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Dept. d’Informàtica. Universitat de València

Febrer 2010
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Introduction

Unsupervised Classification Methods

When data is given in a particular representation space and no labels are
available, we talk about unsupervised methods.

Clustering

Aims at finding groups in a given data in such a way that patterns
grouped together are more similar or closer than patterns in other groups.

Clustering is not a well defined task because its goal is partially subjective.
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Examples of clustering

Examples
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Multi−Class Problem
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Examples of clustering

Cluster analysis

1 Representation (vectors, strings, graphs, trees, ...)

2 Similarity (different inter- intra-cluster distances)

3 Grouping method (algorithm to effectively partitioning the data)

4 Data abstraction (ways of representing each cluster)

5 Assessment (how good a clustering result is)
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Examples of clustering

Taxonomy
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Hierarchical Methods

Hierarchical Clustering

Hierarchical means that we obtain a sequence of nested partitions of the
data instead of a single clustering result.

Most of these algorithms are very intuitive, easy to understand and apply
and give a very flexible (adjustable) result.

There are basically two kinds: divisive (top-down) and agglomerative
(bottom-up).

Divisive clustering algorithms start from a unique clustering and look for
the best way of splitting it into two blocks. The same procedure will be
applied recursively to all blocks until there is only one pattern in each
block.

Agglomerative clustering start from one cluster per pattern and keep
joining neighboring clusters until one ends up with a unique cluster.
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Hierarchical Methods

Dendrograms
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Hierarchical Methods

Hierarchical Agglomerative Clustering

General Algorithm

Start with one cluster per pattern
Repeat

find the two “closest” clusters
join them and update

Until all patterns are grouped together

Distance between clusters

Measures how close any two clusters are.
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Hierarchical Methods

The family picture

Single linkage clustering

minimum distance between particular patterns of each cluster

Complete linkage clustering

maximum distance between particular patterns of each cluster

Average linkage clustering

average of distances between pairs of patterns of each cluster

Ward’s clustering

takes into account average distances and their variances
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Hierarchical Methods

Efficiency of agglomerative clustering

O(n3)

The recurrence of Lance and Williams allows to compute the distances to
a newly created cluster in a recursive fashion.

Let k be the new cluster resulting from joining i and j . Then, ∀h

d(h, k) =
1

2
d(h, i) +

1

2
d(h, j)∓ 1

2
|d(h, i)− d(h, j)|

This computes de minimum and maximum distances, respectively. In
general,

d(h, k) = Aid(h, i) + Ajd(h, j) + Bd(i , j) + C |d(h, i)− d(h, j)|
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Partitional Criterion-based Methods

The greedy approach: c-means

The approach consists of establishing a criterion to be optimized.

J =
c∑

i=1

∑
x∈Xi

||x −mi ||2

where mi is the average of the patterns in the i-th cluster Xi ,
mi = 1

|Xi |
∑

x∈Xi
x

The number of clusters, c , needs to be fixed. Otherwise the minimization
of J leads to a trivial solution.
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Partitional Criterion-based Methods

The c-means algorithm

Start with an arbitrary c-partition and compute the c means
or start with c arbitrary means

Repeat
Compute the c partition induced by the current c means
Compute the the new c means by averaging the patterns at each cluster

Until the means do not change

This algorithm admits many optimizations and extensions.
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Partitional Criterion-based Methods

c-means examples

The c-means (or more correctly, the criterion used) tends to form equally
sized hyperspherical clusters.

There is an implicit assumption that the patterns in the clusters have to
be normally distributed around their average.
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Partitional Criterion-based Methods

The soft extension: fuzzy c-means

The c-means approach can be extended by considering fuzzy memberships
to the c clusters. The criterion is now

J =
c∑

i=1

N∑
k=1

(uik)p||xk −mi ||2

where the mean is also generalized as

mi =

∑N
k=1(uik)pxk∑N
k=1(uik)p

uik is the degree of membership of xk to cluster i , N is the total number
of patterns and p is a parameter that controls fuzziness of the result.

F.J. Ferri (Univ. València) ARF 2/2010 14 / 15



Partitional Criterion-based Methods

The fuzzy c-means algorithm

This criterion can be minimized by using Lagrange multipliers and leads to
a well-behaved iterative algorithm.

Once the algorithm has converged to a result, uik , each pattern is assigned
to the cluster whose membership is maximum.
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Vector Quantization and Extensions

Vector quantization and neural networks

vector quantization – clustering

concepts: quantization error, codebook vectors.

classical vector quantization: Linde, Buzo and Gray (LBG).
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Vector Quantization and Extensions

Self Organizative Maps (Kohonen)

Can be seen as a vector quantization process coupled with imposing a
topology to the codebook vectors (prototypes).

Imagine a map of neurons with an explicit topology in form of a (usually
regular) graph, in such a way that surroundings of increasing size of each
neuron can be defined.

All neurons are connected to D inputs through D weights. So there is a
weight vector attached to each neuron.
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Vector Quantization and Extensions

SOM: iterative correction rule

Neuron activation

Correction:
wj = wj + η(t)(x − wj)

It is possible to “see” the neurons (its weight vectors) in the same
representation space as the input, x . Is it possible also to represent the
topology (the graph) in this space.

...
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