A Quantitative Stability Analysis in Optimization

Marco A. López
Alicante University
Salobréña, April 2010
1 Introduction and preliminaries
 1.1. Parameterized convex optimization problems
 1.2. Stability criteria and some antecedents
 1.3. Main goals
 1.4. Preliminary results

2 Lipschitz-like property in continuous LSIP/CSIP
 2.1. Lipschitz-like property of S in LSIP/CSIP

3 Coderivatives and Lipschitz-like property in LIP/CIP
 3.1. Coderivative analysis in LIP
 3.2. Arbitrary Banach spaces of decision variables
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

\[
\begin{align*}
\text{Inf} & \quad f(x) + \langle c^*, x \rangle \\
\text{s. t.} & \quad g_t(x) \leq b_t, \quad t \in T,
\end{align*}
\]
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

$$\inf f(x) + \langle c^*, x \rangle$$

subject to

$$g_t(x) \leq b_t, \quad t \in T,$$

and their linear counterpart

$$f \equiv 0, \quad g_t(x) = \langle a_t^*, x \rangle.$$
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

\[\inf f(x) + \langle c^*, x \rangle \]
\[\text{s.t. } g_t(x) \leq b_t, \quad t \in T, \]

and their linear counterpart

\[f \equiv 0, \quad g_t(x) = \langle a_t^*, x \rangle. \]

- \(x \in X \) is the vector of decision variables, \(X \) being a real Banach space;
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

\[
\inf f(x) + \langle c^*, x \rangle \\
\text{s.t. } g_t(x) \leq b_t, \quad t \in T,
\]

and their linear counterpart

\[
f \equiv 0, \quad g_t(x) = \langle a_t^*, x \rangle.
\]

- \(x \in X \) is the vector of decision variables, \(X \) being a real Banach space;
- \(f, g_t : X \to \mathbb{R}, \quad t \in T \), are convex functions;
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

\[
\begin{align*}
\text{Inf} & \quad f(x) + \langle c^*, x \rangle \\
\text{s. t.} & \quad g_t(x) \leq b_t, \quad t \in T,
\end{align*}
\]

and their linear counterpart

\[
\begin{align*}
f & \equiv 0, \\
g_t(x) & = \langle a_t^*, x \rangle.
\end{align*}
\]

- \(x \in X \) is the vector of decision variables, \(X \) being a real Banach space;
- \(f, g_t : X \to \mathbb{R}, \ t \in T \), are convex functions;
- \(c^*, a_t^* \in X^* \) (topological dual of \(X \)), \(b_t \in \mathbb{R}, \ t \in T \);
1. Introduction and preliminaries

1.1. Parameterized convex optimization problems

We consider convex optimization problems in the form:

\[
\begin{align*}
\text{Inf} & \quad f(x) + \langle c^*, x \rangle \\
\text{s. t.} & \quad g_t(x) \leq b_t, \quad t \in T,
\end{align*}
\]

and their linear counterpart

\[
\begin{align*}
f & \equiv 0, \\
g_t(x) & = \langle a_t^*, x \rangle.
\end{align*}
\]

- \(x \in X\) is the vector of decision variables, \(X\) being a real Banach space;
- \(f, g_t : X \to \mathbb{R}, \quad t \in T,\) are convex functions;
- \(c^*, a_t^* \in X^*\) (topological dual of \(X\)), \(b_t \in \mathbb{R}, \quad t \in T;\)
- \(T\) is the index set.
• If $X = \mathbb{R}^n$ and T is finite, π is a Convex/Linear Programming (CP/LP) problem
If $X = \mathbb{R}^n$ and T is finite, π is a Convex/Linear Programming (CP/LP) problem

If $X = \mathbb{R}^n$ and T is infinite, π is a Convex/Linear Semi-Infinite Programming (CSIP/LSIP) problem
• If \(X = \mathbb{R}^n \) and \(T \) is finite, \(\pi \) is a Convex/Linear Programming (CP/LP) problem
• If \(X = \mathbb{R}^n \) and \(T \) is infinite, \(\pi \) is a Convex/Linear Semi-Infinite Programming (CSIP/LSIP) problem
• If \(X \) is infinite dimensional, \(\pi \) is a Convex/Linear Infinite Programming (CIP/LIP) problem
• If $X = \mathbb{R}^n$ and T is finite, π is a Convex/Linear Programming (CP/LP) problem
• If $X = \mathbb{R}^n$ and T is infinite, π is a Convex/Linear Semi-Infinite Programming (CSIP/LSIP) problem
• If X is infinite dimensional, π is a Convex/Linear Infinite Programming (CIP/LIP) problem

