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The conditions for a unit vector field to be the velocity of a relativistic barotropic perfect fluid
are given. These conditions induce an eightfold classification of such fluids; for every class, the
admissible barotropic variables are found. Some special cases, in particular polytropic fluids,

are analyzed separately.

I. INTRODUCTION

In relativity, a perfect fluid is characterized by an energy
tensor T of the form T'= ( p + p)u ® u — pg, where p is the
total energy density, p is the pressure, and u is the (unit)
velocity of the fluid, and g is the space-time metric. The con-
servation of T leads to a system of equations in (#,p,p), Open
from the evolutive point of view, which is usually closed by
the adjunction of a barotropic relation p = p(p). So com-
pleted, this system is called the fundamental system of baro-
tropic hydrodynamics.

Thus in a given domain of the space-time, a barotropic
perfect fluid is a solution s=(u,p(p),p) to the fundamental
system. Let us denote by U the set of unit vector fields #, by R
the set of functions of a single variablep = p(p), and by F the
set of functions p over the given domain of the space-time. In
the total space UXRXF, the space of solutions {s} to the
fundamental system defines, by circumscription, a parallel-
epiped U, XR, XF,.

The Cauchy problem for the fundamental system shows
that R, = R or, in other words, that locally, any function of
asingle variable p (p) is an element of a solution (u,0(p),p) to
the fundamental system.' Nevertheless, it can be shown that
U, is a proper subset of U, U, #U, that is, there does not
exist, in general, a barotropic perfect fluid having as the ve-
locity field an arbitrary unit vector field of U. Thus it is
natural to ask the following question: Is it possible to intrin-
sically define U, or, more precisely, is it possible to express,
solely in terms of # and its derivatives, the necessary and
sufficient conditions for u to be the velocity field of a barotro-
pic perfect fluid?

The answer, as we shall show, is affirmative. The search
for the conditions on # leads to a classification of the unit
vector fields in eight classes. For each class, we obtain the
necessary and sufficient conditions on « and its differential
concomitants for insuring that u is the velocity field of some
barotropic perfect fluid. Furthermore, we give the holonomy
potentials that allow us to determine the corresponding bar-
otropic relations.

Similar problems to that of the intrinsic characteriza-
tion of U,, but restricted to particular forms of the barotro-
pic relation or to particular evolution laws, may be also con-
sidered. As an illustration, here we obtain the intrinsic
characterization of the unit vector fields « that are the veloc-
ity fields of (i) perfect fluids with constant pressure, (ii)
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perfect fluids with constant total energy density, (iii) baro-
tropic perfect fluids with u-invariant (i.e., constant along the
streamlines) pressure, and (iv) polytropic fluids. For these
cases, the conditions on « are simpler than those correspond-
ing to the generic barotropic case.

From a formal point of view, the differential system in u
defining the set U, is nothing but the conditional system in
the variable u associated to the fundamental system of baro-
tropic hydrodynamics. In other very different contexts, such
as thermodynamic perfect fluids,” electromagnetic fields,>
and almost-product structures or Killing tensors,* we have
already shown the conceptual interest of conditional sys-
tems.

Now, what is the interest of an intrinsic characterization
of the barotropic velocities in hydrodynamics? We think that
such a characterization may be of interest in many domains,
as, for example, in the following.

(1) Our conditional systems allow one to divide the task
of integration of the fundamental (test) system into two
clearly defined steps: a first step in which, after selecting the
desired class of velocities from our eightfold classification of
the unit vector fields, one looks for a solution « to the corre-
sponding conditional system and, once it is obtained, a sec-
ond step in which, with the aid of our results on the holon-
omy potentials, one constructs the barotropic relations
p = p(p) associated to this u.

(ii) In the usual approach to the integration of the Ein-
stein equations for barotropic perfect fluid space-times, one
considers directly the Einstein system and its first integrabi-
lity conditions; the problems of compatibility that appear
because of the relation p(p) are well known. Our characteri-
zation of U, guarantees the existence of such a relation and
allows one to relegate to a last, third step its computation: In
a first step, taking local charts adapted to u, one translates
the chosen conditional system in « into a system in the com-
ponents of the space-time metric g; in a second step, for the
corresonding constrained form of g, one evaluates its Ricci
tensor and imposes that  be an eigenvector; and finally, in a
third step, one considers the remaining Einstein equations
with respect to the barotropic relation(s) computed from
the g obtained in the first step.

