Thermodynamic perfect fluid. Its Rainich theory
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The conditions for a relativistic perfect fluid to admit a thermodynamic scheme are considered,
and the necessary and sufficient requirements for a metric to define a thermodynamic perfect

fluid space-time are given.

1. INTRODUCTION

Let g be the metric tensor of (aregion of) aspace-time, S
its Einstein tensor, and let (M, T) be the pair of the definition
equations M of a medium and of its energy tensor 7. We call
here Rainich theory of the medium the set of necessary and
sufficient conditions on g insuring the existence of the pair
(M, T) such that the Einstein equations S = T"(Ref. 1) hold.

It is clear that this definition is nothing but a direct ex-
tension to other media of results developed by Rainich® for
the regular electromagnetic field; in it, T is the Maxwell-
Minkowski energy tensor and M is the set of the vacuum
Maxwell equations.

Rainich worked out his theory about seven years after
the Einstein paper on the foundation of the general theory of
relativity,? where both media, the perfect fluid and the elec-
tromagnetic field, were explicitly considered. It seems rather
paradoxical that the perfect fluid had not, up to now, been
the object of a work analogous to Rainich’s one on the elec-
tromagnetic field.* We would like to comment here on four
of the factors that have contributed to this situation.

(i) The apparent simplicity of the barotropic case. A
Rainich theory involves two sets of equations: a first, alge-
braic, set ensuring that S has the same algebraic structure as
T, and a second, generally differential set translating in
terms of g (and its differential concomitants) the definition
equations M. In the barotropic case, the second set reduces
to the expression of the functional dependence of the two
algebraically independent invariant scalars of S, so that to
complete the Rainich theory of the barotropic perfect fluid
one only needs to know the algebraic characterization of the
perfect fluid energy tensor. It is true that to obtain it is an
easy task. Nevertheless, because of the Lorentzian character
of the metric, it is not so easy a task as it has been evoked in
the literature;’ in addition to imposing 7" to have a triple
eigenvalue and be of algebraic type I, one must give the con-
dition insuring that to the simple eigenvalue corresponds a
timelike eigenvector. For symmetric tensors, the general
problems of finding the causal character of the eigenspace
associated to a given eigenvalue, and its application to the
perfect fluid, have been solved only very recently;® we will
need here these results.

(ii) The apparent multiplicity of fluid thermodynamics.
Both the equations of electromagnetism and relativistic con-
tinuous media have been largely analyzed, discussed, and
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criticized from the beginning of relativity. But, meanwhile,
the matter for the electromagnetic field has been, in general,
to find for it a nonlinear system.” For thermodynamic con-
tinuous media, the matter has been to establish the basic sys-
tem of equations, playing the role analogous to the Maxwell
ones. And, as it is well known, there are many proposed
versions for this basic system. This situation would indicate
that thermodymamics is not yet ripe to be incorporated in
relativistic continuous media. Nevertheless, Marle’s work?®
pointed out in the opposed sense: many of these versions®
may be obtained from a unique relativistic kinetic theory,
their differences corresponding essentially to the different
methods used to approximate the Boltzmann equation.'®
Furthermore, any two arbitrary versions differ in at least one
of the following three aspects: the form of the conserved
quantities (stress energy, momentum), the thermodynamic
closure (generalized Fourier law, entropy balance), and the
physical definition of the variables appearing in the equa-
tions. What is important here for us is that, generically,'' the
proposed versions, when reduced to the thermodynamic per-
fect fluid, differ at most in the third aspect,'? that is to say:
the thermodynamic perfect fluid is generically unique, up to
an eventual redefinition of some of its variables.

(iii) The apparent independence of the thermodynam-
ics from the energy tensor. In the usual presentation of the
thermodynamic perfect fluid, the thermodynamic scheme is
obtained by adding to the standard energy tensor a con-
served matter current, an entropy relation, and an equation
of state. It would seem that the existence of these three ele-
ments could not be deduced from the metric and the energy
tensor itself, so that a Rainich theory would not be possible.
Nevertheless, we shall see that a unique condition from the
energy tensor guarantees the existence of such a thermody-
namic scheme.

