
Aprenentatge i Reconeixement de Formes
Pattern Recognition and Machine Learning:

4. Nonlinear Machines and Kernels

Francesc J. Ferri

Dept. d’Informàtica. Universitat de València

Gener 2010

F.J. Ferri (Univ. València) ARF 1/2010 1 / 40

Introduction

Nonlinear extensions to linear models

Can linear models be extended (apart from “fixed” nonlinearities)?

Can linear linear neurons be combined in some (non trivial) way?

Can efficient learning algorithms be developed for these cases?

F.J. Ferri (Univ. València) ARF 1/2010 2 / 40

Introduction

Capabilities of linear models

Ways of (nonlinearly) combining linear neurons were known time ago
(Minsky & Pappert, 1969).

x1

w1

��===========

x2

w2 &&LLLLLLLL

...
GFED@ABCP // sgn // g(x) = sgn(wT x + w0)

w0
OO

xd

wd

>>~~~~~~~~~~

F.J. Ferri (Univ. València) ARF 1/2010 3 / 40

Introduction

Combining linear neurons

By using a step-like activation function linear decisions can be combined
either in a convex way (two layers) or in a general way (three or more
layers).

F.J. Ferri (Univ. València) ARF 1/2010 4 / 40

Introduction

Feedforward neural networks

Feedforward NN consists of (fixed) input and output layers and one or
more hidden layers of neurons.

Any piecewise linear decision can be reproduced

F.J. Ferri (Univ. València) ARF 1/2010 5 / 40

Introduction

FFNN as universal approximators

FFNNs perform a mapping from IRd to IRd ′ .

It can be shown (Hornik, 1991) that FFNN are able to reproduce any
arbitrary function !!

Even with only a single hidden layer!!!!
(usually the first (linear) layer is not considered as hidden)

F.J. Ferri (Univ. València) ARF 1/2010 6 / 40

Introduction

Learning in FFNNs

Rumelhart, 1986

By introducing differentiable activation functions it is possible to derive a
gradient descent learning procedure for FFNNs

Neuron j at layer `

x`
1

w`
j1

��;;;;;;;;;;;;

x`
2

w`
j2 %%LLLLLLLLL

...
GFED@ABCP // f `

j
// o`

j = x`+1
k

1 = x`
0

w`
j0

OO

x`
d

w`
jd

AA������������

F.J. Ferri (Univ. València) ARF 1/2010 7 / 40

Introduction

Adapting weights

` = 1, . . . , L

net`j =

N`−1∑
i=1

w `
jix

`
i

o`j = f `j (net`j)

Once the architecture is fixed, learning consists of computing ∂J
∂w`

ji

for all

i , j and `. Where

J =
1

2
(o`j − dj)

2

dj are desired outputs for the neurons at the layer L.

There is a hidden sub/superindex that refers to available training samples!

F.J. Ferri (Univ. València) ARF 1/2010 8 / 40

Introduction

Gradients

Let
∂J

∂w `
ji

=
∂J

∂net`j
· ∂net`j

∂w `
ji

=
∂J

∂net`j
x`i = δ`j x

`
i

where

δ`j =
∂J

∂net`j
=

∂J

∂o`j

∂o`j

∂net`j
=

∂J

∂o`j
f ′(net`j)

This δ`j substitutes the δ = o − d used in the Widrow-Hoff adaline.

∂J

∂wi
= (o − d)xi = δxi

F.J. Ferri (Univ. València) ARF 1/2010 9 / 40

Introduction

The weights of the output layer

δ can be easily computed at the output layer

δLj = (oL
j − dj)f

′(netLj)

and the result is very similar to the adaline.

For hidden neurons it is possible to write
∂J

∂o`j
=

∑
k

∂J

∂net`+1
k

∂net`+1
k

∂o`j
=

∑
k

δ`+1
k w `+1

kj

and multiplying by f ′ we obtain

δ`j = (
∑
k

δ`+1
k w `+1

kj)f ′(net`j)

So we found a recursive way of computing δ !!

F.J. Ferri (Univ. València) ARF 1/2010 10 / 40

Introduction

The backpropagation learning algorithm

Initialize all weights (usually to small random numbers)

For each training sample

Forward phase: compute network outputs

update the weights at the output layer (and compute δLj)

Backward phase: update the weights at previous layers using deltas
from next layer.

Repeat for new training samples until convergence.

F.J. Ferri (Univ. València) ARF 1/2010 11 / 40

Introduction

Questions about FFNNs and Backpropagation

Local minima and convergence

how many units, layers, samples ?

generalization ability

Lots of variations exists to overcome some of the (many) problems:
modify the criterion, add a momentum term, use regularization, adaptive
learning parameters.

Also: random order presentation, add noise to patterns, add noise to
weights, allow random gradient corrections, etc.

F.J. Ferri (Univ. València) ARF 1/2010 12 / 40

Introduction

Using the kernel trick

Any method can be extended to the nonlinear case by first performing a
nonlinear transformation of input data as

φ = x → φ(x) ∈ H

H is usually known as the feature space and it is usually a Hilbert space
(i.e. a scalar product must be defined there)

Imagine your algorithm depends only on inner products of the form
φ(xi) · φ(xj), then

Under some (mild) conditions there is a kernel function K such that

K (xi , xj) = φ(xi) · φ(xj)

So φ does not need to be used (or even known!)

F.J. Ferri (Univ. València) ARF 1/2010 13 / 40

Introduction

Some standard kernels

Linear: K (x , y) = xT y

Polynomial: K (x , y) = (xT y + 1)p or K (x , y) = (xT y)p

Gaussian (RBF): K (x , y) = exp(−||x−y ||
2σ2)

Neural net (sigmoid): K (x , y) = 1
1+exp(axT y+b)

Only pairwise dot products of training samples need to be known

This open the door to use text (string) kernels, graph kernels, etc.

F.J. Ferri (Univ. València) ARF 1/2010 14 / 40

Introduction

Non linear Support Vector Machines

The kernel trick can be applied to SVMs in a very straightforward way as
all expressions can be written in terms of pairwise dot products.

The output of the SVM for new input vectors, x , once the model has been
trained, can be obtained in the same way from K (x , xi) where xi is the
training data.

F.J. Ferri (Univ. València) ARF 1/2010 15 / 40

