HYPERMEASURE THEORY

JD Maitland WRIGHT

University of Aberdeen

Salobreña 2009

HYPERMEASURE THEORY

- **1. Introduction**
- 2. Weak compactness and measure theory
- **3. Weakly compact operators**
- 4. Continuity from the Right topology to the norm topology
- **5. Generalised Nikodym theorems**
- 6. Pseudo weakly compact operators

1. Introduction

In the classical theory, measures and integrals corresponded to functionals (or vector valued operators) on a function algebra e.g. C(K) where K is compact; or L^{∞} . Replacing these commutative algebras by non-commutative C*-algebras gave birth to Non-Commutative Measure Theory.

But replacing C*-algebras by more general classes of Banach spaces gives rise to fruitful new insights. Weakly Compact Operators are a unifying theme running through Vector Measure Theory and its generalisations. This is the focus of my talk.

2. Weak compactness and measure theory Let K be a compact Hausdorff space and X a Banach space. Let $T:C(K) \rightarrow X$ be a bounded linear operator. When does there exist an X-valued Baire measure m on K such that, for all f in C(K), $Tf = \int fdm$?

Let B(K) be the algebra of bounded Baire measurable functions on K.

When does there exist an operator $T^{\infty}:B(K)\to X$ such that this operator is an extension of T and, whenever (f_n) is a bounded, monotone increasing sequence in B(K) with pointwise limit f, $T^{\infty}f_n \to T^{\infty}f$ in the norm topology of X ?

When X is one dimensional the answer is 'always'. This is the classical Riesz Representation Theorem. But when X is an arbitrary Banach space the answer is: *when T is a weakly compact operator*.

3.Weakly compact operators

From now onward, A and X are Banach spaces. Let us recall some familiar facts:

(i) The weak topology for X, is the topology generated by all seminorms of the form $x \rightarrow |\phi(x)|$, where $\phi \in X^*$.

(ii) A subset $S \subset X$, is *weakly compact* if it is compact in the weak topology of X.

(iii) A linear map T:A \rightarrow X is said to be *weakly compact* if it maps the closed unit ball of A into a weakly compact subset of X. Since all weakly compact sets are bounded in norm, it follows that T is a bounded operator.

For any bounded operator R:A \rightarrow X, the adjoint map R*:X* \rightarrow A* is defined by

 $\langle R^*\phi,a \rangle = \langle \phi, Ra \rangle$ for each a in A and each ϕ in X*. On repeating this construction we get $R^{**}:A^{**} \rightarrow X^{**}$. Since there is a canonical embedding of A into A** and of X into X**, we can regard R** as an extension of R. One of the key characterisations of weakly compact operators is as follows:

Let T:A \rightarrow X be a bounded linear operator. Then T is a weakly compact operator if, and only, if the range of T^{**} is in X, (or more precisely, the canonical image of X in X**).

So when T:A \rightarrow X is weakly compact, then T** is continuous from A**, equipped with the $\sigma(A^{**},A^{*})$ -topology, to X, equipped with the $\sigma(X, X^{*})$ -topology. i.e. T** is weak* to weak continuous.

Now suppose that A = C(K), where K is compact Hausdorff. Then T induces an X-valued measure on the Baire sets of K which is additive with respect to the *norm* topology of X. There is a "Right topology" for X, such that, a linear map from X into Y is weakly compact precisely when it is a continuous map from X, equipped with the Right topology, into Y, equipped with the norm topology.

4. Continuity from the Right topology to the norm topology

Let X and Y be a Banach spaces. Let X_1 be the closed unit ball of X.

The Mackey topology for the dual pair (X^{**},X^{*}) is the topology of uniform convergence on sets $K \subset X^{*}$, where K is a absolutely convex and $\sigma(X^{*},X^{**})$ compact. i.e. where K is a weakly compact, absolutely convex subset of the Banach space X^{*} . We denote this topology by $\tau(X^{**},X^{*})$; it is the finest locally convex topology for the dual pair (X^{**},X^{*}) . We identify X with its canonical embedding in X^{**} and call the relative topology induced on X by $\tau(X^{**},X^{*})$, the "Right topology" for X.

Theorem (see Peralta, Villanueva, Wright, Ylinen, also Ruess)

Let $T:X \rightarrow Y$ be a linear map. Then the following conditions are equivalent.

- 1) T is continuous from X, equipped with the Right Topology, into Y, equipped with the norm topology.
- 2) T is continuous from X_1 , equipped with the relative topology induced by the Right topology, into Y, equipped with the norm topology.

3) T is weakly compact.

4) *T* is a bounded linear operator and $T^{**}:X^{**} \rightarrow Y^{**}$ is continuous from X^{**} , equipped with the $\tau(X^{**},X^{*})$ topology, into Y^{**} equipped with the norm topology.

5. GENERALISED NIKODYM THEOREMS

Let Z be a Banach space.

A sequence in Z, (z_n) , is *weakly convergent* if $\lim \varphi(z_n)$ exists for each φ in Z*. The Banach space Z is said to be *weakly complete* if, whenever (z_n) , is a weakly convergent sequence then there exists z in Z such that $\lim \varphi(z_n) = \varphi(z)$ for each φ in Z*.

Given a C*-algebra A, we recall that A* is always weakly complete.

THEOREM

Let A be a Banach space where A^* is weakly complete. Let (T_n) be a sequence of weakly compact operators mapping A into a Banach space Y. For each x in A^{**} let (T_n^{**x}) be a Cauchy sequence.

