [3] follows:

Theorem 1. A unitary 2-form U defines a Maxwellian structure if, and only if,
it satisfies:

do[U] =0;  d¥[U] =0 (12)

Given a solution U to these equations, there exist two functigngs) such
that dp = ®[U], dyy = ¥[U]. Then F= e?[cosyU + siny + U] is a regular
Maxwell field.

The functionsp andys that theorem 1 associates with a Maxwellian structure
U can be obtained up to an additive constant. So, the associated Maxwell solution
F is determined up to a constant factor and a constant duality rotation. This theorem
covers the second aspect (ii) of the Rainich work.

The Maxwellian character of a 2+2 structure can be simply expressed saying
that the complex 1-form(si/)i4 is closed:

di (sU)ud =0 (13)
2.3. Maxwell Equations for the Energy Tensor
The energy Maxwell-MinkowsKi tensorT associated with an electromag-
netic fieldF is minus the traceless part of its square and, for a regular field, it only

depends on the canonical elemetids ¢) and can be expressed as:

1 1 1
TE—E[FZ—i—*Fz] =_§e2¢[U2+*U2] =—§e24’1'[ (14)
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A simple calculation shows that the traceless teffisbas a non-null square pro-
portional to the metric:

trT=0 = 4T?>=trT?g+#0 (15)

Conversely, if a symmetric tensor satisfies the algebraic conditions (15), we can
obtain a simple 2—fornk° as

o _pormy = QX _ 1 2
F _F(T)_m, Q=TAg W(TAg) (16)

where X is an arbitrary 2—form, an&®? means the square of a double 2—foRn
considered as an endomorphism on the 2—form space. Then, for an arbitrary Rainich
index v, the 2—formF = cosy F° + siny x F° hasT as its energy tensor.

In order to guarantee the physical meaning of an energy téhsee must
also impose the energy conditions on it. Under the algebraic restrictions (15) the
Plebanski energy conditions reduce to:

T(X,X) >0 a7)

wherex is an arbitrary time-like vector.
For a tensor given by (14) we have that T =i (§F)F +i(§ * F)F and so
Maxwell equations imply that is divergence-free:

V.-T=0 (18)

But the divergence-free condition (18) does not imply that any 2—form having
as its energy tensor is a Maxwell field. In order to undertake the point (iii) of
the Rainich theory we must obtain the additional differential condition§ tmat
complete its Maxwellian character. We can write the conservation equation (18) in
terms of the canonical energetic variablds ¢). Indeed, from (14) and expression

(6) it follows that (18) is equivalent to the first Maxwell-Rainich equation (10):

de = ®(I) (19)

It is worth pointing out that the conservation condition admits also a formu-
lation in the sole structure tenshr. If we name the 2+ 2 structure underlying to
a conserved Maxwell-Minkowski energy tengwe-Maxwellian structur¢23], it
follows from (19):

Lemma 3. A structure tensofl defines a pre-Maxwellian structure if, and only
if, it satisfies:

do(r) =0 (20)

Given a solutior1 to this equation, there exists a functigsuch thatdy = & (I1).
Then T= Ce*Il is a conserved Maxwell-Minkowski energy tensor, C being an
arbitrary negative constant.
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This last result is not a part of the Rainich work and we present it here for
sake of completeness. Elsewhere [9] we have studied a similar question for the
Killing and the conformal Killing tensors.

Letus go ontothe conditions that the whole set of Maxwell equations imposes
on T. From proposition 1 and expression (19) for the conservation condition,
besides this last equation we must impose the second Maxwell-Rainich equation
(11). In it we find the Rainich indexs that is not an energy variable. But we
can eliminate it by differentiation and we obtain the second condition (12) of the
Rainich theorem 1: @ = 0. We know the expression (7) of the 1—fodnn terms
of IT and, taking into account (14), a straightforward calculation leads to

1
With the results of this subsection we have acquired the point (iii) of the
Rainich work that we present here as a second Rainich theorem [3] [5]:

Theorem 2. A symmetric tensor T is the energy tensor of a Maxwell field if, and
only if, it satisfies the algebraic conditions:

trT=0 4T?°=trT?2g#0, T(X,x)>0 (22)
and the differential ones:
V.-T=0, d¥(T)=0 (23)

where the Rainich 1-forn¥(T) is given in (21) and x is an arbitrary time-like
vector.