(iii) One of the few known results on the restrictions
that the Einstein equations impose to the space of solutions
of the fundamental (test) system is the Treciokas—Ellis® con-
jecture, recently reconsidered by Collins.® The conjecture
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states that a distortion-free barotropic perfect fiuid space-
time is either vorticity-free or expansion-free.” Because of its
purely kinematical character, our associated conditional
systems in « are well adapted to the study of this conjecture.

(iv) In given (vacuum, Robertson-Walker, etc.) space-
times, it is sometimes interesting to know if some particular
congruences may be interpreted as the streamlines of baro-
tropic test perfect fluids (e.g., weak accretion in the neigh-
bors of a star). The answer to this follows directly from our
results by a simple, direct computation.

(v) Whatever its barotropic equation p = p(p), a (test)
barotropic perfect fluid may always evolve following any
(static or stationary) Killing direction of any space-time.
Nevertheless, the analog statement for conformally Killing
directions is false: In fact, the only barotropic perfect fluid
that may evolve following any conformally Killing direction
of any space-time is that of isotropic radiation p = 3p in
equilibrium with dust of constant energy density. Properties
such as these may be easily obtained from our characteriza-
tion of the barotropic velocities.

(vi) Every barotropic velocity may be endowed with a
barotropic relation p(p) and, of course, also with other more
general thermodynamic relations. We think that in the study
of nonbarotropic perfect fluids or nonperfect fluids (anisot-
ropy, viscosity, heat conduction), the hypothesis that their
velocities are barotropic may be useful in the study of the
behavior of such fluids. Either this hypothesis is incompati-
ble (the actual motion of the fluid cannot be reproduced by
any barotropic test fluid) or it is acceptable (one can com-
pare the ideal barotropic variables to the actual thermody-
namic ones). Both results constitute an interesting comple-
ment of information; in particular, the latter result may help
us to better understand the limitations involved in the Eckart
and Landau thermodynamic schemes.

(vii) For the taxonomy of the solutions of the funda-
mental (test) system and the Einstein equations, the eight
classes of velocity vector fields not only allow one to label the
known solutions, but also to play an heuristic role in the
search of new solutions.

The paper is organized as follows. In order to make the
proofs of the main result easier, in Sec. II the case p = const
is separate from the generic one, for which the data are re-
duced to a unit vector field and a holonomy potential. Sec-
tion III contains the main results of this paper: the eightfold
classification of the unit vector fields (Definition 1), the
characterization of the barotropic velocities corresponding
to each of these classes (Theorem 1), and the associated
equations for the holonomy potentials (Theorem 2). Final-
ly, in Sec. IV we characterize the velocities corresponding to
some particular cases often found in the literature: constant
pressure or density, u-invariant pressure, and polytropic
fluids.

A portion of the present results (those leading to
Theorem 1) with a sketch of the proof has been published
elsewhere.®

Il. THE BAROTROPIC PERFECT FLUID

Let (V,g) be the space-time sig(g) = — 2. Vector and
tensor fields and the expressions that relate them, unless oth-
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erwise stated, are given in their covariant form. The symbols
i(u), *,d, V¥, and & denote, respectively, the interior product,
Hodge dual, exterior derivative, covariant derivative, and
divergence operators.

In a domain of (¥,,g), the conservation 87 = 0 of the
energy tensor 7 of a perfect fluid amounts to the system

dp=(p+pla+pu, 0+p%(p+p)=0, (1)
where @ = i(#)Vu is the acceleration vector,
expansion, and f°= £(u)f for any function f,

A barotropic relation is a functional relation between p
and p of the form

dpAdp=0. 2)
When such a relation takes place (1) is called the fundamen-
tal system of barotropic hydrodynamics.

= — Suis the

In the particular case of constant pressure
p = p = const, system (1) becomes
a=0, 8+p°/(p+p)=0. (3)

Given u (and consequently, @), the second of Egs. (3) asso-
ciates one solution p to every p and to every u-invariant func-
tion /£ ( f° = 0). Although simple, we explicitly state this
result for completeness in the following proposition.

