The p-approximation property in Banach spaces

J. M. Delgado

Department of Mathematics
University of Huelva

V ENCUENTRO DE ANÁLISIS FUNCIONAL Y SUS APLICACIONES
Salobreña 2009
Outline

1. Introduction
2. Density of finite rank operators and the p-approximation property
3. A trace characterization of the p-approximation property
4. Open problems
Introduction

Density of finite rank operators and the p-approximation property

A trace characterization of the p-approximation property

Open problems
Notation

- X, Y Banach spaces, $B_X = \{ x \in X : \|x\| \leq 1 \}$
- $\mathcal{L}(Y, X)$ is the space of bounded operators from Y into X
- $\mathcal{F}(Y, X) = \{ T \in \mathcal{L}(Y, X) : T$ has finite rank$\}$
- $\mathcal{K}(Y, X) = \{ T \in \mathcal{L}(Y, X) : T$ is compact$\}$
- $p \in [1, \infty) \Rightarrow p' = \frac{p}{p - 1} \quad (\Leftrightarrow \frac{1}{p} + \frac{1}{p'} = 1)$
Notation

- \(X, Y\) Banach spaces, \(B_X = \{x \in X : \|x\| \leq 1\}\)
- \(\mathcal{L}(Y, X)\) is the space of bounded operators from \(Y\) into \(X\)
- \(\mathcal{F}(Y, X) = \{T \in \mathcal{L}(Y, X) : T\) has finite rank\}
- \(\mathcal{K}(Y, X) = \{T \in \mathcal{L}(Y, X) : T\) is compact\}
- \(p \in [1, \infty) \Rightarrow p' = \frac{p}{p - 1} \quad (\Leftrightarrow \frac{1}{p} + \frac{1}{p'} = 1)\)
- \(\ell_p(X) = \{(x_n) \subset X : \sum_n \|x_n\|^p < \infty\}\)
 \(\|(x_n)\|_p = (\sum_n \|x_n\|^p)^{1/p}\)
- \(\ell^w_p(X) = \{(x_n) \subset X : \sum_n |\langle x^*, x_n \rangle|^p < \infty, \text{ for all } x^* \in X^*\}\)
 \(\|(x_n)\|_p^w = \sup_{x^* \in B_{X^*}} (\sum_n |\langle x^*, x_n \rangle|^p)^{1/p}\)
Notation

- **X, Y** Banach spaces, \(B_X = \{ x \in X : \| x \| \leq 1 \} \)
- **\(\mathcal{L}(Y, X) \)** is the space of bounded operators from **Y** into **X**
- **\(\mathcal{F}(Y, X) = \{ T \in \mathcal{L}(Y, X) : T \text{ has finite rank} \} \)**
- **\(\mathcal{K}(Y, X) = \{ T \in \mathcal{L}(Y, X) : T \text{ is compact} \} \)**
- **\(p \in [1, \infty) \Rightarrow p' = \frac{p}{p - 1} \) \((\Leftrightarrow \frac{1}{p} + \frac{1}{p'} = 1) \)**
- **\(\ell_p(X) = \{ (x_n) \subset X : \sum_n \| x_n \|^p < \infty \} \)**
 \[\| (x_n) \|_p = (\sum_n \| x_n \|^p)^{1/p} \]
- **\(\ell_w^p(X) = \{ (x_n) \subset X : \sum_n |\langle x^*, x_n \rangle|^p < \infty, \text{ for all } x^* \in X^* \} \)**
 \[\| (x_n) \|_{w^p} = \sup_{x^* \in B_{X^*}} (\sum_n |\langle x^*, x_n \rangle|^p)^{1/p} \]
- **\(\mathcal{N}_p(Y, X) = \{ T \in \mathcal{L}(Y, X) : T \text{ is } p\text{-nuclear} \} \)**
- **\(T : Y \rightarrow X \text{ } p\text{-nuclear} \iff \exists (y_n^*) \in \ell_p(Y^*) \exists (x_n) \in \ell_w^{p'}(X) : T = \sum_n y_n^* \otimes x_n \)**
Introduction
Density of finite rank operators and the p-approximation property
A trace characterization of the p-approximation property
Open problems

Notation

- X, Y Banach spaces, $B_X = \{x \in X : \|x\| \leq 1\}$
- $\mathcal{L}(Y, X)$ is the space of bounded operators from Y into X
- $\mathcal{F}(Y, X) = \{T \in \mathcal{L}(Y, X) : T$ has finite rank$\}$
- $\mathcal{K}(Y, X) = \{T \in \mathcal{L}(Y, X) : T$ is compact$\}$
- $p \in [1, \infty) \implies p' = \frac{p}{p-1}$ \quad ($\Leftrightarrow \frac{1}{p} + \frac{1}{p'} = 1$)
- $\ell_p(X) = \{(x_n) \subset X : \sum_n \|x_n\|^p < \infty\}$
 \[\|(x_n)\|_p = (\sum_n \|x_n\|^p)^{1/p}\]
- $\ell^w_p(X) = \{(x_n) \subset X : \sum_n |\langle x^*, x_n \rangle|^p < \infty, \text{ for all } x^* \in X^*\}$
 \[\|(x_n)\|_p^w = \sup_{x^* \in B_{X^*}} (\sum_n |\langle x^*, x_n \rangle|^p)^{1/p}\]
- $\mathcal{N}_p(Y, X) = \{T \in \mathcal{L}(Y, X) : T$ is p-nuclear$\}$
- $T : Y \rightarrow X$ p-nuclear \iff \(\exists (y_n^*) \in \ell_p(Y^*)\)
 \(\exists (x_n) \in \ell^w_{p'}(X) : T(\cdot) = \sum_n \langle y_n^*, \cdot \rangle x_n\)
The approximation property

\[(T_n) \subset \mathcal{F}(Y, X) \quad \Rightarrow \quad T \in \mathcal{K}(Y, X)\]
The approximation property

\[(T_n) \subset \mathcal{F}(Y, X) \]

\[T_n \xrightarrow{\| \cdot \|} T \]

\[\Rightarrow T \in \mathcal{K}(Y, X) \iff \mathcal{F}(Y, X) \subset \mathcal{K}(Y, X) \]
The approximation property

\[
(T_n) \subset \mathcal{F}(Y, X) \quad \text{implies} \quad T \in \mathcal{K}(Y, X) \iff \overline{\mathcal{F}(Y, X)}_{\|\cdot\|} \subset \mathcal{K}(Y, X)
\]

- \(X\) has Schauder basis

\Rightarrow \text{For every Banach } Y, \overline{\mathcal{F}(Y, X)}_{\|\cdot\|} = \mathcal{K}(Y, X)
The approximation property

Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. For every Banach space Y, $\mathcal{F}(Y, X)\|\cdot\| = \mathcal{K}(Y, X)$.
2. The identity map I_X belongs to $\mathcal{F}(X, X)^{\tau_c}$.
The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. For every Banach space Y, $\mathcal{F}(Y, X)^{\|\cdot\|} = \mathcal{K}(Y, X)$.