Example (a LSIP problem, with $X = \mathbb{R}^2$)

$$\pi : \inf x_1$$

s. t. $- t^{-2} x_1 - x_2 \leq -2t^{-1}$, $t \in T :=]0, +\infty[.$
• If $X = \mathbb{R}^n$ and T is finite, π is a Convex/Linear Programming (CP/LP) problem
• If $X = \mathbb{R}^n$ and T is infinite, π is a Convex/Linear Semi-Infinite Programming (CSIP/LSIP) problem
• If X is infinite dimensional, π is a Convex/Linear Infinite Programming (CIP/LIP) problem

Example (a LSIP problem, with $X = \mathbb{R}^2$)

$\pi : \quad \text{Inf} \quad x_1$

s. t. $\quad -t^{-2}x_1 - x_2 \leq -2t^{-1}, \quad t \in T :=]0, +\infty[.$
Parameter spaces in this talk

Continuous case: $X = \mathbb{R}^n$, T compact Hausdorff,

$$P(c, b) : \quad \inf f(x) + \langle c, x \rangle$$

s. t. $g_t(x) \leq b_t, \quad t \in T,$
Parameter spaces in this talk

Continuous case: $X = \mathbb{R}^n$, T compact Hausdorff,

$$P(c,b) : \inf f(x) + \langle c, x \rangle \quad \text{s.t.} \quad g_t(x) \leq b_t, \; t \in T,$$

$$ (t,x) \mapsto g_t(x) \text{ continuous on } T \times \mathbb{R}^n.$$
Parameter spaces in this talk

Continuous case: $X = \mathbb{R}^n$, T compact Hausdorff,

$$P (c, b) : \inf f(x) + \langle c, x \rangle$$

s. t. $g_t(x) \leq b_t$, $t \in T$,

- $(t, x) \mapsto g_t(x)$ continuous on $T \times \mathbb{R}^n$.
- In the linear case: $T \ni t \mapsto a_t \in \mathbb{R}^n$ continuous given func.
Parameter spaces in this talk

Continuous case: $X = \mathbb{R}^n$, T compact Hausdorff,

$$P(c, b) : \quad \inf f(x) + \langle c, x \rangle$$
$$\text{s. t. } g_t(x) \leq b_t, \ t \in T,$$

- $(t, x) \mapsto g_t(x)$ continuous on $T \times \mathbb{R}^n$.
- In the linear case: $T \ni t \mapsto a_t \in \mathbb{R}^n$ continuous given func.
- Parameter $(c, b) \in \mathbb{R}^n \times C(T, \mathbb{R})$,
 $$\|(c, b)\| = \max \{\|c\|, \|b\|\}, \quad \|b\| = \max_{t \in T} |b_t|.$$
Parameter spaces in this talk

Continuous case: \(X = \mathbb{R}^n, T \) compact Hausdorff,

\[
\begin{align*}
P (c, b) & : \quad \text{Inf} \ f (x) + \langle c, x \rangle \\
\text{s. t.} & \quad g_t (x) \leq b_t, \ t \in T,
\end{align*}
\]

- \((t, x) \mapsto g_t (x)\) continuous on \(T \times \mathbb{R}^n \).
- In the linear case: \(T \ni t \mapsto a_t \in \mathbb{R}^n \) continuous given func.
- Parameter \((c, b) \in \mathbb{R}^n \times C (T, \mathbb{R})\),

\[
\| (c, b) \| = \max \{ \| c \|, \| b \| \}, \quad \| b \| = \max_{t \in T} |b_t|.
\]