Proposition 1: Perfect fluids with constant pressure have
geodesic velocities. Conversely, to every geodesic (unit) vec-
tor field u one can associate a family of perfect fluids with
arbitrary constant pressure p and energy density
p=Jfpo+ (f—1)p, where p, is a given solution to
0 + p°/( p + p) = 0 and fis any u-invariant function.

From here on, unless otherwise stated, we have consider
dp+#0. Perfect fluids with a barotropic relation such that
dp #0 with be called barotropic fluids. Because of (2), there
exists a (local) function 7 verifying

dp= (p + p)dn. @

This function is called the holonomy potential.® For a non-
constant p one has

p=p(m), p'(m)=p+p#0, (5)

where p’=dp/dn. From (4) and (5), the first of Egs. (1)
may be written as

dm = a + 1°u#0, (6)
the scalar p°/( p + p) adopts the form
P/ (p+p)=1p'(m/(p+p)]n°
= [p"(m) —p'(m)1/p'(m),
and the second of Egs. (1) becomes

0 =g(m)yn°, (7)
where
glm)y=1—(np'(m)). (8)

Conversely, let 7 be a function verifying (6), let p(7) be
an arbitrary function of 7, and define p(7) by

p(m) =p'(m) —p(m).

We have dp = p'(w)dm = (p + p)dm, p° = (p + p)#° and
the first of Eqgs. (1) follows. If in addition, p() is a solution
to (8), where g(7) is determined by (7), the second of Egs.
(1) also follows. Thus we have shown the following proposi-
tion.

B. Coll and J. J. Ferrando 1021

Downloaded 23 May 2005 to 147.156.125.102. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Proposition 2: The fundamental system for the barotro-
pic perfect fluid is strictly equivalent to the system

dr=a+ 1°u#0, O=g(m)n° ¢))

in the pair (#,7). Given such a pair, for every solution p ()
to g(m)=1—(np'(7)) the triple (u,pp) with
p = p' () — pis a barotropic fluid.

Let us note that if p and p, are two solutions to Eq. (8),
onehas (In p(7)’) = (In py’ (7)), so that p, = k,p + k, with
k,>0and p, = kp — k,. Thusif (u,p,p) is a barotropic fluid
associated to the solution (u,7) to (9), all the other barotro-
pic fluids associated to the same solution (u,7) are given by
the biparametric family
ki'p+ k),
where &, and k, are constants and k0.

If (u,7) is such that #° = 0 one has, from (9), da =0,
6 = 0. Thus for the solutions (u,7) to (9) that verify either
da+0 or 8 #0, one has B=7"#0. The first of Egs. (9) is
(locally) equivalent to the equation expressing the closed
character of the one-form b = a + Bu and the second equa-
tion implies that € /8 is a function of 7, so that we have the
following proposition.

Proposition 3: A unit vector field « such that 6-da#0 is
the velocity of a barotropic fluid if and only if there exists a
function B #0 such that

db=0, d(8/8)ANb=0, (11)

where b = a + Su. For every such S, the holonomy poten-
tial 7 is determined, up to a-constant, by dr = b.

(u9 k1',0 - k2) (10)

lil. CLASSIFICATION AND CHARACTERIZATION OF
THE BAROTROPIC VELOCITIES

A vorticity-free unit vector field u is equivalently de-
fined by w==*(uAdu) =0o0rdu = uAa. If rand o are two
integrating factors for u corresponding, respectively, to the
potentials ¢ and s,

(12)

then the quotient 7/¢ is a function of ¢; conversely, if 7 is an
integrating factor and 7/0 is a function of ¢, then ¢ is an
integrating factor as well. Now, by differentiation and the
interior product by u of the first equality in (12), one obtains

dr=a+1°u, r=—In7, (13)

so that if 7 verifies the first of Egs. (9), one has
d(r— 1) = (7*—")u or, equivalently, d(7— 7)Adt
=0, that is, # = v + H(#): The function exp( — 7) is an
integrating factor. Thus we have obtained the following
proposition.

Proposition 4: Let u be a vorticity-free unit vector field.
The necessary and sufficient condition for 7 to verify
dm = a + 7°u is that exp{ — 7} be an integrating factor for
u.

u=rdt=ods,

Now, if u =o0ds with da =0, taking into account
Proposition 3, one has 0 =d[(In 0)°] =d[(In o)’ ds]
- (In o), = H(s) -0 = h(s)7, where 7 is such that 7° = 0:
We have the following lemma characterization for the vector
field # having a u-invariant integrating factor.
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Lemma I: A vorticity-free unit vector field admits a u-
invariant integrating factor if and only if da = 0.