2. The identity map I_X belongs to $\mathcal{F}(X, X)^{\tau_c}$.

Definition

A Banach space X has the approximation property (AP) if the identity map I_X can be approximated by finite rank operators uniformly on every compact subset of X ($\equiv I_X \in \mathcal{F}(X, X)^{\tau_c}$).
The approximation property

Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. For every Banach space Y, $\mathcal{F}(Y, X)_{\|\cdot\|} = \mathcal{K}(Y, X)$.
2. The identity map I_X belongs to $\mathcal{F}(X, X)^{\tau_c}$.

Definition

A Banach space X has the *approximation property* (AP) if the identity map I_X can be approximated by finite rank operators uniformly on every compact subset of X ($\equiv I_X \in \mathcal{F}(X, X)^{\tau_c}$).

- All the classical Banach spaces of sequences and functions have the AP.
The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. For every Banach space Y, $\mathcal{F}(Y, X) \| \cdot \| = \mathcal{K}(Y, X)$.
2. The identity map I_X belongs to $\mathcal{F}(X, X)^{\tau_c}$.

Definition

A Banach space X has the *approximation property* (AP) if the identity map I_X can be approximated by finite rank operators uniformly on every compact subset of X ($\equiv I_X \in \mathcal{F}(X, X)^{\tau_c}$).

- All the classical Banach spaces of sequences and functions has the AP.
- Enflo (1973): $\mathcal{L}(\ell_2, \ell_2)$ does not have the AP.
Approximation property in terms of tensor products

\[Y^* \otimes_{\pi} X \]

\[\sum_n y_n^* \otimes x_n \quad \sum_n \| y_n^* \| \| x_n \| < \infty \]

\[J_1 \rightarrow \mathcal{N}_1(Y, X) \]

\[\sum_n \langle y_n^*, \cdot \rangle x_n \]
Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. X has the AP.
2. For every Banach space Y, $\mathcal{F}(Y, X) \| \cdot \| = \mathcal{K}(Y, X)$.
3. For every Banach space Y, $Y^* \hat{\otimes}_\pi X \cong \mathcal{N}_1(Y, X)$.
Chevet–Sapĥar’s tensor norm: \(p \in [1, \infty) \)

\[
g_p(u) = \inf \left\{ \| (y_n^*)\|_p \| (x_n)\|_{\ell^w_p(X)} : u = \sum_{n=1}^{m} y_n^* \otimes x_n \in Y^* \otimes X \right\}
\]
Chevet–Saphar’s tensor norm: \(p \in [1, \infty) \)

\[
g_p(u) = \inf \left\{ \| (y_n^*) \|_p \| (x_n) \|_{\ell^w_p}(X) : \sum_{n=1}^{m} y_n^* \otimes x_n \in Y^* \otimes X \right\}
\]

\[
J_p \quad Y^* \hat{\otimes}_{g_p} X \quad \rightarrow \quad N_p(Y, X) \quad \sum_n y_n^* \otimes x_n \quad \mapsto \quad \sum_n \langle y_n^*, \cdot \rangle x_n
\]
Approximation property of order p via tensor products

- Chevet–Saphar’s tensor norm: $p \in [1, \infty)$

$$g_p(u) = \inf \left\{ \| (y_n^*) \|_p \| (x_n) \|_{\ell^w_p(X)} : u = \sum_{n=1}^{m} y_n^* \otimes x_n \in Y^* \otimes X \right\}$$

$$Y^* \hat{\otimes}_{g_p} X \xrightarrow{J_p} \mathcal{N}_p(Y, X)$$

$$\sum_n y_n^* \otimes x_n \mapsto \sum_n \langle y_n^*, \cdot \rangle x_n$$

- Saphar (1970’s): $p \in [1, \infty]$

X has the approximation property of order p (AP_p) if, for every Banach space Y, $Y^* \hat{\otimes}_{g_p} X \simeq \mathcal{N}_p(Y, X)$.

$\text{AP}_1 = \text{AP}$
Approximation property of order p via tensor products

- Chevet–Saphar’s tensor norm: $p \in [1, \infty)$
 \[
g_p(u) = \inf \left\{ \|y_n^*\|_p \|x_n\|_{\ell_w^p(X)} : u = \sum_{n=1}^{m} y_n^* \otimes x_n \in Y^* \otimes X \right\}
\]

\[J_p \quad Y^* \hat{\otimes}_{g_p} X \quad \rightarrow \quad \mathcal{N}_p(Y, X)\]

\[\sum_n y_n^* \otimes x_n \quad \rightarrow \quad \sum_n \langle y_n^*, \cdot \rangle x_n\]

- Saphar (1970’s): $p \in [1, \infty]$
 X has the \textit{approximation property of order p (AP$_p$)} if, for every Banach space Y, $Y^* \hat{\otimes}_{g_p} X \simeq \mathcal{N}_p(Y, X)$.