- Feasible/Optimal set mapping, \(\mathcal{F} : C (T, \mathbb{R}) \Rightarrow \mathbb{R}^n \), \(S : \mathbb{R}^n \times C (T, \mathbb{R}) \Rightarrow \mathbb{R}^n \),

\[
\mathcal{F} (b) := \{ x \in \mathbb{R}^n : g_t (x) \leq b_t, \ \text{for all} \ t \in T \}.
\]

\[
S (c, b) := \arg \min \{ f (x) + \langle c, x \rangle, \ x \in \mathcal{F} (b) \}.
\]
General case: X arbitrary Banach, T arbitrary
Parameterized convex infinite inequality system

$$\sigma(p) := \{g_t(x) \leq p_t, \ t \in T\},$$
General case: X arbitrary Banach, T arbitrary
Parameterized convex infinite inequality system

$$\sigma(p) := \{g_t(x) \leq p_t, \ t \in T\},$$

- $g_t: X \to \mathbb{R} \cup \{\infty\}, \ t \in T$, are proper lsc convex functs.,
General case: X arbitrary Banach, T arbitrary
Parameterized convex infinite inequality system

$$
\sigma(p) := \{g_t(x) \leq p_t, \ t \in T\},
$$

- $g_t : X \to \mathbb{R} \cup \{\infty\}, \ t \in T$, are proper lsc convex functs.,
- No assumption on $t \mapsto g_t(x)$.
General case: X arbitrary Banach, T arbitrary

Parameterized convex infinite inequality system

$$
\sigma(p) := \left\{ g_t(x) \leq p_t, \ t \in T \right\},
$$

- $g_t : X \to \mathbb{R} \cup \{\infty\}, \ t \in T$, are proper lsc convex functs.,
- No assumption on $t \mapsto g_t(x)$.
- In the linear case, $g_t(x) = \langle a^*_t, x \rangle - b_t$, with $\{(a^*_t, b_t)\}_{t \in T}$ arbitrarily given set in $X^* \times \mathbb{R}$.
General case: X arbitrary Banach, T arbitrary

Parameterized convex infinite inequality system

$$
\sigma(p) := \{ g_t(x) \leq p_t, t \in T \},
$$

- $g_t : X \rightarrow \mathbb{R} \cup \{\infty\}, t \in T$, are proper lsc convex functs.,
- No assumption on $t \mapsto g_t(x)$.
- In the linear case, $g_t(x) = \langle a_t^*, x \rangle - b_t$, with $\{(a_t^*, b_t)\}_{t \in T}$ arbitrarily given set in $X^* \times \mathbb{R}$.
- Parameter $p = (p_t)_{t \in T} \in l_\infty(T)$, $\|p\| = \sup_{t \in T} |p_t|$.
General case: X arbitrary Banach, T arbitrary
Parameterized convex infinite inequality system

$$\sigma(p) := \{g_t(x) \leq p_t, \, t \in T\},$$

- $g_t : X \to \mathbb{IR} \cup \{\infty\}, \, t \in T$, are proper lsc convex functs.,
- No assumption on $t \mapsto g_t(x)$.
- In the linear case, $g_t(x) = \langle a_t^*, x \rangle - b_t$, with $\{(a_t^*, b_t)\}_{t \in T}$ arbitrarily given set in $X^* \times \mathbb{R}$.
- Parameter $p = (p_t)_{t \in T} \in l_{\infty}(T)$, $\|p\| = \sup_{t \in T}|p_t|$.
- Feasible set mapping, $\mathcal{F} : l_{\infty}(T) \rightrightarrows X$,

$$\mathcal{F}(p) := \{x \in X : g_t(x) \leq p_t, \, \text{for all } t \in T\}.$$
1.2. Stability criteria and direct antecedents

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lsc) and/or (usc) of (F) (feasible set map.) and (S) (optimal set map.)</td>
<td>(X = \mathbb{R}^n)</td>
<td>(X) arbitrary</td>
</tr>
<tr>
<td>(lsc) and/or (usc) of (F)</td>
<td>(\text{Bro}(84), \text{Fis}(83), \text{GoLoTo} (96,97))</td>
<td>(\text{DiGoLo} (08))</td>
</tr>
<tr>
<td>(\text{GoLo} (98))</td>
<td>(\text{CaLoPaTo} (99))</td>
<td>(\text{CaLoPa}(02))</td>
</tr>
<tr>
<td>(\text{DiGoLo} (08))</td>
<td>(\text{CaDoLoPa} (05))</td>
<td>(\text{CaMoLoPa,I} (09))</td>
</tr>
<tr>
<td>(\text{CaGoPa} (09))</td>
<td>(\text{CaKlaLoPa} (07))</td>
<td>(\text{CaMoLoPa,I-II} (09))</td>
</tr>
<tr>
<td>(\text{CaGoPa} (08))</td>
<td>(\text{CaKlaLoPa} (07))</td>
<td>(\text{CaMoLoPa,I-II} (09))</td>
</tr>
</tbody>
</table>