(iv) The wideness of Rainich’s work. The work devel-
oped by Rainich? to geometricize the electromagnetic field
was, fortunately, superabundant. In particular, he revealed
the (weighted) (2 + 2) almost-product structure associated
to the electromagnetic field'* and obtained the necessary and
sufficient equations that the volume element U of the struc-
ture must verify in order to have a solution of the Maxwell
equations. As similarly, a perfect fluid has an associated
(weighted) (1 + 3) almost-product structure, the extension
of the Rainich work to the perfect fluid would implicate cor-
respondingly the obtainment of the necessary and sufficient
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equations that the volume element u (Ref. 14) of the struc-
ture must verify in order to have a solution of the hydrody-
namic equations.' Rainich considered also the uniqueness
of the Maxwell field, which he solved, but globally, the cor-
responding uniqueness of the thermodynamic scheme would
need to introduce some rather artificial ad hoc conditions. It
is to palliate these features that we have chosen our above
definition of a Rainich theory, which includes only a part of
Rainich’s work.

The above analysis shows that a Rainich theory of the
thermodynamic perfect fluid may be boarded. But, is it
worthwhile? We think there are, at least, four reasons to
constructit: (i) A general medium may not admit a Rainich
theory. What are the media admitting it? According to
Misner and Wheeler’s geometrical point of view,'® the exis-
tence of a Rainich theory would be a necessary condition for
such a medium to be realistic. In any case, these media admit
such a particular physical characterization [see (iv) below]
that the question about the existence of a Rainich theory is
already an interesting question. (ii) A Rainich theory offers
an alternative method'” of integration of the Einstein equa-
tions: the set of all unknowns being reduced to the metric
coefficients, the completed system of equations (the Einstein
ones plus those corresponding to the set M) is now an over-
determined system (unless M = @), and the corresponding
methods of compatibility conditions may be applied. (iii)
This last consideration may be of interest in the study of
those conjectures about perfect fluids which do not restrict
the space of solutions of the hydrodynamic (test) equations,
but restrict the space-times with which they are coupled;'®
due to this fact, it seems plausible that the Rainich theory
may help their analysis. (iv) In the penultimate phase of a
Rainich theory, the set M is reduced to a system of equations
on the energy tensor: a medium which admits a Rainich the-
ory is a medium which may be completely described in terms
of the sole energy tensor variables. This fact may be of inter-
est for practical purposes;'? it is certainly of interest for con-
ceptual and epistemological analysis.”®

In Sec. II we find a simple, necessary, and sufficient
condition for a perfect fluid to admit a thermodynamic
scheme (Theorem 1), and in Sec. I1I we give the equations of
the Rainich theory for it (Theorem 4). The barotropic and
polytropic particular cases are given explicitly (Corollaries
2 and 3).

The results without proof of this paper were communi-
cated to the Spanish relativistic meeting E.R.E. 87.!

Il. CHARACTERIZATION OF THE THERMODYNAMIC
PERFECT FLUID

A.‘Thermodynamic scheme

The energy conservation equations T = O (Ref. 22) for
a perfect fluid T= (p + p)u®u — pg (Ref. 23) may be
written

dp= (p + p)a + pu, (1)

(p+p)6 +p=0, (2)

where a and @ are, respectively, the acceleration and the ex-
pansion of u: a=u, 0= — bu.
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From the evolution point of view, the system (1), (2) is
open. A usual algebraic closure is obtained by imposing a
barotropic condition p = p(p); however acceptable in some
cases, it is known that this condition is too restrictive in
many other interesting physical situations.?* The standard
general closure to the energy conservation system is the dif-
ferential closure consisting of a thermodynamic scheme.