- Reinov (1980’s): $p \in (0, 1]$
 X has \textit{approximation property of order p (AP$_p$)} if, for every Banach space Y, the restriction of J_1 to H_p is injective, where

 \[H_p = \{ u = \sum_n y_n^* \otimes x_n : \sum_n (\|y_n^*\| \|x_n\|)^p < \infty \} \subset Y^* \hat{\otimes}_\pi X.\]
Approximation property of order p via tensor products

- Chevet–Saphar’s tensor norm: $p \in [1, \infty)$

\[
g_p(u) = \inf \left\{ \|y_n^*\|_p \|x_n\|_{\ell^w_p(X)} : u = \sum_{n=1}^m y_n^* \otimes x_n \in Y^* \otimes X \right\}
\]

\[
J_p : Y^* \hat{\otimes}_{g_p} X \rightarrow \mathcal{N}_p(Y, X)
\]

\[
\sum_n y_n^* \otimes x_n \mapsto \sum_n \langle y_n^* , \cdot \rangle x_n
\]

- Saphar (1970’s): $p \in [1, \infty]$
 X has the *approximation property of order p* (AP$_p$) if, for every Banach space Y, $Y^* \hat{\otimes}_{g_p} X \simeq \mathcal{N}_p(Y, X)$.

- Reinov (1980’s): $p \in (0, 1]$
 X hast *approximation property of order p* (AP$_p$) if, for every Banach space Y, the restriction of J_1 to H_p is injective, where
 \[
 H_p = \{ u = \sum_n y_n^* \otimes x_n : \sum_n (\|y_n^*\| \|x_n\|)^p < \infty \} \subset Y^* \hat{\otimes}_\pi X.
 \]

- AP$_1$ = AP
Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. X has the AP (i.e., l_X can be approximated by finite rank operators uniformly on compact subsets $K \subset X$).
2. For every Banach space Y, $Y^* \hat{\otimes} \pi X \simeq \mathcal{N}_1(Y, X)$.

J. M. Delgado
Theorem [Grothendieck, 1955]

X a Banach space.

The following statements are equivalent:

1. X has the AP ($\equiv l_X$ can be approximated by finite rank operators uniformly on compact subsets $K \subset X$).
2. For every Banach space Y, $Y^* \hat{\otimes}_\pi X \simeq \mathcal{N}_1(Y, X)$.

A set $K \subset X$ is relatively compact if and only if there exists $(x_n) \in c_0(X)$ such that $K \subset \overline{\text{aco}} (x_n) := \{ \sum_n a_n x_n : (a_n) \in B_{\ell_1} \}$.
Introduction

Density of finite rank operators and the p-approximation property

A trace characterization of the p-approximation property

Open problems

Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

Let X be a Banach space.

- The following statements are equivalent:
 1. X has the AP (l_X can be approximated by finite rank operators uniformly on compact subsets $K \subset X$).
 2. For every Banach space Y, $Y^* \hat{\otimes}_\pi X \simeq J_1(Y, X)$.

- A set $K \subset X$ is relatively compact if and only if there exists $(x_n) \in c_0(X)$ such that $K \subset \overline{\operatorname{aco}}\{x_n\} := \{\sum_n a_n x_n : (a_n) \in B_{\ell_1}\}$.

Theorem [Bourgain and Reinov, 1984-85]

A Banach space X has the AP$_p$ ($p \in (0, 1)$) if and only if l_X can be approximated by finite rank operators uniformly on subsets $K \subset X$ for which there exists $(x_n) \in \ell_q(X)$ such that $K \subset \{\sum_n a_n x_n : (a_n) \in B_{\ell_1}\}$ ($p^{-1} - q^{-1} = 1$).
Definition [Sinha and Karn, 2002]

Let $p \geq 1$.

- $K \subset X$ is relatively p-compact if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co}(x_n) := \left\{ \sum_n a_nx_n : (a_n) \in B_{\ell_p} \right\}$.
Definition [Sinha and Karn, 2002]

Let $p \geq 1$.

- $K \subset X$ is relatively p-compact if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co}(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_p'} \right\}$.

- A Banach space X has the p-approximation property (p-AP) if the identity map I_X can be approximated by finite rank operators uniformly on every p-compact subset of X.
Definition [Sinha and Karn, 2002]

Let $p \geq 1$.

- $K \subset X$ is relatively p-compact if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co} \ (x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_p'} \right\}$.

- A Banach space X has the p-approximation property (p-AP) if the identity map I_X can be approximated by finite rank operators uniformly on every p-compact subset of X.

- ∞-AP=AP.
Definition [Sinha and Karn, 2002]

Let $p \geq 1$.

- $K \subset X$ is \textit{relatively p-compact} if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co}\ (x_n) \coloneqq \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_p'} \right\}$.

- A Banach space X has the \textit{p-approximation property} (p-AP) if the identity map l_X can be approximated by finite rank operators uniformly on every p-compact subset of X.

- ∞-AP=AP.

- All Banach spaces have the p-AP for all $p \in [1, 2]$.

- For every $p > 2$, there exist Banach spaces without the p-AP.

- A necessary condition in terms of the trace is obtained for Banach spaces having the p-AP.
Outline

1. Introduction

2. Density of finite rank operators and the p-approximation property

3. A trace characterization of the p-approximation property

4. Open problems
Let $p \geq 1$ and $1/p + 1/p' = 1$.

Definition [Sinha and Karn, 2002]

- $K \subset X$ is *relatively p-compact* if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co}(x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_p'} \right\}$.
- $T \in \mathcal{L}(X, Y)$ is *p-compact* if $T(B_X)$ is relatively p-compact.

\[
\mathcal{K}_p(X, Y) = \{ T \in \mathcal{L}(X, Y) : T \text{ is } p\text{-compact} \}.
\]
The ideal \mathcal{K}_p of p-compact operators

Let $p \geq 1$ and $1/p + 1/p' = 1$.

Definition [Sinha and Karn, 2002]

- $K \subset X$ is *relatively p-compact* if there exists $(x_n) \in \ell_p(X)$ such that $K \subset p\text{-co} (x_n) := \left\{ \sum_n a_n x_n : (a_n) \in B_{\ell_p} \right\}$.
- $T \in \mathcal{L}(X, Y)$ is *p-compact* if $T(B_X)$ is relatively p-compact.

\[\mathcal{K}_p(X, Y) = \{ T \in \mathcal{L}(X, Y) : T \text{ is } p\text{-compact} \} \]

- If $1 \leq p \leq q \leq \infty$, $\mathcal{K}_p(X, Y) \subset \mathcal{K}_q(X, Y)$.
- \mathcal{K}_p is an operator ideal.
Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

Let X be a Banach space, $p \in [1, +\infty]$. The following statements are equivalent:

1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is $\| \cdot \|$-dense in $\mathcal{K}_p(Y, X)$.
3. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.
p-approximation property and p-compact operators

- $\Pi_p^d(Y, X) = \{ T \in \mathcal{L}(Y, X) : T^* \text{ is } p\text{-summing} \}$

- $T \in \Pi_p^d(Y, X) \iff T$ maps relatively compact sets in Y to relatively p-compact sets in X.