Let u be such that w = 0 and & = 0. Then according to
Proposition 4, the holonomy potentials 7 that are solutions
todm = a + 7°u are determined by the integrating factors of
u. Since 8 = 0, the second of Egs. (9) is verified by taking
g(7) =0 (or 7° = 0). Thus we have the following proposi-
tion.

Proposition 5: A unit vector fiend u verifying w = 0 and
0 = 0 is the velocity vector of the barotropic fluids having
the holonomy potential 7 of the form 7 = — In 7, where 7is
an arbitrary integrating factor.

When w = 0 and 8 0, the hypothesis of Proposition 3
is verified. In the geodesic case @ = 0, the integrating factors
are constant, ¥ = d, and consequently, the first of Egs. (11)
reduces to df A u = 0 and, from it, the second equation be-
comes equivalent to dOAu =0: B and @ are of the form
B=PB(t), 6 =06(t). Then dw = b= Bdt: The holonomy
potential is a function of ¢ as well. We have the following
proposition.

Proposition 6: A unit vector field u verifying w =0,
a =0, and @ #0 is the velocity of a barotropic fluid if and
only if d6 A u = 0. The holonomy potentials 7 are the arbi-
trary functions 7(¢) of the potential ¢ of u, u = dt.

Let us now consider # verifying w =0, 6-a#0, and
&=a Ada = 0; then one has

(14)

where «a is the scalar a=i(as)i(u)da and a« is the vector
field a« = (1/a%)a. With the hypothesis of Proposition 3 be-
ing verified by the interior and exterior products by u (resp.,
ax) of the first (resp., second) of Egs. (11), we obtain, for
this u,

da=aula,

(6/8)°(a+ Bu) —Bd(6/B) =0, (15)
d(8/B) NuhNa=0, (16)
i(ax)da + B *u + Bi(asy)du =0, (17)
dBANulNa=0, (18)

where for any function f, f* = £(ax)f. On account of (18),
(16) becomes

doNuNa=0 (19)
and under our hypothesis, (17) is equivalent to
B*=p8 +a. (20)

By (19), (15) maybe writtenas (8 /8)° = S(8 /8)*, which
in turn becomes %= B2(1 — 0*/6) + B(a + 0°/0) via
(20). Thus we have the following proposition.

Proposition 7: A unit vector field u such that w =0,
6-a+#0, and a A da = 0 is the velocity of a barotropic fluid if
and only if there exists a function 8 such that

dONuha=0, dBAula=0,

B*=p +a, B°=B*(1—06* +pB(a+8%,
(22)

(21)

where
a=(1/a*)i(a)i(u)da, O©=In6.

For a function f verifying dfAuAa=0, one has
df = f°u + f*a and thus

B. Coll and J. J. Ferrando 1022

Downloaded 23 May 2005 to 147.156.125.102. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



fouNha=dfAa, f*uha= —dfAu,

23
df°AulNa=0, df*ANula=0, (23)

so that if du = u Aa and da = au A\ a, one has
For— = 0+ af* (24)

Moreover, because of (21) and (23), the result is that all the
scalars in (22) verify relation (24). From relation (24) it
follows that a necessary integrability condition for Egs. (22)
is

Bo* —B* —B°—aB*=0, (25)
which, according to (22), gives

uB*+xB +v=0, (26)
where

u= — 0%, y=0* 4 o* —a0* y=a0’-a"

Let u be such that it verifies the hypothesis of Proposi-
tion 7 with *> + y* = 0. Equation (26) then says that ¥ van-
ishes also and (25) becomes an identity. In this case, there
always exists at least one solution to Egs. (22); a simple way
to see the solution is to consider an evolution problem with
the constraint equation L=f* — f — a = 0. Taking into
account the second of Eqs. (22) and (25), one finds

L°=[2B(1—-0*) +6°1L +uB*+yB + 7,

so that since 4 =y = ¥ =0, L° vanishes with L. Conse-
quently, Egs. (22) are in involution: If £ is a solution of the
second of Egs. (22) in a neighborhood of a given instant and
verifies the first of Egs. (22) at that instant, then it is a solu-
tion to Eq. (22) in the neighborhood. Since the correspond-
ing initial constraint admits a one-parametric family of solu-
tions, we may state the following result.