Let 7 be the (Eckart) matter density®® of the fluid; de-
noting by E=p — r the internal energy density and by
e=E /r the specific internal energy, one has

p=r(l+e). (3)

When an equation of state, depending only on the inter-
nal structure of the fluid, is known,

e=¢€(pr), (4)

the one-form de + p dv is integrable, v = 1/r being the spe-
cific volume. Then, the temperature © of the fluid may be
identified, by a classical argument, with an integrant divisor,
and the specific entropy s is given, up to an additive constant,
by

Ods=de+padv. (3)

As far as creation or annihilation of baryons do not take
place,”® the equation of conservation of matter holds:

8(ru) =0. (6)

The relation (5) allows us to write Eq. (2) in the form
8(ru) = [rO/f 15, N

where f=1 + € + pv is the enthalpy index of the fluid;*” Eq.
(7) shows the intimate relation existing between the local
adiabatic motion and matter conservation.

Itis interesting to note that, while in classical thermody-
namics, because of the nonequivalence between mass and
energy, the internal energy E,, of a given volume V is deter-
mined up to an additive constant; in relativistic thermody-
namics this energy is univocally determined once the matter
density is given. However, this fact does not imply that the
zero of the internal energy E, be fixed in relativity; because
of its noninertial character, the matter density is only deter-
mined up to a constant factor and, as a consequence, there
still exists indeterminacy of E, by an additive constant.
Thus, if M and M’ = kM denote two mass balances?® of the
particles contained in Vonehasr =M /V,r = M'/Vandit
resultsinE’, = (1 — k)M + E, . This observation is perti-
nent, for example, in the study of reaction fronts, where it
allows us to localize conveniently the binding specific energy
of the reaction,?® or in the study of those hot perfect gases for
which the limit © -0 is meaningless.*®

B. Characterization theorem

Einstein equations for the thermodynamic perfect fluid
being not easy to solve, one often, in a first step, looks for a
solution to the general perfect fluid and, once obtained, in a
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second step, considers the admissibility by this solution of a
thermodynamic scheme.

The existence of a thermodynamic scheme for a perfect
fluid verifying Eqs. (1) and (2) amounts to the existence of
functions € and rsuch that Egs. (3), (4), and (6) hold. Asa
consequence of (6), the equation in the function F,

F=¢, (8)

must admit at least one solution of the form
F(x) = Fp(x), p(x)). 9

If this is the case, the one-form I'=dp + (p + p)dFis
integrable, the variables 7, €, and f may be defined by
r=e~F e=pe’ — 1,andf= (p + p)e’, and, to every inte-
gral factor D> O for I', it may be associated an absolute tem-
perature © =e”/D and a specific entropy s such that
ds = DI'". Thus we have the following.

Lemma 1: The necessary and sufficient condition for a
perfect fluid to admit a thermodynamic scheme is the exis-
tence of solutions of the form F= F(p,p) to the equation
F = 6. Then, every pair {F,D} where D> 0 is an integral
factor of the one-form dp + (p + p)dF, determines a ther-
modynamic scheme.

For a thermodynamic perfect fluid, Eq. (9) may be
written in the equivalent form

dF = h(p,p)dp + g(p.p)dp, (10)
which implies
F= hp + gp. (11)

On the other hand, from (2) and (8) one obtains
p+(p +p)F= 0, so that (11) becomes

hp +gp= —p/(p+p). (12)

Suppose p = 0; from (12) it is either p=0o0rg=20.If
p =0, every arbitrary function F= F(p,p) verifies (8);
meanwhile if g =0, they are the functions of the form
F=F(p) which verify (8). Suppose p5#£0; then if g =0,
from (12) we have h = — 1/(p + p) and (10) implies that
p = p(p): the fluid is barotropic. Finally, if g#0 we have
from (12)

p/p=1[—1/gp){1/(p+p) +hpp)} (13)
which implies that p/p is a function of state:
p/p=x(p,p). (14)

Conversely, if (14) is verified, we can consider the following
first-order partial differential equation:

F,"+xF,’= —1/(p+p). (15)
Then, because of (2) and (11), every solution F(p,p) to it is
asolution to (8). Differentiating (14) and multiplying by pz,
we obtain an equivalent expression which is identically satis-
fied for p = 0, and thus we have the following.