Given a solution T to these equations, there exists a funcgtiosuch that
dyr = W(T). Then, if P is given by (16), F= cosy F° + siny * F° is a reg-
ular Maxwell field.

Let us note that the Rainich index s fixed up to an additive constant and,
consequently, the Maxwell field associated with an energy tehsatisfying the
conditions of theorem 2 is determined up to a constant duality rotation.

In the following sections we analyze the three aspects of the Rainich theory
for the Killing-Yano tensors and Conformal Killing-Yano tensors. However, it is
worth pointing out that the Rainich work contains a last aspect which is its main
goal: to give a fully geometric characterization of the non-null Einstein-Maxwell
solutions. Nevertheless, this question easily follows on from theorem 2. Indeed,
in dealing with Einstein-Maxwell solutions coincides with the Ricci tensor
because it is a traceless tensor. Moreover, the conservative conditidni$oa
direct consequence of the Einstein equations. So, one must impose the Rainich
algebraic conditions (22) and the Rainich equatid{Ric(g)) = 0 on the Ricci
tensor (considered as a second order metric concomitant).
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We will see that the 2- 2 structures defined by a Killing-Yano tensor and
a conformal Killing-Yano tensor are Maxwellian. Moreover, every Killing-Yano
tensor is a conformal one. So, in order to consider more and more restricted
situations, we first analyze the conformal case and we finish with the Rainich
theory for the Killing-Yano tensors.

3. RAINICH THEORY FOR THE CONFORMAL KILLING-YANO
TENSORS

A Conformal Killing-Yano (CKY) tensor is a skew-symmetric tengoso-
lution to the conformal invariant extension to the Killing-Yano equation (1). This
conformal Killing-Yano equation writes [24]:

Vie Ay = Gupdu — ) (24)

where the 1-forna is given by the codifferential oA: 3a = —§ A.

If Ais a CKY tensor, the scalar = A(k, p) is constant along an affinely
parameterized null geodesic with tangent vektawherep is a vector orthogonal
to the geodesic and satisfyikgh Vip = 0. In particular, we can takp = A(K),
which satisfies these restrictions as a consequence of the CKY equation. Then,
the scalarA?(k, k) is a quadratic first integral of the null geodesic equation, so
that,P = A?is a second rank Conformal Killing (CK) tensor, that is, a symmetric
tensor solution to the CK equation

Via Py = Yiepbi) (25)

It is worth mentioning that ifP is a CK tensor, sd® + fg is for an arbitrary
function f, and both define the same first integral of the null geodesic equation.
So, we can always consider traceless CK tensors. In thisltésén fact the
divergence ofP: 3b =V - P.

3.1. Conformal Killing-Yano Equations in the Variables (U, ¢, 1)

The first point (i) of the Rainich theory implies giving an expression of the
CKY equation (24) in terms of the canonical elemehts¢, v) of a regular CKY
tensorA = e?[cosy'U + siny x U]. In orderto carry out this task it will be usefull
to consider an alternative statement of the CKY condition (24) similar to those
considered in [15] for the KY equation. In fact, from the invariant decomposition
of the covariant derivativ® A, it follows that (24) is equivalent to:

3VA=dA—gASA (26)

where, for a vectory we put @ A v),as = 0,2V — G,V From expression (26)
it follows that the CKY condition is invariant under Hodge duality, so thatjs a
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CKY tensor too. Consequently, the self-dual 2—fordm= %(A — i % A) satisfies
the CKY condition (26) which in the self-dual formalism takes the form:

3VA = 2i(8A)G (27)