2. SIOPT 18, 717-732
3. SVAN 16, 511-538
4. Submitted
Definition

Let X, Y be metric spaces. $M : X \ni \Rightarrow Y$ is **Lipschitz-like** (Aubin, pseudo-Lipschitz) at $(\Rightarrow around) \ (\bar{x}, \bar{y}) \in \text{gph}M$ if $\exists U$ neigh. of \bar{x}, $\exists V$ neigh. of \bar{y}, $\exists \kappa \geq 0$ s.t.

$$d \left(y, M \left(x \right) \right) \leq \kappa d \left(x, x' \right) \ \forall x, x' \in U, \ \forall y \in M \left(x' \right) \cap V.$$
Definition

X, Y metric spaces. $M : X \rightrightarrows Y$ is Lipschitz-like (Aubin, pseudo-Lipschitz) at (around) $(\bar{x}, \bar{y}) \in \text{gph} M$ if $\exists U$ neigh. of \bar{x}, $\exists V$ neigh. of \bar{y}, $\exists \kappa \geq 0$ s.t.

$$d(y, M(x)) \leq \kappa d(x, x') \ \forall x, x' \in U, \forall y \in M(x') \cap V.$$

$\text{lip} M(\bar{x}, \bar{y})$, the exact Lipschitzian bound of M at (\bar{x}, \bar{y}), is the infimum of such a κ's.
Definition

X, Y metric spaces. $\mathcal{M} : X \nrightarrow Y$ is Lipschitz-like (Aubin, pseudo-Lipschitz) at $(\Rightarrow \text{around})$ $(\bar{x}, \bar{y}) \in \text{gph} \mathcal{M}$ if $\exists U$ neigh. of \bar{x}, $\exists V$ neigh. of \bar{y}, $\exists \kappa \geq 0$ s.t.

$$d(y, \mathcal{M}(x)) \leq \kappa d(x, x') \ \forall x, x' \in U, \forall y \in \mathcal{M}(x') \cap V.$$

$\text{lip } \mathcal{M}(\bar{x}, \bar{y})$, the exact Lipschitzian bound of \mathcal{M} at (\bar{x}, \bar{y}), is the infimum of such a κ's.
Definition (see Mordukhovich (2006))

X, Y Banach spaces, $\mathcal{M} : X \rightrightarrows Y$. The **coderivative** of \mathcal{M} at $(\bar{x}, \bar{y}) \in \text{gph}\mathcal{M}$, $D^*\mathcal{M}(\bar{x}, \bar{y}) : Y^* \rightrightarrows X^*$ is given by

$$D^*\mathcal{M}(\bar{x}, \bar{y})(y^*) := \left\{ x^* \in X^* \mid (x^*, -y^*) \in N((\bar{x}, \bar{y}); \text{gph}\mathcal{M}) \right\},$$

where $N(\cdot; \Omega)$ is the basic, or limiting, or Mordukhovich normal cone (the usual normal cone of convex analysis if $\text{gph}\mathcal{M}$ is locally convex around (\bar{x}, \bar{y})).
Definition (see Mordukhovich (2006))

Let X, Y be Banach spaces, $\mathcal{M} : X \rightrightarrows Y$. The coderivative of \mathcal{M} at $(\bar{x},\bar{y}) \in \text{gph}\mathcal{M}$, $D^*\mathcal{M}(\bar{x},\bar{y}) : Y^* \rightrightarrows X^*$ is given by

$$D^*\mathcal{M}(\bar{x},\bar{y})(y^*) := \{x^* \in X^* | (x^*, -y^*) \in N((\bar{x},\bar{y}); \text{gph}\mathcal{M})\},$$

where $N(\cdot; \Omega)$ is the basic, or limiting, or Mordukhovich normal cone (the usual normal cone of convex analysis if $\text{gph}\mathcal{M}$ is locally convex around (\bar{x},\bar{y})).