Let $S a = limT_n a$ for each a in A. Then

- (i) S is weakly compact,
- (ii) $S^{**}x = \lim T_n^{**}x$ for each x in A^{**} ,
- (iii) Let (a_j) be a sequence in A which converges to 0 in the Right topology. Then, as j→∞, //T_na_j//→0 uniformly in n.
 (iv) Let (x_j) be a sequence in A** which converges to 0 in the Mackey topology for the pair (A**, A*). Then, as j→∞, //T_n**x_j//→0 uniformly in n.

Key idea of proof: By using the main theorem of "Extending a result of Ryan on weakly compact operators" (Saito and Wright, Proc Edinburgh Math Soc) we find that the map $x \to (T_n x)$ is a weakly compact operator from A into c(X). It follows that when (a_j) is a sequence in A which converges to 0 in the Right topology then $\sup_n ||T_n a_j||$ converges to 0 as $j \to \infty$.

THEOREM

Let A be a Banach space. Let (T_n) be a sequence of weakly compact operators mapping A into a Banach space Y. For each x in A^{**} let $||T_n^{**}x|| \rightarrow 0$.

> (i) Let (a_j) be a sequence in A which converges to 0 in the Right topology. Then, as $j_{\rightarrow\infty}$, $||T_n a_j||_{\rightarrow} 0$ uniformly in n.

> (ii) Let (x_j) be a sequence in A^{**} which converges to 0 in the Mackey topology for the pair (A^{**}, A^*) . Then, $as j \rightarrow \infty$, $//T_n^{**} x_j // \rightarrow 0$ uniformly in n.

6. Pseudo weakly compact operators

When T is only sequentially continuous with respect to the Right topology, it is said to be *pseudo weakly compact*. When a Banach space X has the property that every pseudo weakly compact operator from X to another Banach space is weakly compact, then X is said to be *sequentially Right*. It turns out that every Banach space possessing Pelczynski's Property (V) must be sequentially Right.

By the Eberlein-Smulian Theorem weak compactness is, in some sense, a sequential property.

We know that $T:X \rightarrow Y$ is weakly compact if and only if it is continuous from X, equipped with the Right topology, into Y, equipped with the norm topology.

Clearly such an operator T is sequentially continuous from X, equipped with the Right topology, into Y, equipped with the norm topology. It is natural to ask if the converse is true.

Definition Let X and Y be Banach spaces. Let $T:X \rightarrow Y$ be a linear map such that, when $x_n \rightarrow 0$ in the Right topology then $||Tx_n|| \rightarrow 0$. Then we call T *pseudo weakly compact*.

Example Let T be the identity map from L^1 onto L^1 . Since L^1 is not reflexive, its unit ball is not weakly compact, see Theorem V.4.7 (D&S).

So T is not a weakly compact operator.

On the other hand, when $x_n \rightarrow 0$, in the Right Topology then $x_n \rightarrow 0$, in the $\tau((L^1)^{**}, (L^1)^*)$ -topology. So $x_n \rightarrow 0$, in the $\sigma((L^1)^{**}, (L^1)^*)$ -topology. Hence $x_n \rightarrow 0$ in the weak topology of L^1 . But, by IV.8.14 (D&S), this implies that $x_n \rightarrow 0$ in the norm topology, so $||Tx_n|| \rightarrow 0$. Thus T is pseudo weakly compact.

When X is a C*-algebra, then its second dual, X**, can be identified with the von Neumann envelope of X, when X is represented on its universal representation (Hilbert) space.

When the σ -strong* operator topology of X** is restricted to the unit ball of X, it coincides with the restriction of the Right topology to X₁. In an earlier note in JMAA, ("Multilinear maps on products of operator algebras", *JMAA* **292** (2004), 558-570), Ylinen and I introduced the notion of *quasi completely continuous* linear operators from a C*-algebra into a Banach space. It turns out that an operator from a C*-algebra into a Banach space is quasi completely continuous if, and only if, it is pseudo weakly compact.

For a linear operator T from a C*-algebra into a Banach space, the following are equivalent:

- T is weakly compact;
- T is quasi completely continuous;
- T is pseudo weakly compact.

It now makes sense to introduce the following definition:

Definition A Banach space X is said to be sequentially Right if every pseudo weakly compact operator with domain X is weakly compact; in other words, if each operator on X which is sequentially continuous with respect to the Right topology is also continuous with respect to the Right topology.

Proposition Every closed complemented subspace of a sequentially Right Banach space is, itself, sequentially Right.

Corollary Every closed complemented subspace of a C*algebra is sequentially Right. **Lemma** Let T be a linear map between two Banach spaces X and Y. Then T is Right-Right continuous if, and only if, it is bounded.

Let X be a Banach space. A series $\sum x_n$ in X is called *weakly* unconditionally Cauchy (w.u.C.) if, for each ϕ in X*, $\sum |\phi(x_n)|$ is convergent.

Lemma Let X be a Banach space and $\sum x_n$ a w.u.C. series in X. Then (x_n) is a Right-null sequence in X.

Let X and Y be Banach spaces and T a linear mapping from X into Y. We say that T is *unconditionally converging* if, for every w.u.C. series $\sum x_n$ in X, the series $\sum T(x_n)$ is unconditionally convergent.

Proposition *Every pseudo weakly compact operator between two Banach spaces is unconditionally converging.*

Let us recall that a Banach space X is said to have Pelczynski's *Property* (V) if, for every Banach space Y, every unconditionally converging operator from X to Y is weakly compact. We clearly have:

Corollary Every Banach space satisfying property (V) is sequentially Right.

Since every JB*-triple satisfies property (V) we obtain: *Every JB*-triple is sequentially Right*.