Now we can putd = e?+¥ I/ in equation (27). Then, we obtain an equation that
can be partially decoupled. Indeed, its orthogondl/tpart leads to a condition
involving the sole variabl®&) which expresses precisely that the associated22
structure is umbilical’X[U] = 0. On the other hand, its component in #e
direction leads to(sU)U = —d(¢ + iy). Thus, taking into account expressions
(3-5), we have shown:

Proposition 1. Interms of the canonical elemerfts, ¢, ) of a non-null skew-
symmetric tensor A, the CKY equation (24), write:

2[U] = VU — i (SU)U QU — i (SU)G =0 (28)
—2dp = B[U] =i(SU)U —i(8 xU) U (29)
—2dy = W[U] = —i(SU) * U —i(8 * U)U (30)

3.2. Conformal Killing-Yano Structures

Itis evident that the CKY equations (28—30) admit an equivalent formulation
in terms of the sole variabld and, consequently, we can characterize the2
structures associated with a CKY tensor. Indeed, if we name t@mformal
Killing Yano structuresa result similar to the first Rainich theorem follows from
proposition 2:

Theorem 3. The2 + 2 CKY structures are the umbilical and Maxwellian struc-
tures. That is, a unitary 2-form U defines a CKY structure if, and only if, it
satisfies:

$[U]=0; do[U]=0, d¥[U]=0 (31)

Given a solution U to these equations, there exist two funcligng’) such that
—2dp = ®[U], —2dyy = Y[U]. Then A= e’[cosy'U + siny x U] is a regular
CKY tensor.

This theorem covers the second aspect (ii) of the Rainich theory. The CKY
tensorsA associated to a CKY structutg solution to the equations (31) are
determined up to a constant factor and a constant duality rotation.

The Maxwellian character of a CKY structure offers another interpre-
tation for the CKY tensors: they are associated with a class of Maxwell
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fields, those having an umbilical underlying structure. More precisely, we
have:

Corollary 1. A skew-symmetric tensor A e?[cosyU + siny = U] is a CKY
tensor if, and only if, F= e ?*[cos 2/U — sin 2y x U] is an umbilical Maxwell
field.

3.3. Conformal Killing-Yano Equations for Its Traceless Square

The traceless squakeof a CKY tensorA can write in terms of the canonical
elementsy, ¢):

1 1 1
P=A?— 2 A’g = Ee2¢’[u2 +xU?] = ée"‘“’n (32)

The algebraic characterization Bfis given by the algebraic Rainich conditions
(15) together with a condition imposing that the time-like eigenvalue is positive,
P(x, x) < 0, x being an arbitrary time-like vector.

If Ais a solution to the CKY equation (24), théhis a CK tensor. But the
CK condition (25) does not imply that some CKY tengohasP as its traceless
square. To undertake point (iii) of the Rainich theory we must obtain the additional
differential conditions orP that complete its CKY character. In order to obtain
these conditions, we start by writing the CK equation (25) in terms of the variables
(T1, ¢). Putting the last expression of (32) in the CK equation we arrive to the
conditions [9]:

o[ =0, —2dp = () (33)

Taking into account lemmas 1 and 2 and expression (6) we find that the CK
equations (33) are equivalent to the two first equations (28), (29) of the CKY
characterization given in proposition 2.

The formulation (33) for the CK conditions allows us to characterize the
conformal Killing structuresthat is, the structures associated with a CK tensor.
This question has been analyzed elsewhere [9], and here we present some results
for completeness:

Lemma 4. The conformal Killing structures are the pre-Maxwellian and umbil-
ical structures. That is, a structure tensfrdefines a conformal Killing structure
if, and only if, it satisfies:

o[] =0, do(rm) =0 (34)
Given a solutiori1 to these equations, there exists a functiosuch that—2dgp =
®(I1). Then P= Ce¥I1 is a CK tensor, C being an arbitrary constant.