Illustration in finite dimension:

- $Y = Y^*$
- $(x^*, -y^*)$
- \mathcal{M}
- $X = X^*$
Example (Coderivatives of smooth functions in \mathbb{R}^n)

The coderivative of a smooth (single-valued) function $F : \mathbb{R}^n \to \mathbb{R}^m$, $D^* F (\bar{x}, \bar{y}) : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$, is given by

$$D^* F (\bar{x}, \bar{y}) (y) = \nabla F (\bar{x})^* y, \text{ for all } y \in \mathbb{R}^m,$$

where $\nabla F (\bar{x})^*$ represents the adjoint (transpose) of the Jacobian.
Theorem (Mordukhovich (1993))

Let X and Y be finite-dimensional Banach spaces, and $M : X \rightrightarrows Y$ closed-graph mapping. Then M is Lipschitz-like at $(\bar{x}, \bar{y}) \in \text{gph} M$ if and only if

$$D^* M(\bar{x}, \bar{y})(0) = \{0\}.$$

Moreover

$$\text{lip } M(\bar{x}, \bar{y}) = \|D^* M(\bar{x}, \bar{y})\|,$$

where

$$\|D^* M(\bar{x}, \bar{y})\| := \sup \left\{ \|x^*\| \mid x^* \in D^* M(\bar{x}, \bar{y})(y^*), \|y^*\| \leq 1 \right\}.$$
The situation is more involved in an infinite dimensional setting;
The situation is more involved in an infinite dimensional setting;

See [Mordukhovich (2006), Th. 4.10] for the infinite dimensional counterpart, assuming that X and Y are Asplund spaces;
The situation is more involved in an infinite dimensional setting;

See [Mordukhovich (2006), Th. 4.10] for the infinite dimensional counterpart, assuming that X and Y are Asplund spaces;

Recall that we consider the feasible set mapping

$\mathcal{F} : l_\infty (T) \rightrightarrows X,$

$$\mathcal{F} (p) := \{ x \in X \mid \langle a_t^*, x \rangle \leq b_t + p_t , t \in T \} ;$$
The situation is more involved in an infinite dimensional setting;

See [Mordukhovich (2006), Th. 4.10] for the infinite dimensional counterpart, assuming that X and Y are Asplund spaces;

Recall that we consider the feasible set mapping
\[\mathcal{F} : l_\infty(T) \rightrightarrows X, \]
\[\mathcal{F}(p) := \{ x \in X \mid \langle a_t^*, x \rangle \leq b_t + p_t, \ t \in T \}; \]

Observe that if T is infinite, $l_\infty(T)$ is never Asplund.
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a sufficient condition for the Lipschitz-like property of S in continuous CSIP
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a **sufficient condition** for the **Lipschitz-like** property of S in *continuous CSIP* (**characterization in continuous LSIP**)
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a sufficient condition for the Lipschitz-like property of S in continuous CSIP (characterization in continuous LSIP)
- Determine $D^* F (\bar{p}, \bar{x})$ and $\|D^* F (\bar{p}, \bar{x})\|$ in LIP
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a **sufficient condition** for the **Lipschitz-like property** of S in **continuous CSIP** (characterization in continuous LSIP)
- Determine $D^* \mathcal{F}(\bar{p}, \bar{x})$ and $\|D^* \mathcal{F}(\bar{p}, \bar{x})\|$ in LIP
- Determine $\text{lip} \mathcal{F}(\bar{p}, \bar{x})$ in LIP.
1.3. Main goals

In terms of the nominal elements \(\bar{x} \) and \(\bar{p} \), not involving points and parameters in a neighborhood, we:

- Give a **sufficient condition** for the **Lipschitz-like property** of \(S \) in **continuous CSIP** (**characterization in continuous LSIP**)
- Determine \(D^* F (\bar{p}, \bar{x}) \) and \(||D^* F (\bar{p}, \bar{x})|| \) in LIP
- Determine \(\text{lip} F (\bar{p}, \bar{x}) \) in LIP.
- To answer the questions:
1.3. Main goals

In terms of the nominal elements \(\bar{x} \) and \(\bar{p} \), not involving points and parameters in a neighborhood, we:

- Give a sufficient condition for the Lipschitz-like property of \(S \) in continuous CSIP (characterization in continuous LSIP)
- Determine \(D^* F (\bar{p}, \bar{x}) \) and \(\| D^* F (\bar{p}, \bar{x}) \| \) in LIP
- Determine \(\text{lip} \ F (\bar{p}, \bar{x}) \) in LIP.
- To answer the questions:

\[F \text{ Lipschitz-like at } (\bar{p}, \bar{x}) \iff D^* F (\bar{p}, \bar{x}) (0) = \{0\} \]
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a sufficient condition for the Lipschitz-like property of S in continuous CSIP (characterization in continuous LSIP)
- Determine $D^* F (\bar{p}, \bar{x})$ and $\|D^* F (\bar{p}, \bar{x})\|$ in LIP
- Determine $\text{lip } F (\bar{p}, \bar{x})$ in LIP.
- To answer the questions:

 F Lipschitz-like at $(\bar{p}, \bar{x}) \Leftrightarrow D^* F (\bar{p}, \bar{x}) (0) = \{0\}$?

 $\text{lip } F (\bar{p}, \bar{x}) = \|D^* F (\bar{p}, \bar{x})\|$?
1.3. Main goals

In terms of the nominal elements \bar{x} and \bar{p}, not involving points and parameters in a neighborhood, we:

- Give a sufficient condition for the Lipschitz-like property of S in continuous CSIP (characterization in continuous LSIP)
- Determine $D^* F (\bar{p}, \bar{x})$ and $\|D^* F (\bar{p}, \bar{x})\|$ in LIP
- Determine $\text{lip} F (\bar{p}, \bar{x})$ in LIP.
- To answer the questions:

$$F \text{ Lipschitz-like at } (\bar{p}, \bar{x}) \Leftrightarrow D^* F (\bar{p}, \bar{x}) (0) = \{0\}?$$

$$\text{lip} F (\bar{p}, \bar{x}) = \|D^* F (\bar{p}, \bar{x})\|?$$
1.4. Preliminary results

Lemma (extended Farkas lemma, [Dinh,Goberna, López (2006)])

Let $p \in \text{dom} \mathcal{F}$, and let $(x^*, \alpha) \in X^* \times \mathbb{R}$. The following are equivalent:

(i) The inequality $\langle x^*, x \rangle \leq \alpha$ is a consequence of $\mathcal{F}(p)$, i.e.,

$$[\langle a^*_t, x \rangle \leq b_t + p_t \text{ for all } t \in T] \implies [\langle x^*, x \rangle \leq \alpha].$$

(ii) The pair (x^*, α) satisfies the inclusion

$$(x^*, \alpha) \in \text{cl}^* \text{cone} \{ (a^*_t, b_t + p_t) \mid t \in T \} \cup \{ (0,1) \}, \text{ with } 0 \in X^*.$$
Lemma (Dinh, Goberna, López (2008))

Let \(p \in \text{dom} \mathcal{F} \). Then the following properties are equivalent:

(i) \(\mathcal{F} \) is Lipschitz-like at \((p, x) \) for all \(x \in \mathcal{F}(p) \);
Lemma (Dinh, Goberna, López (2008))

Let \(p \in \text{dom} \mathcal{F} \). Then the following properties are equivalent:

(i) \(\mathcal{F} \) is Lipschitz-like at \((p, x)\) for all \(x \in \mathcal{F}(p) \);

(ii) \((0, 0) \notin \text{cl}^* \mathcal{C}(p)\), where

\[
\mathcal{C}(p) := \text{co}\{(a_t^*, b_t + p_t) \mid t \in T\};
\]
Lemma (Dinh, Goberna, López (2008))

Let \(p \in \text{dom} \mathcal{F} \). Then the following properties are equivalent:

(i) \(\mathcal{F} \) is Lipschitz-like at \((p, x)\) for all \(x \in \mathcal{F}(p)\);

(ii) \((0, 0) \notin \text{cl}^* \mathcal{C}(p)\), where

\[
\mathcal{C}(p) := \text{co}\{(a_t^*, b_t + p_t) \mid t \in T\};
\]

(iii) \(p \in \text{int}(\text{dom}\mathcal{F}) \);

