DEMO 210

Varillas de inercia frente a giros

Autora de la ficha	Chantal Ferrer Roca
Palabras clave	Giros, momento de fuerzas, momento de inercia
Objetivo	Experimentar cómo la distribución de masa de un objeto determina su inercia rotacional (momento de inercia
Material	Dos varillas de la misma masa, una con pesas cerca de la empuñadura (roja) y otra con pesas en los extremos (azul)
Tiempo de Montaje	ninguno

Descripción

Sujetar la varilla roja por la empuñadura en posición vertical u horizontal. Mover la muñeca para hacerla girar rápidamente en vaivén como aparece en la imagen superior. Hacer lo mismo con la azul: se nota que nos cuesta mucho más y no conseguimos hacerlo con la misma velocidad. Puedes coger una varilla en cada mano para comparar el efecto al mismo tiempo.

Explicación

Los cuerpos presentan una inercia frente a los giros que depende de cómo se encuentra distribuida su masa alrededor del eje de giro (momento de inercia). La ecuación dinámica para los giros establece que la aceleración angular α con la que gira un cuerpo depende momento de fuerzas neto τ que actúa sobre él, dividido por el momento de inercia I.

$$\vec{\alpha} = \frac{\vec{\tau}}{I}$$

De forma que si aplicamos el mismo momento de fuerzas o torque a dos cuerpos con momentos de inercia I_1 e $I_2 > I_1$ las aceleraciones angulares serán $\alpha_1 = \tau/I_1$ $\alpha_2 = \tau/I_2 < \alpha_1$.

En este caso, las dos varillas tienen la misma masa, pero distribuida de forma diferente, una cerca del centro de giro (roja) y la otra en los extremos (azul). Y para esta segunda notamos que la aceleración angular que conseguimos es menor, aplicando con la mano un torque parecido (es más difícil aumentar su velocidad rotación o disminuirla cuando tiene un valor constante).

El momento de inercia de una masa puntual m situada a una distancia d del eje de giro viene dado por $I = md^2$.

Suponiendo que la varilla es un tubo de una cierta masa m_t y momento de inercia I_t al que se añaden dos masas puntuales a pocos centímetros del centro de la empuñadura en un caso y en los extremos en el otro entonces, los momentos de inercia de las varillas serán $I_{roja} = I_t + 2md_1^2$ $I_{azul} = I_t + 2md_2^2$. Supondremos que $d_{roja} \approx 10$ cm, $d_{azul} \approx 50$ cm.

Entonces,
$$\frac{\alpha_{roja}}{\alpha_{azul}} = \frac{I_t + 2md_r^2}{I_t + 2md_a^2} \approx \frac{I_t + 0.02m}{I_t + 0.5m}$$
 y, en el caso de que I_t sea despreciable, $\alpha_{roja} = 25\alpha_{azul}$