Let us go on the conditions that all CKY equations imposeRanFrom
proposition 1 and expression (33) for the CK condition, we must also impose the
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equation (30). We can easily eliminage in this equation and, if we write the
1-formW¥ in terms of P, we obtain a result that corresponds to the second Rainich
theorem:

Theorem 4. A symmetric tensor P is the traceless square of a CKY tensor if,
and only if, it satisfies the algebraic conditions:

trP=0, 4P?>=1trP?g+#0, P(x,x) <0 (35)
and the differential ones:
S(3VP—-g®V-P}=0, d¥(P)=0 (36)

where the Rainich 1-forn¥(P) is given in (21) and x is an arbitrary time-like
vector.

Given a solution P to these equations, there exists a fungtisuch that-2dy, =
W(P). Then, if & = F°[—P] where P[T] is given by (16), A= cosy A° +
sinyr x A° is a CKY tensor.

Let us note that the Rainich indeXx is fixed up to an additive constant and,
consequently, the CKY tensors associated with a symmetric téhsatisfying
the conditions of theorem 4 are determined up to a constant duality rotation. As
a corollary, a symmetric tensor is the square of a CKY tensor if, and only if, its
traceless part satisfies the conditions of the theorem above.

4. RAINICH THEORY FOR THE KILLING-YANO TENSORS

A Killing-Yano (KY) tensor is a skew-symmetric tenséx solution to the
Killing-Yano equation (1). We have commented in the introduction about the first
integrals defined byA and its squar& = A?, which is a Killing tensor solution
to the generalized Killing equation (2).

Itis known thatifK is a Killing tensor, its traceless pdPt= K — ;1‘ trKgisa
CKtensor. Moreover, every KY tenséris a CKY tensor, and the KY equation also
implies thatA is a co-closed 2—form. It is easily to show that these two conditions
are sufficient too. Thus, the expression (27) for the CKY condition allows us to
state:Ais a KY tensor if, and only if, it satisfies:

3VA=2(5A)G, SA=0 (37)

whereA = \%(A — i % A) is the self-dual 2—form associated with

4.1. Killing-Yano Equations in the Variables U, ¢, 1))

Letus goontoexpressthe KY equation (37) interms of the canonical elements
(U, ¢, ¥) of aregular KY tensoA = e?[cosyU + siny = U]. We know that the
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firstequationin (37) states thats a CKY tensor and it has been written in terms of

the canonical elements in proposition 2. So, we must only add the second equation
8A = 0 by putting A in terms of the canonical elements. Then we arrive to an
equation involving first derivatives of the three elemetits¢, v). But equations

(29) and (30) in proposition 2 give, respectively, the derivatives of the energetic
index¢ and the Rainich indey in terms of derivatives o). So, we can finally
obtain a condition that is algebraic on the scalars/) and differential oiJ . This
condition together with those in proposition 2 are equivalent to the KY equation.
Thus, we have acquired the first point of the Rainich theory:

Proposition 3. Interms of the canonical elemerfts, ¢, 1) of a non-null skew-
symmetric tensor A, the KY equation (1), write:

S[U] = VU — i (U @ U — i (SU)G = O (38)
—20dp = ®[U] = i(SU)U —i(§ x U) % U (39)
—2dy = W[U] = —i(8U) xU — i (s x U)U (40)
cosy 8U +siny U = 0 (41)

4.2. Killing-Yano Structures

Now we look for the equations characterizing(gling-Yano structurethat
is, the conditions in the sole variablé equivalent to the whole Killing-Yano
equations (38-41). The first one is already a conditiotJoand the second one
is equivalent to @[U] = 0. In this case, it is not suitable to eliminatein (40)
because the Rainich index appears in equation (41) too. Nevertheless, from this
last equation we can calculagein terms ofU and we can impose (40) on it. All
these considerations lead to the following theorem:

Theorem 5. A unitary 2-form U defines a non-product Killing-Yano structure if,
and only if, it satisfies:

$[U]=0, dd[U]=0, SUAS+xU=0  (42)

i(x)sU
2dy[U] + w[U] =0, U] = —arctam} ———— 43
yU] + w[U] ¥1U] T
where X is an arbitrary vector such thapd)sU # 0 or i(x)é x U # 0. Given a
solution U to these equations, there exists a funcficGuch that—2dp = ®[U].
Then A= e?{cosy[U]U + siny[U] + U} is a regular KY tensor.