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space, $p \in [1, +\infty]$. The following statements are equivalent:

1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is $\| \cdot \|$-dense in $\mathcal{K}_p(Y, X)$.
3. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.
Density of finite rank operators and the p-approximation property

A trace characterization of the p-approximation property

Open problems

p-approximation property and p-compact operators

- $\Pi^d_p(Y, X) = \{ T \in \mathcal{L}(Y, X) : T^* \text{ is } p\text{-summing} \}$

- $T \in \Pi^d_p(Y, X) \iff T$ maps relatively compact sets in Y to relatively p-compact sets in X.

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

Let X be a Banach space, $p \in [1, +\infty]$. The following statements are equivalent:

1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is $\| \cdot \|$-dense in $\mathcal{K}_p(Y, X)$.
3. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.
4. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\Pi^d_p(Y, X)$.
1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

$3 \Rightarrow 1$
X has the p-AP.

For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

3\Rightarrow1

$\varepsilon > 0$

$K = p\text{-co}(x_n), (x_n) \in \ell_p(X)$

$R \in \mathcal{F}(X, X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
p-approximation property and p-compact operators

1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

3\Rightarrow1

$\varepsilon > 0$

$K = \text{p-co}(x_n), (x_n) \in \ell_p(X)$

$\ell'_p \xrightarrow{\phi_x} X$

$\phi_x(e_n) = x_n$

$R \in \mathcal{F}(X, X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
p-approximation property and p-compact operators

1. X has the p-AP.
2. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

$3 \Rightarrow 1$

$\varepsilon > 0$

$K = p\text{-co}(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X)$

$\ell_p' \xrightarrow{\phi_x} X$

$\phi_x(e_n) = x_n$

$R \in \mathcal{F}(X, X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
1. X has the p-AP.

3. For every Banach Y, $\mathcal{F}(Y,X)$ is τ_c-dense in $K_p(Y,X)$.

$3 \Rightarrow 1$

$\varepsilon > 0$

$K = p\text{-co}(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1}x_n) \in \ell_p(X)$

$\ell_p' \xrightarrow{\phi_x} X$

$D_\alpha \downarrow \phi_z /$

ℓ_p'

$\phi_x(e_n) = x_n$

$\phi_z(e_n) = z_n$

$D_\alpha(\beta_n) = (\alpha_n\beta_n)$

$R \in \mathcal{F}(X,X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
p-approximation property and p-compact operators

1. X has the p-AP.

2. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

3 \Rightarrow 1

$\varepsilon > 0$

$K = p\text{-co}(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X)$

\[
\begin{align*}
\ell_p' & \xrightarrow{\phi_x} \quad X \\
D_\alpha & \downarrow \\
\ell_p' & \xrightarrow{Q} \quad Y := \ell_p'/\ker \phi_z
\end{align*}
\]

$\phi_x(e_n) = x_n$

$\phi_z(e_n) = z_n$

$D_\alpha(\beta_n) = (\alpha_n \beta_n)$

$\hat{\phi}_z[(\beta_n)] = \phi_z(\beta_n)$

$R \in \mathcal{F}(X, X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
Introduction

Density of finite rank operators and the p-approximation property
A trace characterization of the p-approximation property
Open problems

p-approximation property and p-compact operators

1. X has the p-AP.

2. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $K_p(Y, X)$.

3\Rightarrow1

- $\varepsilon > 0$
- $K = p$-co$(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X)$

\[\begin{align*}
\ell_p' & \xrightarrow{\phi_x} X \\
D_\alpha & \downarrow \phi_z \\
\ell_p' & \xrightarrow{Q} Y := \ell_p'/\text{Ker} \phi_z
\end{align*} \]

\[\begin{align*}
\phi_x(e_n) &= x_n \\
\phi_z(e_n) &= z_n \\
D_\alpha(\beta_n) &= (\alpha_n/\beta_n) \\
\hat{\phi}_z[(\beta_n)] &= \phi_z(\beta_n)
\end{align*} \]

$H := Q \circ D_\alpha(B_{\ell_p'})$ compact in Y

\[R \in \mathcal{F}(X, X) \text{ satisfying } \sup_{x \in K} \|Rx - x\| < \varepsilon \]
\section*{Introduction}

Density of finite rank operators and the \(p \)-approximation property

A trace characterization of the \(p \)-approximation property

Open problems

\section*{\(p \)-approximation property and \(p \)-compact operators}

1. \(X \) has the \(p \)-AP.

3. For every Banach \(Y \), \(\mathcal{F}(Y, X) \) is \(\tau_c \)-dense in \(\mathcal{K}_p(Y, X) \).

3 \(\Rightarrow \) 1

\(\varepsilon > 0 \)

\(K = p\text{-co}(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X) \)

\[
\begin{align*}
\ell_{p'} & \xrightarrow{\phi_x} X \\
\downarrow D_\alpha & \xrightarrow{\phi_z} \uparrow \hat{\phi}_z \\
\ell_{p'} & \xrightarrow{Q} Y := \ell_{p'}/\ker \phi_z \\
S = \sum_{k=1}^N & \psi_k \otimes u_k \in \mathcal{F}(Y, X): \sup_{h \in H} \|Sh - \hat{\phi}_z h\| < \varepsilon
\end{align*}
\]

\(H := Q \circ D_\alpha(B_{\ell_{p'}}) \)

compact in \(Y \)

\(\phi_x(e_n) = x_n \)

\(\phi_z(e_n) = z_n \)

\(D_\alpha(\beta_n) = (\alpha_n \beta_n) \)

\(\hat{\phi}_z[(\beta_n)] = \phi_z(\beta_n) \)

\(R \in \mathcal{F}(X, X) \) satisfying \(\sup_{x \in K} \|Rx - x\| < \varepsilon \)
\(p \)-approximation property and \(p \)-compact operators