-Proposition 8: A unit vector field u such that
—w?+ 2>+ 4?4+ y* =0 and 6-a50 is the velocity of a
barotropic fluid if and only if it verifies d0AuAa =0 and
y = 0. Equations (22) admit a one-parametric family of so-
lutions B; =B, [u]: For each of them, the one-form
b, = a + B, is closed and the holonomy potential 7, is de-
termined, up to a constant, by dm, = b,.

Suppose now that u verifies the hypothesis of Proposi-
tion 7 with u? + y?50. If 4 0 the result is that from (26) a
necessary condition for (22) to admit a solution is

A=y® —4uy>O0. (27)
One then has 8 = s, where
Bs = (1/2p)( —xy + A'). (28)

On the other hand, if z = 0 (and, therefore, y #0,), the re-
sult is that 8 = B,, where
Ba = — V/X
Consequently, we have the following proposition.
Proposition 9: A unit vector field u such that
—w? + &> =0, 8-a#0, and p® + y*#0 is the velocity of
the barotropic fluid if and only if it verifies either u#0,
y>4uy, (18), and (22) for B =pBs as given by (28) or
=0, (18), and (22) for B = B, as given by (29). In each
case, the corresponding one-form b, =a + B; u, (i =4,5) is
closed and the holonomy potential #; is determined, up to a
constant, by dm; = b;.

(2%
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Let u besuch that w = Oand &-250. In this case, taking
into account that du = u A a, the exterior product of Egs.
(11) by a implies that aAda+dBAula=0,
d(6/8) ANua =0 and since -8 #0, it follows that

BdOANulha= —6Balda.

The one-form z = — *(d@ A u A a) does not vanish and is
orthogonal to u. Consequently, 2270 and B = B, where

Bs= (8/2%)i(z)*(aNda). (30)

Therefore, we may state the following proposition.

Proposition 10: A unit vector field u such that w = O and
6-2+£0 is the velocity of a barotropic fluid if and only if it
verifies Egs. (11) for B = S, as given by (30). Then the one-
form bs=a + Bgu is closed and the holonomy potential 7, is
determined, up to a constant, by d7 = b,.

Consider now unit vector fields with w0 and da = 0.
By differentiation and the exterior product by u of
dm = a + 7°u, one obtains u Ada + 7°u Adu = 0, that is,
7° = 0; thus on account of (7), & = 0. Conversely, since
da = 0, let 7 be such that dr = a; then if 8 =0, 7 is a solu-
tion to (9). Therefore, we have the following proposition.

Proposition 11: A unit vector field ¥ such that w50 and
da = 0 is the velocity of a barotropic fluid if and only if it
verifies & = 0. Then the holonomy potential 7 is determined,
up to a constant, by dmr = a.

Finally, let us consider » such that w#0 and da+#0.
Since the hypothesis of Proposition 3 is verified, the result is
that ¥ Ada + BuANdu =0 and since w is a nonvanishing
spacelike vector field, one has w’ #0; consequently, 8 = B,
where

Bs= — (1/w?)i(w)*(uAda).

Thus we have the following result.

Proposition 12: A unit vector field u such that w @ da#0
is the velocity of a barotropic fluid if and only if it verifies
Eqgs. (11) for B = B; as given by (31). Then the one-form
by = a + Bsu is closed and the holonomy potential g is de-
termined, up to a constant, by dg = bg.

In the above we have obtained conditional systems in u
for the barotropic fluids. These systems depend on the non-
vanishing of some differential quantities associated to « and
do not admit a unique simple form valid for any unit field.
On account of the above results, we are lead to introduce the
following classification of unit vector fields.

Definition: A unit vector field « is said to be of class C;
(i = 1,...,8) if it verifies the relations given in Table I, where
we have written

w=x*(ulNdu), a=i(u)Vu, 6= —éu,
©6=In6, a=(1/a*)i(a)i(u)da,
pu= — 0%, y=0*"4 g* - aB*,

and f° = £(u)f, f* = (1/a*)£(a)f for any scalar f.

The results of this section may then be summarized in
the following two theorems.