(iv) \(\mathcal{F} \) satisfies the strong Slater condition (SSC) at \(p \)
(i.e., \(\exists \hat{x} \in X \mid \sup_{t \in T} [\langle a_t^*, \hat{x} \rangle - b_t - p_t] < 0 \)).
2.1 Lipschitz-like property of S. A motivating example:
Nominal problem:

$$
\pi : \quad \inf x_1 \\
\text{s.t.} \quad -x_1 + x_2 \leq 0, \quad -x_1 - x_2 \leq 0, \quad -x_1 \leq 0.
$$

Perturbed problems:

$$
\pi_r (\pi'_r) : \quad \inf x_1 \pm (1/r^2)x_2 \\
\text{s.t.} \quad -x_1 + x_2 \leq 0, \quad -x_1 - x_2 \leq 0, \quad -x_1 \leq -1/r.
$$
2.1. Lipschitz-like property of S in LSIP/CSIP

$S ((1,0),(0,0,0))$

$S ((1,1/r^2),(0,0,1/r))$

$S ((1,-1/r^2),(0,0,1/r))$

$S ((1,0),(0,0,0))$

$S ((1,1/r^2),(0,0,1/r))$

$S ((1,-1/r^2),(0,0,1/r))$
A Karush-Kuhn-Tucker (KKT) type condition

- Set of active indices: $T_b(x) := \{ t \in T \mid \langle a_t, x \rangle = b_t \}$
A Karush-Kuhn-Tucker (KKT) type condition

- Set of active indices: $T_b(x) := \{ t \in T \mid \langle a_t, x \rangle = b_t \}$
- $A_b(x) := \text{cone}(\{a_t, t \in T_b(x)\})$ (conical convex hull)
A Karush-Kuhn-Tucker (KKT) type condition

- Set of active indices: $T_b (x) := \{ t \in T \mid \langle a_t, x \rangle = b_t \}$
- $A_b (x) := cone (\{ a_t, t \in T_b (x) \})$ (conical convex hull)
- KKT optimality condition (see Goberna and López (1998)):
A Karush-Kuhn-Tucker (KKT) type condition

- Set of active indices: $T_b(x) := \{ t \in T \mid \langle a_t, x \rangle = b_t \}$
- $A_b(x) := \text{cone}(\{a_t, t \in T_b(x)\})$ (conical convex hull)
- KKT optimality condition (see Goberna and López (1998)):

$$x \in \mathcal{F}(b) \text{ and } -c \in A_b(x) \quad \Rightarrow \quad x \in S(c, b)$$

Definition

The *Nürnberger condition* (NC) is satisfied at $(\bar{\pi}, \bar{x}) \in \text{gph}(S)$ if

SSC holds at \bar{b} and there is no $D \subset T_{\bar{b}}(\bar{x})$

with $|D| < n$ such that $-\bar{c} \in \text{cone}(\{a_t, t \in D\})$.
2.1. Lipschitz-like property of S in LSIP/CSIP

Theorem (see [CKLP07, Th. 16])

Let $(c, b), x) \in 2 gph(S).$ The following conditions are equivalent:

(i) S is Lipschitz-like at $(c, b), x);$
(ii) NC is satisfied at $(c, b), x) 2 gph(S).$

Exa. S not Lips.-like at $((c, b), x), \text{not NC}$

Exa. S Lips.-like at $((c, b), x, \text{NC}$

$x = (0, 0), b = (0, 0, 0), T_b(x) = \{1, 2, 3\}$

$-c = (1, 0) \in \text{cone}\{a_3\}$

$t = 3$

$t = 1$

$t = 2$

$F((0, 0, 0))$

$T_b(x) = \{1, 2, 3\}, c = (1, 1/2)$

$-c \notin \text{cone}\{a_1\} \cup \text{cone}\{a_2\} \cup \text{cone}\{a_3\}$
Exa. S not Lips.-like at $((c, b), x)$, not NC

Exa. S Lips.-like at $((c, b), x)$, NC

Theorem (see [CKLP07, Th. 16])

Let $((\bar{c}, \bar{b}), \bar{x}) \in \text{gph}(S)$. The following conditions are equivalent:

(i) S is Lipschitz-like at $((\bar{c}, \bar{b}), \bar{x})$;