1. \(X \) has the \(p \)-AP.
2. For every Banach \(Y \), \(\mathcal{F}(Y, X) \) is \(\tau_c \)-dense in \(\mathcal{K}_p(Y, X) \).

\[3 \Rightarrow 1 \]
\[\varepsilon > 0 \]
\[K = p\text{-co}(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X) \]

\[\ell_p' \xrightarrow{\phi_x} X \]
\[D_\alpha \downarrow \phi_z \uparrow \hat{\phi}_z \]
\[\ell_p' \xrightarrow{Q} Y := \ell_p'/\ker \phi_z \]

\[S = \sum_{k=1}^{N} \psi_k \otimes u_k \in \mathcal{F}(Y, X): \sup_{h \in H} \| Sh - \hat{\phi}_z h \| < \varepsilon \]
\[\hat{\phi}_z \text{ injective} \Rightarrow \exists u_k^* \in X^*: \sup_{h \in H} \left| \left\langle \phi_z^* u_k^* - \psi_k, h \right\rangle \right| < \varepsilon, \; k = 1, \ldots, N \]

\[R \in \mathcal{F}(X, X) \text{ satisfying } \sup_{x \in K} \| Rx - x \| < \varepsilon \]
p-approximation property and p-compact operators

1. X has the p-AP.

3. For every Banach Y, $\mathcal{F}(Y, X)$ is τ_c-dense in $\mathcal{K}_p(Y, X)$.

3\Rightarrow1

$\varepsilon > 0$

$K = p$-co$(x_n), (x_n) \in \ell_p(X) \Rightarrow \exists (\alpha_n) \downarrow 0: (z_n) := (\alpha_n^{-1} x_n) \in \ell_p(X)$

\[
\begin{align*}
\ell_p' & \xrightarrow{\phi_x} X & \phi_x(e_n) = x_n \\
\ell_p' & \xrightarrow{\phi_z} Y := \ell_p'/\ker \phi_z & \phi_z(e_n) = z_n \\
D_\alpha \downarrow & \phi_z & D_\alpha(\beta_n) = (\alpha_n\beta_n) \\
\uparrow & \phi_z & \hat{\phi_z}[(\beta_n)] = \phi_z(\beta_n)
\end{align*}
\]

$H := Q \circ D_\alpha(B_{\ell_p'})$ compact in Y

$S = \sum_{k=1}^{N} \psi_k \otimes u_k \in \mathcal{F}(Y, X): \sup_{h \in H} \|Sh - \hat{\phi_z} h\| < \varepsilon$

$\hat{\phi_z}$ injective $\Rightarrow \exists u_k^* \in X^*: \sup_{h \in H} \left| \langle \phi_z^* u_k^* - \psi_k, h \rangle \right| < \varepsilon, \ k = 1, \ldots, N$

$R = \sum_{k=1}^{N} u_k^* \otimes u_k$

$R \in \mathcal{F}(X, X)$ satisfying $\sup_{x \in K} \|Rx - x\| < \varepsilon$
Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. X^* has the p-AP, i.e., for every Banach Y, $\|F(Y, X^*)\| = K(Y, X^*)$.

2. For every Banach Y, $\|\mathcal{F}(X, Y)\| = K(X, Y)$.

p-approximation property for dual Banach spaces
Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. X^* has the AP, i.e., for every Banach Y, $\mathcal{F}(Y, X^*)\|\cdot\| = \mathcal{K}(Y, X^*)$.
2. For every Banach Y, $\mathcal{F}(X, Y)\|\cdot\| = \mathcal{K}(X, Y)$.

$T \in \mathcal{QN}_p(X, Y)$ (quasi p-nuclear) \iff There exists $(x_n^*) \in \ell_p(X^*)$ such that $\|Tx\| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \forall x \in X$.

$T \in \mathcal{K}_p(X, Y) \iff T^* \in \mathcal{QN}_p(Y^*, X^*)$.

$T \in \mathcal{QN}_p(X, Y) \iff T^* \in \mathcal{K}_p(Y^*, X^*)$.

The p-approximation property for dual Banach spaces
Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. X* has the AP, i.e., for every Banach Y, \(\mathcal{F}(Y, X^*) \| \cdot \| = \mathcal{K}(Y, X^*) \).

2. For every Banach Y, \(\mathcal{F}(X, Y) \| \cdot \| = \mathcal{K}(X, Y) \).

- \(T \in \mathcal{QN}_p(X, Y) \) (T quasi \(p \)-nuclear) \(\iff \) There exists \((x^*_n) \in \ell_p(X^*) \) such that \(\|Tx\| \leq (\sum_n |\langle x^*_n, x \rangle|^p)^{1/p}, \forall x \in X \).

- \(T \in \mathcal{K}_p(X, Y) \iff T^* \in \mathcal{QN}_p(Y^*, X^*) \).

- \(T \in \mathcal{QN}_p(X, Y) \iff T^* \in \mathcal{K}_p(Y^*, X^*) \).
p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

Let X be a Banach space. The following statements are equivalent:

1. X^* has the p-AP, i.e., for every Banach Y, $\overline{\mathcal{F}(Y, X^*)}_{\|\cdot\|} = \mathcal{K}(Y, X^*)$.

2. For every Banach Y, $\overline{\mathcal{F}(X, Y)}_{\|\cdot\|} = \mathcal{K}(X, Y)$.

- $T \in \mathcal{QN}_p(X, Y)$ (T quasi p-nuclear) \iff There exists $(x_n^*) \in \ell_p(X^*)$ such that $\|Tx\| \leq (\sum_n |\langle x_n^*, x \rangle|^p)^{1/p}, \forall x \in X$.

- $T \in \mathcal{K}_p(X, Y)$ \iff $T^* \in \mathcal{QN}_p(Y^*, X^*)$.

- $T \in \mathcal{QN}_p(X, Y)$ \iff $T^* \in \mathcal{K}_p(Y^*, X^*)$.