Theorem 1 (of characterization of barotropic veloc-
ities): A unit vector field ¥ of class C; (i = 1,...,8) is the
velocity of a barotropic perfect fluid if and only if it verifies
the differential system B; given in Table II, where the scalar
B; (j=4,5,6,8) is defined by

(31)
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TABLE 1. The eight classes of unit vector fields.

Class Definition relations

C, w=0,0=0

C, w=0,0+#0,a

G, w=0, 6 #0, a;EO alNda=0,p*+ =0

C, w=0,0#0,a#0,aNda=0,u* +X;é0/,t 0
Cs w=0,07#0,a#0,aNda=0,u* + y*#0, u#0
Ce w=0, 8 #0, a#0, aANda#0

C, w#0,da =0

Cy w#0, da£0

Bi=(a’ —a®%)/y, Bs=(1/2u)(—yx £4'%),
Bs=(0/2%)i(z)*(aNda), PBy= — (1/uw?)i(w)*(uAda)
and we have written

A=y +4u(@® —aB°), z= —=*(d8Aula).

Theorem 2: The holonomy potential 7 associated to a
barotropic velocity of class C; (i = 1,...,8) is determined by
the relations P; given in Table III. Let g(7) be the function
such that 8 = g(7)#° and take

plm) = f exp U [1—g(m) ]dﬂ]dﬁ, p(m) =p' (7)) —p;

the triple (u,p,p) is then a barotropic perfect fluid.

IV. SOME SPECIAL BAROTROPIC MOTIONS: THE
POLYTROPIC CASE

In many cases one may be interested in disclosing a more
restricted character than that of barotropy. In this section,
we study the following types of particular barotropic perfect
fluids: (i) constant pressure dp = 0; (ii) constant total ener-
gy density dp = 0; (iii) u-invariant pressure (and density)
P° = p° = 0;and (iv) polytropic fluid, p = (1 — 1)p, 4 #1.

We shall see that the characterization of these cases is
easier than the general barotropic case.

Proposition 1 already characterized fluids of type (i);
such fluids also belong to one of the types (ii)—(iv) if and
only if @ = 0, so that (i) may be stated in form of the follow-
ing proposition.

Proposition 13: The necessary and sufficient condition

TABLE IL Differential systems characterizing the barotropic velocities of
class C,.

Symbol Necessary and sufficient conditions

¢
B, dOAu=0
B, dOAuNa=0,a0-a’=0

d6AuNa=0

5, =B+ a BL=B2(1~6*) +B(a+6"
dONuNa=0, A0

Bs $=B+a BY=B1(1—-6% +fi(a+6"

By d(a+ Beu) =0,d(0/B:) N (a+ Bgu) =

B, 6=0

By d(0+ﬁsu)=O;d(0/ﬂs)/\(a+ﬂsu)=
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TABLE III. Characterization of the holonomy potentials for a barotropic
velocity.

Symbot Characterization of 7

P, = —In7+ A1), (u=1rdt)
P, T=a(t), (u=T1dt)
dm, = a + B, u, where S8, is the one-parametric
P, family of solutions to the system
B*=8+a,B°=B*1-6% +Bla+6
P, dr,=a+ Pu
P drs=a+ Bsu
P, dmg=a + Beu
P, dor=a
Py dmy=a+ Pgu

for a unit vector u to be the velocity of a perfect fluid with
constant pressure and verifying one of the conditions (ii)-
(iv) is that « be geodesic and expansion-free.

Now, let dp#0. From Proposition 2, the barotropic re-
lation p = p(p) depends on the function g(#) given by (7);
indeed,

p(p)=p(m)/p(m)= —g{m(p)}.

Thus one has g(7) = constifand only if p is a linear function
in p. It is then easy to see that cases (ii) and (iv) are charac-
terized as in the following proposition.

Proposition 14: The necessary and sufficient condition
for u to be the velocity of a barotropic fluid with dp = 0 and
dp+#0is 0 = 0 and dm = a 4 7°u for some function 7.

Proposition 15: The necessary and sufficient condition
for u to be the velocity of a polytropic fluid with index A is the
existence of a function 7 such that {u,7} is a solution to (9)
withg(7) = (1 —-A)"L

In case (iii), because of p° = p® =0, one has 7° =0,
which by (9) leads to @ = 0 and da = 0. Since the converse is
also verified, one has the following proposition.

