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Introduction

Notation

— X, Y Banach spaces, Bx = {xe X: ||x|| <1}

— L(Y, X) is the space of bounded operators from Y into X
- F(Y,X)=A{T € L(Y,X): T has finite rank}

- K(Y,X)={T e L(Y,X): T iscompact}
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The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ For every Banach space Y, F(Y, X)”'H = K(Y, X).

T\, v\ '¢

@ The identity map Ix belongs to F(X, X)
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Introduction

The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ For every Banach space Y, F(Y, X)”'H = K(Y, X).

T\, v\ '¢

@ The identity map Ix belongs to F(X, X)

Definition

A Banach space X has the approximation property (AP) if the identity
map Ix can be approximated by finite rank operators uniformly on
every compact subset of X (= Ix € F(X, X)Tc).

@ All the classical Banach spaces of sequences and functions has
the AP.

@ Enflo (1973): L(¢2,¢2) does not have the AP.
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Approximation property in terms of tensor products
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Introduction

Approximation property in terms of tensor products

Js
Y'a. X  — MY, X)

Znyg@xn = Zn<y;7‘>xn
S lyr Hlixall < oo

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ X has the AP.
@ For every Banach space Y, F(Y,X) = K(Y,X).
© For every Banach space Y, Y*&, X ~ Ni(Y, X).
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Approximation property of order p via tensor products

@ Chevet—-Saphar’s tensor norm: p € [1, c0)
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@ Chevet—-Saphar’s tensor norm: p € [1, c0)
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n=1
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Y*®gpx — Np( Ya X)
Eny;;( & Xn = Zn<}/;;v'>xn
@ Saphar (1970’s): p € [1, oq]
X has the approximation property of order p (AP,) if, for every
Banach space Y, Y*®g,X ~ Np(Y, X).
@ Reinov (1980’s): p € (0, 1]
X hast approximation property of order p (AP,) if, for every
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Approximation property of order p via tensor products

@ Chevet—-Saphar’s tensor norm: p € [1, c0)

m
gp(u) = inf {I(y;‘)pll(xn)lle;(X): U=y Yy;@x €Y ® X}
n=1
Jp
V&g, X —  Np(Y,X)
Eny;;( & Xn = Zn<}/;;v'>xn
@ Saphar (1970’s): p € [1, oq]
X has the approximation property of order p (AP,) if, for every
Banach space Y, Y*®g,X ~ Np(Y, X).
@ Reinov (1980’s): p € (0, 1]
X hast approximation property of order p (AP,) if, for every
Banach space Y, the restriction of J; to H, is injective, where
Ho={u=3,y: 0% Y,(lyilllxal)? < 0o} € Y*&,X.
@ APy =AP
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Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

X a Banach space.
@ The following statements are equivalent:
@ X has the AP (= Ix can be approximated by finite rank operators
uniformly on compact subsets K C X).
@ For every Banach space Y, Y*&®.X ~ Ni(Y, X).
@ Aset K C X is relatively compact if and only if there exists
(xn) € co(X) such that K C aco (xn) := {>_,anXn: (a@n) € By, }.

Theorem [Bourgain and Reinov, 1984-85]

A Banach space X has the AP, (p € (0, 1)) if and only if Ix can be
approximated by finite rank operators uniformly on subsets K ¢ X for
which there exists (xp) € (4(X) suchthat K C {3, anxs: (an) € By, }
(p= =g~ =1).
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p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]
Letp > 1.
@ K C Xis relatively p-compact if there exists (x,) € ¢,(X) such
that K C p-co (x,) == {En anXn: (an) € By, }
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Introduction

p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]
Letp > 1.
@ K C Xis relatively p-compact if there exists (x,) € ¢,(X) such
that K C p-co (xp) = {Zn anXn: (an) € ng,}
@ A Banach space X has the p-approximation property (p-AP) if

the identity map /x can be approximated by finite rank operators
uniformly on every p-compact subset of X.

@ oo-AP=AP.
@ All Banach spaces have the p-AP for all p € [1, 2].
@ For every p > 2, there exist Banach spaces without the p-AP.

@ A necessary condition in terms of the trace is obtained for
Banach spaces having the p-AP.
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The ideal K, of p-compact operators

Letp>1and1/p+1/p =1.

Definition [Sinha and Karn, 2002]

@ K C X is relatively p-compact if there exists (x,) € £p(X) such
that K C p-co (x,) := {Zn anXn: (@n) € By, }
@ T € L(X,Y)is p-compactif T(By) is relatively p-compact.

Ko(X,Y)={T e L(X,Y): Tis p-compact}
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The ideal K, of p-compact operators

Letp>1and1/p+1/p =1.

Definition [Sinha and Karn, 2002]

@ K C X is relatively p-compact if there exists (x,) € £p(X) such
that K C p-co (x,) := {Zn anXn: (@n) € By, }
@ T € L(X,Y)is p-compactif T(By) is relatively p-compact.