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

Let X be a Banach space. The following statements are equivalent:

1. X^* has the p-AP.

2. For every Banach Y, $\mathcal{F}(X, Y)$ is $\|\cdot\|$-dense in $\mathcal{QN}_p(X, Y)$.
Relation to Saphar’s approximation property AP_p

Saphar (1970-72):
- For every $p \neq 2$, there exist Banach spaces without AP_p.
Relation to Saphar’s approximation property AP_p

Saphar (1970-72):

- For every $p \neq 2$, there exist Banach spaces without AP_p.
- X^{**} has the $\text{AP}_{p'} \Rightarrow \mathcal{F}(X, Y)$ is π_p-dense in $\mathcal{QN}_p(X, Y)$.

\[\text{Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]} \]

A Banach space X. The following statements are equivalent:

1. X^* has the p-AP.
2. For every Banach Y, $\mathcal{F}(X, Y)$ is π_p-dense in $\mathcal{QN}_p(X, Y)$.

Saphar (1970-72):

- For every $p \neq 2$, there exist Banach spaces without AP_p.
- X^{**} has the $\text{AP}_{p'} \Rightarrow \mathcal{F}(X, Y)$ is π_p-dense in $\mathcal{QN}_p(X, Y)$.
Relation to Saphar’s approximation property AP_p

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:

1. X^* has the p-AP.
2. For every Banach Y, $\mathcal{F}(X, Y)$ is $\| \cdot \|$-dense in $QN_p(X, Y)$.

Saphar (1970-72):

- For every $p \neq 2$, there exist Banach spaces without AP_p.
- X^{**} has the $\text{AP}_{p'} \Rightarrow \mathcal{F}(X, Y)$ is π_p-dense in $QN_p(X, Y)$.

J. M. Delgado
Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

\(X \) a Banach space. The following statements are equivalent:

1. \(X^* \) has the \(p \)-AP.
2. For every Banach \(Y \), \(\mathcal{F}(X, Y) \) is \(\| \cdot \| \)-dense in \(\mathcal{QN}_p(X, Y) \).

Saphar (1970-72):

- For every \(p \neq 2 \), there exist Banach spaces without \(\text{AP}_p \).
- \(X^{**} \) has the \(\text{AP}_{p'} \) \(\Rightarrow \) For every Banach \(Y \), \(\mathcal{F}(X, Y) \) is \(\pi_p \)-dense in \(\mathcal{QN}_p(X, Y) \).

Corollary

- \(X^{**} \) has the \(\text{AP}_{p'} \) \(\Rightarrow \) \(X^* \) has the \(p \)-AP, \(p \in (1, \infty) \).
Relation to Saphar’s approximation property AP_p

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:

1. X^* has the p-AP.
2. For every Banach Y, $\mathcal{F}(X, Y)$ is $\| \cdot \|$-dense in $Q_N_p(X, Y)$.

Saphar (1970-72):

- For every $p \neq 2$, there exist Banach spaces without AP_p.
- X^{**} has the $\text{AP}_{p'}$ \Rightarrow $\mathcal{F}(X, Y)$ is π_p-dense in $Q_N_p(X, Y)$.

Bourgain and Reinov (1985):

- H^{**}, H^{****}, \ldots have the AP_p, $p \in (1, \infty)$

Corollary

- X^{**} has the $\text{AP}_{p'}$ \Rightarrow X^* has the p-AP, $p \in (1, \infty)$
Relation to Saphar’s approximation property AP_p

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

Let X be a Banach space. The following statements are equivalent:

1. X^* has the p-AP.
2. For every Banach space Y, $\mathcal{F}(X, Y)$ is $\| \cdot \|$-dense in $QN_p(X, Y)$.

Saphar (1970-72):
- For every $p \neq 2$, there exist Banach spaces without AP_p.
- X^{**} has the $\text{AP}_{p'}$ \Rightarrow For every Banach space Y, $\mathcal{F}(X, Y)$ is $\pi_{p'}$-dense in $QN_p(X, Y)$.

Bourgain and Reinov (1985):
- H^{**}, H^{****}, \ldots have the AP_p, $p \in (1, \infty)$

Corollary

- X^{**} has the $\text{AP}_{p'}$ \Rightarrow X^* has the p-AP, $p \in (1, \infty)$
- H^{*}, H^{***}, \ldots have the p-AP, $p \in [1, \infty)$
Outline

1. Introduction
2. Density of finite rank operators and the p-approximation property
3. A trace characterization of the p-approximation property
4. Open problems
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.
The trace functional

- \(\mathcal{N}_1(X, Y) \) is a quotient of \(X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**}). \)

- \(T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**}) \)

\[
\text{trace}(T) := \sum_{n=1}^{m} \langle x_n^{**}, x_n^* \rangle \leq \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\|
\]
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \widehat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.
- $T = \sum_{n=1}^m x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**})$ \quad \begin{align*}
\text{trace}(T) &:= \sum_{n=1}^m \langle x_n^{**}, x_n^* \rangle \\
|\text{trace}(T)| &\leq \sum_{n=1}^m \|x_n^{**}\| \|x_n^*\|
\end{align*}
- Finite-nuclear norm of $T \in \mathcal{F}(X, X^{**})$:
 $\nu_0(T) := \inf\{\sum_{n=1}^m \|x_n^{**}\| \|x_n^*\| : T = \sum_{n=1}^m x_n^* \otimes x_n^{**}\}$
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.

- $T = \sum_{n=1}^m x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**})$
 \[
 \text{trace}(T) := \sum_{n=1}^m \langle x_n^{**}, x_n^* \rangle \\
 |\text{trace}(T)| \leq \sum_{n=1}^m \|x_n^{**}\| \|x_n^*\|
 \]

- Finite-nuclear norm of $T \in \mathcal{F}(X, X^{**})$:
 \[
 \nu_0(T) := \inf \{ \sum_{n=1}^m \|x_n^{**}\| \|x_n^*\| : T = \sum_{n=1}^m x_n^* \otimes x_n^{**} \}
 \]

- The linear map $T \in \mathcal{F}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is continuous.
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.
- $T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**})$ \[
\begin{align*}
\text{trace}(T) &:= \sum_{n=1}^{m} \langle x_n^{**}, x_n^* \rangle \\
\text{trace}(T) &\leq \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\|
\end{align*}
- Finite-nuclear norm of $T \in \mathcal{F}(X, X^{**})$:
\[
\nu_0(T) := \inf \{ \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\| : T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \}
\]

Theorem [Grothendieck, 1955]
X a Banach space. The following statements are equivalent:

1. X has the AP.
2. If $(x_n) \subset X$ and $(x_n^*) \subset X^*$ are such that $\sum_{n} \|x_n^*\| \|x_n\| < \infty$ and $\sum_{n} \langle x_n^*, x \rangle x_n = 0$ for all $x \in X$, then $\sum_{n} \langle x_n^*, x \rangle x_n = 0$.