Proposition 16: The necessary and sufficient condition
for u to be the velocity of a barotropic fluid with p® = p° =0
is 6 =0 and da = 0. Then the holonomy index is deter-
mined, up to a constant, by dm = a.

When the conditions & = 0, da = 0 are verified for every
function p (1), the triple (u,0,p) withp = p’(7) — pisabar-
otropic fluid verifying p°® = p° = 0. Consequently, every
function p = p(p) is admissible as a barotropic relation.

By additing suitable conditions to the systems B, of Ta-
ble II, one may associate barotropic relations of types (ii)—
(iv) to unit vector fields of class C;.

According to Proposition 16, the velocities of the classes
C, and C, are of type (iii) if they verify da = 0. Consequent-
ly, these velocities admit any function p(p) as a barotropic
relation and the velocities of class C; (with da#0) and class
C, (with 8 = 0) are of constant energy density.

The velocities of classes Cg (resp., C;) with the
additional conditions @ %0 and 6/B; =const (resp.,
0 /B = const) admit polytropic barotropic relations.

The velocities of classes C;, C,, and C5 admit a polytro-
pic barotropic relation if S=k%-0 is a solution to the
system (22), where k is a constant One then has
a/(6 — 6°) = const.
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Finally, the velocities of class C, admit any polytropic
index because the holonomy potential is an arbitrary func-
tion of the potential ¢ for « and one can always take it to be
proportional, with an arbitrary constant, to a primitive of a
given 6(7).

Propositions 1 and 16 characterize types (i) and (iii) in
terms of u alone; meanwhile, Propositions 14 and 15 charac-
terize types (ii) and (iv) in terms of # and 7. Here we shall
obtain the conditions in u ensuring the existence of .

In case (ii) one has 8 = 0. When w = 0, Proposition 4
implies, for every integrant factor, the existence of a function
w verifying dm = a + 7°u. When w#0 and da = 0, the po-
tential 7 is such that d7 = g and if w50 and da #0, accord-
ing to the analysis given in Sec. III, # is a solution to
d(a + Bsu) = 0, where B, is given by (31). We thus have
the following theorem.

Theorem 3: The necessary and sufficient conditions for
u to be the velocity of a barotropic fluid with dp#0 and
dp=0 are 6=0 and either w=0 or w#0 and
d(a + Bgu) =0, where B; is given by F,= — (1/w?)
Xi(w)*(uAda).Inthe first case, to every integrating factor
7 corresponds a holonomy potential 7 = — In 7; in the sec-
ond case, the holonomy potential is determined, up to an
additive constant, by dm = a + Sgu. In both cases the triple
(upo,p) is a perfect fluid, where p is given by
P = ko exp(7) — p, and k, and p, are constants.

In case (iv), we know from Proposition 15 that « is the
velocity of a polytropic fluid with index 4 if and only if there
exists a function 7 such thatdmr = a + k6u, k = 1 — A; how-
ever, this is (locally) equivalent to

da + kd(6u) =0, (32)

so that da = 0 if and only if d(6u) = 0, where (32) then
takes place for any constant k. If da 0, for every two-form
X such that (X,da) #0, we have

k = - (X’da)/(Xyd(eu))
and by differentation

(33)
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i(X)i'(X){d(6u) ® 'Vda —dae'Vd(6u)}
+ {i(d(6u))i' (da) — i(da)i'(d(Ou))} X ® VX = 0.

Since this equation is verified for every X, the two expres-
sions inside the curly braces vanish and conversely, if they
vanish, there exists a constant & such that (32) is verified.
We have thus shown the following therorem.

Theorem 4: A unit vector fluid « is the velocity of a
polytropic fluid if and only if it verifies -either
da=d(6u) =0 or daed(0u)=d(0u)sda#0 and
da ® Vd(0u) = d(6u) ® V da. In the first case, any polytro-
picindex A 5 1is admitted; in the second case, the polytropic
index A = 1 — k is uniquely determined by (33), where X is
any two-form nonorthogonal to da. In both cases, the one-
form b=a + k6u is closed and the holonomy potential asso-
ciated to every k is determined, up to an additive constant, by
dm=b. The triple (u,p,p) is a polytropic fluid of index
A =1~ k,wherep(w) = kyexp{m A /(A — 1)}ifk #1and
plm) =kmifk=1.
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