Ko(X,Y)={T e L(X,Y): Tis p-compact}

-1 <p<g<oo, Kp(X,Y) C (X, Y).
— K, is an operator ideal.
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p-approximation property and p-compact operators

Theorem [Oja, Pifieiro, Serrano and Delgado, 2009]

X a Banach space, p € [1, +o0]. The following statements are
equivalent:

@ X has the p-AP.
© For every Banach Y, (Y, X) is || - |-dense in Kp(Y, X).
@ For every Banach Y, F(Y, X) is 7c-dense in (Y, X).
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p-approximation property and p-compact operators

— N3(Y,X)={T € L(Y,X): T*is p-summing}
T maps relatively compact sets in Y to
relatively p-compact sets in X.

Theorem [Oja, Pifieiro, Serrano and Delgado, 2009]

X a Banach space, p € [1, +o0]. The following statements are
equivalent:

@ X has the p-AP.
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p-approximation property and p-compact operators

— N3(Y,X)={T € L(Y,X): T*is p-summing}
T maps relatively compact sets in Y to
relatively p-compact sets in X.

Theorem [Oja, Pifieiro, Serrano and Delgado, 2009]

X a Banach space, p € [1, +o0]. The following statements are
equivalent:

@ X has the p-AP.

© For every Banach Y, (Y, X) is || - |-dense in Kp(Y, X).
@ For every Banach Y, F(Y, X) is 7c-dense in (Y, X).
© For every Banach Y, F(Y, X) is 7-dense in (Y, X).

e Teny(vV,X) &

J. M. Delgado The p-approximation property



Density of finite rank operators and the p-approximation property

p-approximation property and p-compact operators

@ X has the p-AP.
© For every Banach Y, F(Y, X) is 7c-dense in (Y, X).
3=1
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@ X has the p-AP.
© For every Banach Y, F(Y, X) is 7c-dense in (Y, X).

3=1
e>0

K = pco(xn), (Xa) € £o(X)

R e F(X, X) satisfying sup,cx ||[Rx — x| < e
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p-approximation property and p-compact operators

@ X has the p-AP.
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p-approximation property and p-compact operators

@ X has the p-AP.
© For every Banach Y, F(Y, X) is 7c-dense in (Y, X).

3=1
e>0
K = p-co(xa), (xa) € (p(X) = I(an) \ 0 (2n) = (an' Xn) € Lp(X)
x (bx(en) = Xn
ly =X
~ ¢z(€n) = Zn
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p-approximation property and p-compact operators

@ X has the p-AP.
© For every Banach Y, F(Y, X) is 7c-dense in (Y, X).

3=1
e>0
K = p-co(Xn), (Xn) € Lp(X) = F(an) \.0: (2n) := (an'Xn) € £p(X)
0. ﬂ) X (bx(en) = Xn
P _ b2(en) = zn H:= Qo D.(B,,)
Da | 1% :
Da(5Bn) = (anfn) compact in Y
Lo & Y::f//Kerc") "
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p-approximation property and p-compact operators

@ X has the p-AP.
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p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ X has the AP, i.e., for every Banach Y, F(Y, X*) | = K(Y, X*).

@ For every Banach Y, F(X, Y)”'H = K(X,Y).
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p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ X has the AP, i.e., for every Banach Y, F(Y, X*) | = K(Y, X*).

@ For every Banach Y, F(X, Y)”'H = K(X,Y).

T € ONL(X,Y) There exists (x;;) € £p(X*) such that
(T quasi p-nuclear) ITx] < (3,106, x) PP vx e X.
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p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
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@ For every Banach Y, F(X, Y)”'H = K(X,Y).
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p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]
X a Banach space. The following statements are equivalent:

@ X has the AP, i.e., for every Banach Y, F(Y, X*) | = K(Y, X*).
@ For every Banach Y, F(X, Y)”'H = K(X,Y).

T € ONL(X,Y) There exists (x;;) € £p(X*) such that
(T quasi p-nuclear) ITx] < (3,106, x) PP vx e X.

@ TeKp(X,Y)e T" € QN(Y™*, X*).
0 T e ONKX,Y) & T e Kp(Y*, X¥).

Theorem [Oja, Pifieiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:
@ X* has the p-AP.
@ For every Banach Y, (X, Y)is || - ||-dense in QN,(X, Y).
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Relation to Saphar’s approximation property AP,

Saphar (1970-72):
@ For every p # 2, there exist Banach spaces without AP,,.
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Relation to Saphar’s approximation property AP,

Theorem [Oja, Pineiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:
@ X* has the p-AP.
© For every Banach Y, (X, Y)is || - ||-dense in QN,(X, Y).