Theorem 1: The necessary and sufficient condition for a
perfect fluid 7= (p + p)u ® u — pg to admit a thermody-
namic scheme is

(pdp — pdp) Adp Ndp = 0. (16)
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Let A =A(p,p) and u =pu(p,p) be two independent
thermodynamic variables, J=J(4,u;0,p)#0. We know
that dA Adu = J dp Adp so that, evaluating p dp — p dp up
to terms in dA and du, one easily finds the following.

Corollary 1: Let T = (p + p)u & u — pgbe a perfect flu-
idandA = A(p,p) and ¢ = p(p,p) two independent thermo-
dynamic variables. T admits a thermodynamic scheme iff

(Adp- o dA) NdA Adp = 0. (17)

lil. RAINICH THEORY FOR THE THERMODYNAMIC
PERFECT FLUID

Remember that if S'is the Einstein tensor of the metric g,
and if {M, T} is the pair of definition equations of a medium,
with T the energy tensor and M the complementary equa-
tions, then we call Rainich theory of the medium the set of
conditions on g and on its differential concomitants, which
ensure the existence of the pair {M, T} verifying the Einstein
equations S = T.

As everyone knows, the genuine Rainich theory con-
cerns the regular Einstein—-Maxwell equations. The pair
{M,T} is constituted of the set M of the vacuum Maxwell
equations, 6F = §*F = 0, and of the Minkowski energy ten-
sor T, 2T =F?+ (*F)>. Let us write R=Ric(g), r

=trR, s=trR?> and define the one-form
Y =s""*(VRXR)(Ref. 31); the Rainich theory of the
regular Einstein-Maxwell space-times consists® of the alge-
braic equations r = 0, R? = (1/4)sg#0, and the differential
equations dy = 0; any metric g verifying these conditions
defines an Einstein-Maxwell space-time corresponding to a
regular solution to the source-free Maxwell equations.

A. Algebraic conditions

Let us consider the thermodynamic perfect fluid space-
times. The pair {M, T} consists now of the set M of Eq. (16),
ensuring the existence of a thermodynamic scheme, and of
the energy tensor T'= (p + p)u o u — pg.

The algebraic set of equations characterizing the perfect
fluid energy tensor T were partially given by Taub’; we will
present here a slightly different form of his result.>? Let tr
and I be, respectively, the trace operator and the identity
over the second rank tensors; consider the trace-removing
operator Q=1 — (1/4)g tr, and , for any second rank tensor
T write t=tr T and s=tr T? then we have the following
lemma.

Lemma 2 (Taub’s lemma): A second rank symmetric
tensor 7 is of algebraic type I and admits a strictly triple
eigenvalue if, and only if, it satisfies the following relations:

Q(T?—xT) =0,

4s>t°, 2y #t.

This result says nothing about the causal character of
the associated eigenvectors. Regarding them, the following
lemma has been shown elsewhere.®

Lemma 3: A necessary and sufficient condition for the
eigenvector associated to the single eigenvalue to be timelike
is that the expression
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(22 (x)T— y}

be positive for any timelike vector x, where € denotes the sign
of the quantity t* — 6ts + 8 tr T3,

We are assuming that the perfect fluids considered here
correspond to a macroscopic level of description. For this
reason it is plausible to submit them to the Plebanski energy
conditions, which state that, for any observer, the energy
density is positive definite and the Poynting vector is non-
spacelike.®® In terms of p and p, the Plebanski conditions for
the perfect fluid are equivalent to the inequalities

— p < p<p, which may in turn be expressed as € = 1 and
x>0. Taking into account the above two lemmas, one ob-
tains the following theorem.®

Theorem 2: In a space-time of signature — 2, a second
rank symmetric tensor T" defines algebraically a perfect fluid
submitted to the Plebanski energy conditions if, and only if,

Q(T?*—xT) =0,
ds>t°, t<2y>0,
28(x)T>y,

(18)

wheret=tr T, s =tr 7%, Q= I — (1/4)g tr, and x is any
timelike unit vector.