- The linear map $T \in \mathcal{F}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is continuous.
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.
- $T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**})$ \quad \text{such that} \quad \begin{cases} \text{trace}(T) := \sum_{n=1}^{m} \langle x_n^{**}, x_n^* \rangle \\ |\text{trace}(T)| \leq \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\| \end{cases}
- Finite-nuclear norm of $T \in \mathcal{F}(X, X^{**})$: $\nu_0(T) := \inf\{\sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\| : T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**}\}$

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. X has the AP.
2. If $(x_n) \subset X$ and $(x_n^*) \subset X^*$ are such that $\sum_n \|x_n^*\| \|x_n\| < \infty$ and $\sum_n \langle x_n^*, x \rangle x_n = 0$ for all $x \in X$, then $\sum_n \langle x_n^*, x_n \rangle = 0$.

- The linear map $T \in \mathcal{N}_1(X, X^{**}) \leftrightarrow \text{trace}(T) \in \mathbb{R}$ is continuous if and only if X^* has the AP.
The trace functional

- $\mathcal{N}_1(X, Y)$ is a quotient of $X^* \hat{\otimes}_\pi Y \Rightarrow \mathcal{N}_1(X, Y)^* \hookrightarrow \mathcal{L}(Y, X^{**})$.
- $T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \in \mathcal{F}(X, X^{**})$ s.t. \[
\begin{align*}
\text{trace}(T) &= \sum_{n=1}^{m} \langle x_n^{**}, x_n^* \rangle \\
|\text{trace}(T)| &\leq \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\|
\end{align*}
\]
- Finite-nuclear norm of $T \in \mathcal{F}(X, X^{**})$:
\[
\nu_0(T) := \inf \{ \sum_{n=1}^{m} \|x_n^{**}\| \|x_n^*\| : T = \sum_{n=1}^{m} x_n^* \otimes x_n^{**} \}
\]

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1. X has the AP.
2. If $(x_n) \subset X$ and $(x_n^*) \subset X^*$ are such that $\sum_n \|x_n^*\| \|x_n\| < \infty$ and $\sum_n \langle x_n^*, x \rangle x_n = 0$ for all $x \in X$, then $\sum_n \langle x_n^*, x_n \rangle = 0$.

- The linear map $T \in \mathcal{N}_1(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is continuous if and only if X^* has the AP.
- If X^* has the AP, then $\mathcal{N}_1(X, Y)^* \simeq \mathcal{L}(Y, X^{**})$.

J. M. Delgado
A trace characterization of the \(p \)-AP

Proposition [Sinha and Karn, 2002]

If \(X \) has the \(p \)-AP then the following holds:

For every \((x_n) \in \ell_p(X) \) and every \((x_n^*) \in \ell_1(X^*) \) such that \(\sum_n \langle x_n^*, x \rangle x_n = 0 \) for all \(x \in X \), we have \(\sum_n \langle x_n^*, x_n \rangle = 0 \).
A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:
For every $(x_n) \in \ell_p(X)$ and every $(x_n^*) \in \ell_1(X^*)$ such that
$\sum_n \langle x_n^*, x \rangle x_n = 0$ for all $x \in X$, we have $\sum_n \langle x_n^*, x_n \rangle = 0$.

Proposition [Oja, Piñeiro, Serrano and Delgado, 2009]

The following statements are equivalent:

1. X has the p-AP.
2. For every relatively p-compact sequence $(x_n) \subset X$ and every $(x_n^*) \in \ell_1(X^*)$ such that $\sum_n \langle x_n^*, x \rangle x_n = 0$ for all $x \in X$, we have $\sum_n \langle x_n^*, x_n \rangle = 0$.

Corollary

X^{**} has the p-AP \Rightarrow X has the p-AP.
A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:

For every $(x_n) \in \ell_p(X)$ and every $(x_n^*) \in \ell_1(X^*)$ such that

$$\sum_n \langle x_n^*, x \rangle x_n = 0$$

for all $x \in X$, we have

$$\sum_n \langle x_n^*, x_n \rangle = 0.$$

Proposition [Oja, Piñeiro, Serrano and Delgado, 2009]

The following statements are equivalent:

1. X has the p-AP.
2. For every relatively p-compact sequence $(x_n) \subset X$ and every $(x_n^*) \in \ell_1(X^*)$ such that

$$\sum_n \langle x_n^*, x \rangle x_n = 0$$

for all $x \in X$, we have

$$\sum_n \langle x_n^*, x_n \rangle = 0.$$

Corollary

X^{**} has the p-AP \Rightarrow X has the p-AP
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

\[
\mathcal{N}_p(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \right\}
\]

$\Pi_p(Y, X^{**}) \hookrightarrow N_1(X, Y)^*$,
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

\[\mathcal{N}_p(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \right\} \]

- $\mathcal{N}_p(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in \mathcal{N}_p(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

$$\mathcal{N}_1(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : \begin{array}{c} (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \\ (x_n^*) \in \ell_1(X^*) \end{array} \right\}$$

- $\mathcal{N}_1(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the $p\text{-AP}$, the map $T \in \mathcal{N}_1(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the $p\text{-AP}$, then $\Pi^d_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
- If Y^* has the $p\text{-AP}$, then $\Pi_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

$\mathcal{N}_{(p)}(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \right\}$

- $\mathcal{N}_{(p)}(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in \mathcal{N}_{(p)}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

\[
\mathcal{N}_p(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : \quad \begin{aligned}
(x_n^{**}) &\subset X^{**} \text{ relatively } p\text{-compact} \\
(x_n^*) &\in \ell_1(X^*)
\end{aligned} \right\}
\]

- $\mathcal{N}_p(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in \mathcal{N}_p(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi_p^d(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.