Saphar (1970-72):
@ For every p # 2, there exist Banach spaces without AP,,.

o For every Banach Y,
® X has the APy = F(X,Y)is mp-dense in QNH(X, Y).
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© For every Banach Y, (X, Y)is || - ||-dense in QN,(X, Y).
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A trace characterization of the p-approximation property

The trace functional

— Ni(X,Y)is aquotient of X*®, Y = N1 (X, Y)* — L(Y, X**).
{ trace(T) := Y251, (x5, x3)

m
- T=) G ex e F(X.X")
trace(T)| < Somy [Ix2*|l1x: |l

n=1
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— Ni(X,Y)is aquotient of X*&, Y = Ni(X, Y)* — L(Y,X*).
m trace(T) := 3.7, (x¥*, x¥)
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Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
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The trace functional

— Ni(X,Y)is aquotient of X*&, Y = Ni(X, Y)* — L(Y,X*).
m trace(T) := 37 . (x:*, x*

- T—Zx,’;@x;,k*e}'(xx**){ (7) Z”ﬂ;‘“ )
=1 [trace(T)[ < > nq [1x37[I11x5

— Finite-nuclear norm of T € F(X, X**):
vo(T) = inf{3271 I llIx I 7= 3200 x; @ X33

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:
@ X has the AP.
Q If (x5) C Xand (x;;) C X* are such that 3, || x; ||| Xn|| < co and
> (X5, x)xn =0 for all x € X, then >~ (X, xn) = 0.
@ The linear map T € N;(X, X**) — trace(T) € R is continuous if
and only if X* has the AP.
@ If X* has the AP, then N{(X, Y)* ~ L(Y, X**).

J. M. Delgado The p-approximation property




A trace characterization of the p-approximation property

A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:
For every (x,) € (,(X) and every (x;) € ¢1(X*) such that
Yon(Xs, x)xp = 0 for all x € X, we have > (X, Xn) = 0.
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Proposition [Oja, Pifeiro, Serrano and Delgado, 2009]

The following statements are equivalent:
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@ For every relatively p-compact sequence (x,) C X and every
(x5) € £1(X*) such that > (x5, x)x, = 0 for all x € X, we have
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A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:
For every (x,) € (,(X) and every (x;) € ¢1(X*) such that
Yon(Xs, x)xp = 0 for all x € X, we have > (X, Xn) = 0.

Proposition [Oja, Pifeiro, Serrano and Delgado, 2009]

The following statements are equivalent:
@ X has the p-AP.

@ For every relatively p-compact sequence (x,) C X and every
(x5) € £1(X*) such that > (x5, x)x, = 0 for all x € X, we have

Zn<xr*;7 Xn> =0.

X** has the p-AP = X has the p-AP
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A trace characterization of the p-approximation property

About the subspace structure of NV1(X, Y)*

- . x x*) C X** relatively p-compact
Ny (X, X ):_{T_ann®xn: (x3") y p-comp }

(7)€ fL1(X7)
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About the subspace structure of NV1(X, Y)*
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@ If X** has the p-AP, the map T € N, (X, X**) — trace(T) € R is
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About the subspace structure of NV1(X, Y)*
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A trace characterization of the p-approximation property

About the subspace structure of NV1(X, Y)*

Ny (X, X*) == {T— DonXn @ XpF:
@ N (X, X**) € Ny(X, X**)

@ If X** has the p-AP, the map T € N, (X, X**) — trace(T) € R is
well-defined, linear and continuous.

(xz*) C X** relatively p-compact }
(x3) € &4(X7)

p € [1,00).
o If X** has the p-AP, then NJ(Y, X**) C N1(X, Y)*.
@ If Y* has the p-AP, then My(Y, X**) C Ni(X, Y)* .
Se I'Ig(Y,X**)

u:ZnX;®y” }éSOUZZnX;®SyHGA/(P)(X7X**)
(x3) € t1(X7), Iyl — 0
(S, u) = trace(Sou), Yue N{(X,Y)

° nP(Y7 X**)a ng(y7 X**) C—>M(Xa Y)* (p € [132])
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Open problems

The Banach ideal £,

— T € Kp(X, Y) when T(Bx) is relatively p-compact, i.e., if there
exists (yn), € £p(Y) such that

T(Bx) C p-co (¥n), : {Zan}/n GBe,} (1)
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— T € Kp(X, Y) when T(Bx) is relatively p-compact, i.e., if there
exists (yn), € £p(Y) such that

T(Bx) C p-co (¥n), : {Zan}/n GBe,} (1)

— T eKp(X, Y):

1/p
kp(T) = inf { (Z |(yn)n||”> : (Yn), verifica (1)}

n
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Open problems

The Banach ideal £,

— T € Kp(X, Y) when T(Bx) is relatively p-compact, i.e., if there
exists (yn), € £p(Y) such that

T(Bx) C p-co (¥n), : {Zan}/n GBe,} (1)

— T eKp(X, Y):

1/p
kp(T) = inf { (Z |(yn)n||”> : (Yn), verifica (1)}

n

— [Kp, kp] is @ Banach operator ideal.
p> Kp
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Open problems

o F(V. X)" =Ky(Y,X), forall Y  — ??
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Open problems

Open problems

o F(V. X)" =Ky(Y,X), forall Y  — ??

@ A general definition including most of the mentioned
approximation properties of order p.

J. M. Delgado The p-approximation property
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