The intrinsic decomposition of 7' may then be obtained
according to the following result.®

Theorem 3: The total energy p, the pression p, and the
direction of the unit velocity u of a perfect fluid energy tensor
T are given by

p=1/23y—t), p=1/2(y—1), (19)
uoci(x)T + px,

where
x¥=1/2(t+2), z=[(4s—t*)/3]'? (20)

and x is any timelike vector.

B. General case

Let us write R=Ric(g), r=tr R, and s=tr R? from

Einstein equations, we have (Ref. 1) R = T — 1/2tg so that
r= —t= —tr Tahds = tr T2 Taking into account these
values in definitions (20) and the expressions (19), the Jaco-
bian of r and s with respect p and p is given by
J(r,s;p,p) = — 6(2y + r), which does not vanish under the
third of the assumptions (18). Thus according to Corollary
1, the perfect fluid admits a thermodynamic iff (17) holds
forA=randu =s.

Ift = 0, (17) holds trivially; if £ 40, (17) is equivalent
to

d(s/t) AdrANds =0, (21)

and we have to evaluate the scalar §/r in terms of the con-
comitants R, r, and s of the space-time metric g. To do it, let
us observe that the direction of the unit velocity u, as given
by the third of the relations (19), is the image of the endo-
morphism U given by

U=T +pg=R+ 1/4(z—1)g, (22)
so that u = Ai(y) U, where y is any vector field not belonging
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to the kernel of U: i(y) U 0. Thus, for any function f we
have f'=i(u)df = i(df)u = Ai(df)i(y) U; in particular, tak-
ing f=rand y = dr, we have F = Ai*(dr) U, which vanishes
only if dr belongs to the kernel of U. Also, for f = s we have
§ = Ai(dr)i(ds) U and, consequently,

§/t = i(dr)i(ds) U /i*(dr)U. (23)

On the other hand, let us note that the three inequalities
expressed by the second and the third of the relations (18)
are equivalent to 4s>r” and z>r, which are nothing but

— 25"2 <rgs'’?, as it is not difficult to show.

Finally, taking into account this result, Theorem 2, and
expressions (21) and (22), we have the following.

Theorem 4 (Rainich theory of the thermodynamic per-
fect fluid): A metric g defines a thermodynamic perfect fluid
space-time with the Plebanski energy conditions if, and only
if, it verifies

— g2 < r<s”2,
R?—27R + 1/4(27r — s)g = 0,

2(x)R> 7,
and
PdnU=0
or
d[i(dr)i(ds)U /i*(dr)U] Adr Ads =0,
where R=Ric(g), r=trR, s=tr R?,

7=1/4{r + [(4s —1?*)/3]"?}, U=R + (7 —1/2)g and x
is an arbitrary unit timelike vector field.

As a corollary of Theorem 3, the total energy density p,
the pression p, and the direction of the unit velocity u of the
perfect fluid are then give by

p=3r—r, p=7n uxi(x)R+ (7—r/2)x.

C. Barotropic case

Let us note that in the barotropic case, since the Jacobi-
an J(r,8;0,p) does not vanish, the condition dp Adp =0 is
equivalent to dr A ds = 0. Thus we have the following corol-
lary.

Corollary 2: A metric g is a barotropic perfect fluid
space-time with the Plebafiski energy conditions if, and only
if, it verifies the algebraic relations of Theorem 4 and the
differential equation dr Ads = 0.

Also, in the case of a polytropic fluid of index 7,
p = (¥ — 1)p, it is easy to show the following result.

Corollary 3: A metric g defines a polytropic perfect fluid
space-time with the Plebaniski energy conditions if, and only
if, it verifies the algebraic relations of Theorem 4 and the
equation d(s/r*) = 0. Then, if s/r = ¢, the polytropic index
is given by

y={d4c— 1+ [(4c—1)/31"*}/Bc—1).
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