The KY tensorsA associated with a KY structuke solution to the equations
(42-43) are determined up to a constant factor.
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The non-product character of the structure in theorem 5 is a sufficient con-
dition for the non simultaneous nullity of 1-forrd&) ands « U. Then, one can
determine the Rainich index by (43). On the other hand, ihelefines a product
structurel itself andxU are two independent KY tensors. This property has been
known for years [17] and it follows easily from proposition 3. Thus, in order to
complete the second element of the Rainich theory for the KY tensors we must
state the following:

Proposition 4. Every product structureyU = 0, is a Killing-Yano structure.
Then, the canonical form U and its dual are two independent Killing-Yano
tensors.

Itis evident that a KY structure is Maxwellian and, consequently, a Maxwell
field F may be associated with a KY tensAr In this case, besides the umbilical
nature of the structure, the condition (41) must be imposed. So, we have:

Corollary 2. A skew-symmetric tensor A e’[cosy'U + siny x U] is a KY
tensor if, and only if, F= e ?[cos 2/U — sin 2y x U] is an umbilical Maxwell
field satisfyingcosy U + sinyé x U = 0.

4.3. Killing-Yano Equations for Its Square

The squareK of a KY tensorA can be written in terms of the canonical
elementsl, ¢, ¥):

K = A% = e?[cos U2 + sify %U?] = %e%[n + cos /q] (44)

The intrinsic algebraic characterization of a symmetric tetsof the form (44)
was given by Collinson [1]. Now we easily put these conditions in an explicit form,
that is, in terms of the metric and the tensoritself. Indeed, the traceless part
P=K- %tr K g of K must satisfy the Rainich conditions (15), and the time-like
eigenvalue must be positive, that (X, X) < 0, x being an arbitrary time-like
vector.

Conversely, if a symmetric tensor satisfies these algebraic conditions, we can
obtain a Rainich indexy as

Vb —aZ—a
V2@ - )

and a simple 2—forr®° = F°[—P]whereF°[T] is given by (16) andP = K —
%tr K g. ThenA = cosy A° & siny « A° are such that\? = K.

If Ais a solution to the KY equation (1), thet = A? is a Killing tensor.
But, as Collinson points out in his work [1], there exist Killing tensors which are
not a KY square. Collinson asked: what additional differential conditkbmaust

v =¢(K)zarctani } a=trkK, b=trK? (45)
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satisfy to complete its KY character? In order to obtain these conditions, we can
start by writing the Killing equation (2) in terms of the variablek ¢, v). Putting
the expression (44) in (2) we obtain the equations [9]:

$[U]=0, —2dp = d(U) (46)
—sin2ydy = sirfyi(8xU) *U + cog i (8U)U (47)

Then, we find that the two first Killing equations (46) are the two first equations
(38), (39) of the KY characterization given in proposition 3, and the third condition
(47) is a consequence of (40) and (41). Moreover, a straightforward calculation
shows that (47) and one of the expressions (40), (41) imply the other one. Con-
sequently, in order to impose the whole KY condition we must add one of the
equations (40), (41) to the Killing equation.

Until now we have discriminated between the restrictions that the Killing
tensor equation imposes on the canonical elements and those that the KY condition
adds. In his work, Collinson obtains a similar result by using another formalism
[1]. Butin order to acquire the point (iii) of the Rainich theory in a similar way to
the one we have presented above for Maxwell fields and CKY tensors, we must
write the additional conditions that complete the KY character as explicit equations
for K.

However, previously we present the characterization oKilimg structures
that is, the Killing tensor associated structures. This result has been acquired
elsewhere [9]:

Lemma 5. A structure tensor U defines a Killing structure if, and only if, it
satisfies:

$[U] =0, ddU)=0, di(SU)U =i(SU)U Ai(5*U)*U (48)

Given a solution U to these equations, there exist two funcifoasd y such
that —2dp = ®(IT) and d{e? sir® ¥} = —e*i(SU)U. Then K= Ce*[y, 1 —
yU? 4y xU?] + Dgis aKilling tensor, C and D being arbitrary constants.