$S \in \Pi_p^d(Y, X^{**})$

\[
\langle S, u \rangle = \quad \forall u \in \mathcal{N}_1(X, Y)
\]
Density of finite rank operators and the p-approximation property

A trace characterization of the p-approximation property

Open problems

About the subspace structure of $\mathcal{N}_1(X, Y)^*$

\[\mathcal{N}_{(p)}(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \right\} \]

- $\mathcal{N}_{(p)}(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in \mathcal{N}_{(p)}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.

$S \in \Pi^d_p(Y, X^{**})$

\[u = \sum_n x_n^* \otimes y_n \]

$(x_n^*) \subset \ell_1(X^*)$, $\|y_n\| \to 0$

\[\langle S, u \rangle = \text{trace}(S \circ u), \quad \forall u \in \mathcal{N}_1(X, Y) \]
About the subspace structure of $N_1(X, Y)^*$

$N_{(p)}(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : \begin{array}{l}
(x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \\
(x_n^*) \in \ell_1(X^*)
\end{array}\right\}$

- $N_{(p)}(X, X^{**}) \subset N_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in N_{(p)}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset N_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi_p(Y, X^{**}) \subset N_1(X, Y)^*$.

$S \in \Pi^d_p(Y, X^{**})$

$u = \sum_n x_n^* \otimes y_n$

$(x_n^*) \in \ell_1(X^*)$, $\|y_n\| \to 0$

$\langle S, u \rangle = \quad \Rightarrow \quad S \circ u = \sum_n x_n^* \otimes S y_n \in N_{(p)}(X, X^{**})$

$\forall u \in N_1(X, Y)$
About the subspace structure of $N_1(X, Y)^*$

$$N_{(p)}(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : \begin{align*} & (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \\ & (x_n^*) \in \ell_1(X^*) \end{align*} \right\}$$

- $N_{(p)}(X, X^{**}) \subset N_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in N_{(p)}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset N_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset N_1(X, Y)^*$.

$$S \in \Pi^d_p(Y, X^{**})$$

$$u = \sum_n x_n^* \otimes y_n$$

$$(x_n^*) \in \ell_1(X^*), \|y_n\| \to 0$$

$$\langle S, u \rangle = \text{trace}(S \circ u), \ \forall u \in N_1(X, Y)$$
About the subspace structure of $\mathcal{N}_1(X, Y)^*$

$$\mathcal{N}_{(p)}(X, X^{**}) := \left\{ T = \sum_n x_n^* \otimes x_n^{**} : \begin{array}{c} (x_n^{**}) \subset X^{**} \text{ relatively } p\text{-compact} \\ (x_n^*) \in \ell_1(X^*) \end{array} \right\}$$

- $\mathcal{N}_{(p)}(X, X^{**}) \subset \mathcal{N}_1(X, X^{**})$
- If X^{**} has the p-AP, the map $T \in \mathcal{N}_{(p)}(X, X^{**}) \mapsto \text{trace}(T) \in \mathbb{R}$ is well-defined, linear and continuous.

Corollary

$p \in [1, \infty)$.

- If X^{**} has the p-AP, then $\Pi^d_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.
- If Y^* has the p-AP, then $\Pi_p(Y, X^{**}) \subset \mathcal{N}_1(X, Y)^*$.

$$S \in \Pi^d_p(Y, X^{**}) \quad u = \sum_n x_n^* \otimes y_n \quad (x_n^*) \in \ell_1(X^*), \|y_n\| \to 0$$

$$\Rightarrow S \circ u = \sum_n x_n^* \otimes Sy_n \in \mathcal{N}_{(p)}(X, X^{**})$$

$$\langle S, u \rangle = \text{trace}(S \circ u), \quad \forall u \in \mathcal{N}_1(X, Y)$$

$$\Pi_p(Y, X^{**}), \Pi^d_p(Y, X^{**}) \hookrightarrow \mathcal{N}_1(X, Y)^* \quad (p \in [1, 2]).$$
Outline

1. Introduction
2. Density of finite rank operators and the p-approximation property
3. A trace characterization of the p-approximation property
4. Open problems
The Banach ideal \mathcal{K}_p

- $T \in \mathcal{K}_p(X, Y)$ when $T(B_X)$ is relatively p-compact, i.e., if there exists $(y_n)_n \in \ell_p(Y)$ such that

$$T(B_X) \subset p\text{-co} (y_n)_n := \left\{ \sum_n a_n y_n : (a_n)_n \in B_{\ell_p'} \right\}$$ \hspace{1cm} (1)
The Banach ideal \mathcal{K}_p

- $T \in \mathcal{K}_p(X, Y)$ when $T(B_X)$ is relatively p-compact, i.e., if there exists $(y_n)_n \in \ell_p(Y)$ such that

$$T(B_X) \subset p\text{-co } (y_n)_n := \left\{ \sum_n a_n y_n : (a_n)_n \in B_{\ell_p'} \right\} \quad (1)$$

- $T \in \mathcal{K}_p(X, Y)$:

$$\kappa_p(T) = \inf \left\{ \left(\sum_n \| (y_n)_n \|^p \right)^{1/p} : (y_n)_n \text{ verifica (1)} \right\}$$
The Banach ideal \mathcal{K}_p

- $T \in \mathcal{K}_p(X, Y)$ when $T(B_X)$ is relatively p-compact, i.e., if there exists $(y_n)_n \in \ell_p(Y)$ such that

\[
T(B_X) \subset p\text{-co } (y_n)_n := \left\{ \sum_n a_n y_n : (a_n)_n \in B_{\ell_p'} \right\}
\]

(1)

- $T \in \mathcal{K}_p(X, Y)$:

\[
\kappa_p(T) = \inf \left\{ \left(\sum_n \| (y_n)_n \|^p \right)^{1/p} : (y_n)_n \text{ verifica (1)} \right\}
\]

- $[\mathcal{K}_p, \kappa_p]$ is a Banach operator ideal.
Open problems

\[\mathcal{F}(Y, X)^{K_p} = \mathcal{K}_p(Y, X), \text{ for all } Y \iff \text{? ?} \]
Open problems

- \(\mathcal{F}(Y, X)^{\kappa_p} = \mathcal{K}_p(Y, X) \), for all \(Y \)
 \(\iff \) ??

- A general definition including most of the mentioned approximation properties of order \(p \).