Let us go on the explicit conditions that the whole KY equations impose
on K. From proposition 3 and taking into account the comment after expression
(47), we can complete the KY condition by adding equation (40) to the Killing
condition. We must give explicit expressions fbrandV¥ in terms ofK. The first
one is the algebraic scalar invariantofgiven in (45), and equation (21) gives the
second one in terms of the traceless paK 080, we finally arrive to the following
theorem:
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Theorem 6. A symmetric tensor K is the square of a KY tensor if, and only if, it
satisfies the algebraic conditions:

1
AP? = tr P?g #£ 0, P:K—ZtrKg, K(x,x) <0 (49)
and the differential ones:
S{VK} =0, —2dy[K]=¢€V[P] for e=1 or e=-1 (50)

where the Rainich 1-forn¥(P) and the Rainich index/[K] are given by (21)
and (45) respectively, and where x is an arbitrary time-like vector.

Let K be a solution to these equations. Then, if=AF°[—P] where P[T] is
given by (16), A= cosy[K]A° + e siny[K] x A° is a KY tensor.

Let us note that ifK satisfies the algebraic conditions (49) there exist two
skew-symmetric tensors whose squar jsut only one of them can be a solution
of the KY equations.

5. SPACETIMES ADMITTING KILLING-YANO OR CONFORMAL
KILLING-YANO TENSORS

It is known that a spacetime admitting a regular Killing-Yano tensor is, nec-
essarily, type D or O and, in the first case, the Killing-Yano structure is aligned
with the principal structure of the Weyl tensor [13]. A similar result is known for
the CKY tensors [14]. These properties can easily be obtained from our results
about KY and CKY structures if, moreover, we take into account the integrability
conditions for the umbilical character of a spacetime 2 structure. These con-
ditions were considered using spinorial formalism by Dietz andiger [21] in
studying spacetimes admitting two geodesic and shear-free null congruences, and
they have recently been revisited in tensorial formalism [9]. In this last work we
can find the following result:

Lemma 6. If a non conformally flat spacetime admits an umbilical and
Maxwellian 2+ 2 structure, then the Weyl tensor is type D and the structure
is aligned with the Weyl principal structure.

From this lemma and theorem 3 we have:

Corollary 3. If a non conformally flat spacetime admits a CKY tensor, then the
Weyl tensor is type D and the principal structure is aligned with the CKY structure.

In particular, a KY tensor is a CKY tensor. So we recover the known result quoted
above [13] [14].

Thus, our analysis to the underlying structures to the KY and CKY tensors is
useful in studying the spacetimes where these 'symmetries’ exist. Moreover, we
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can obtain not only the necessary condition given in corollary 3, but we can also
look for sufficient conditions obtaining, in this way, an intrinsic characterization of
these families of spacetimes. Indeed, theorems 3 and 5 allow us to state something
more than corollary 3:

Proposition 5. Atype D spacetime admits a CKY tensor if, and only if, its princi-
pal structure is umbilical and Maxwellian, that is, its principal 2—form U satisfies
equations (31).

A type D spacetime admits a KY tensor if, and only if, its principal 2—form U
satisfies equations (42) and (43).

Itis worth pointing out that only the principal 2—forthappears in the intrinsic
characterization given in this proposition and an explicit expression for the metric
concomitantJ is known [25]. So, we can writetrinsic and explicitconditions
which can be tested by simple substitution of the metric teg$oiorder to know
whether the spacetime admits a KY or a CKY tensor. Elsewhere [26] we have
commented on the interest in obtaining an intrinsic and explicit identification of a
family of metrics. Moreover, given a metrigverifying these equations, theorems
3 and 5 say how the KY or the CKY tensor can be determined. A more detailed
analysis about these questions and other sequels of this work will be considered
elsewhere.
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