(ii) NC is satisfied at $((\bar{c}, \bar{b}), \bar{x}) \in \text{gph}(S)$
Lipschitz-like property of S in CSIP

We consider the parameterized convex optimization problem

\[P(c, b) : \inf f(x) + \langle c, x \rangle \]
\[\text{s. t. } g_t(x) \leq b_t, \ t \in T. \]
Lipschitz-like property of S in CSIP

We consider the parameterized convex optimization problem

$$P(c, b) : \inf f(x) + \langle c, x \rangle$$

s. t. $g_t(x) \leq b_t, \ t \in T.$

$x \in \mathbb{R}^n, T$ is a compact Hausdorff index set,
Lipschitz-like property of S in CSIP

We consider the parameterized convex optimization problem

$$P(c,b) : \inf f(x) + \langle c, x \rangle$$

s. t. $g_t(x) \leq b_t, \ t \in T.$

- $x \in \mathbb{R}^n, T$ is a compact Hausdorff index set,
- $f : \mathbb{R}^n \to \mathbb{R}$ and $g_t : \mathbb{R}^n \to \mathbb{R}, t \in T,$ are convex functions,
- $(t,x) \mapsto g_t(x)$ is continuous on $T \times \mathbb{R}^n.$
Lipschitz-like property of S in CSIP

We consider the parameterized convex optimization problem

$$P(c,b) : \inf f(x) + \langle c, x \rangle$$

s. t. $g_t(x) \leq b_t, \; t \in T.$

- $x \in \mathbb{R}^n, T$ is a compact Hausdorff index set,
- $f : \mathbb{R}^n \to \mathbb{R}$ and $g_t : \mathbb{R}^n \to \mathbb{R}, t \in T,$ are convex functions,
- $(t,x) \mapsto g_t(x)$ is continuous on $T \times \mathbb{R}^n.$
- Parameter: $(c,b) \in \mathbb{R}^n \times C(T, \mathbb{R})$ (canonical perturbations)
Definition ([CKLP06])

Extended Nürnberger Condition, ENC at \(((\bar{c}, \bar{b}), \bar{x}) \in \text{gph}S:\)

\[
\text{SSC} \ (\exists \hat{x} \in \mathbb{R}^n \ | \ g_t(\hat{x}) < \bar{b}_t, \ t \in T) \ \text{and there is no} \ D \subset T_{\bar{b}}(\bar{x}) \\
\text{with} \ |D| < n \ \text{such that} \ (\bar{c} + \partial f(\bar{x})) \cap \text{cone}(\bigcup_{t \in D} (-\partial g_t(\bar{x}))) \neq \emptyset,
\]

where \(T_{\bar{b}}(\bar{x}) := \left\{ t \in T \ | \ g_t(\bar{x}) = \bar{b}_t \right\} \) (set of active indices).

KKT conditions: \((\bar{c} + \partial f(\bar{x})) \cap \text{cone}(\bigcup_{t \in D} (-\partial g_t(\bar{x}))) \neq \emptyset\).
Definition ([CKLP06])

Extended Nürnberger Condition, ENC at \(\left(\left(\bar{c}, \bar{b} \right), \bar{x} \right) \in \text{gph}S \):

\[
\text{SSC} \left(\exists \hat{x} \in \mathbb{R}^n \mid g_t(\hat{x}) < \bar{b}_t, \ t \in T \right) \text{ and there is no } D \subset T_{\bar{b}}(\bar{x}) \text{ with } |D| < n \text{ such that } (\bar{c} + \partial f(\bar{x})) \cap \text{cone} \left(\bigcup_{t \in D} (-\partial g_t(\bar{x})) \right) \neq \emptyset,
\]

where \(T_{\bar{b}}(\bar{x}) := \left\{ t \in T \mid g_t(\bar{x}) = \bar{b}_t \right\} \) (set of active indices).

KKT conditions: \((\bar{c} + \partial f(\bar{x})) \cap \text{cone} \left(\bigcup_{t \in T_{\bar{b}}(\bar{x})} (-\partial g_t(\bar{x})) \right) \neq \emptyset. \)
2.1. Lipschitz-like property of \(S \) in LSIP/CSIP

\[\text{ENC \ at} \quad (\bar{c}, \bar{b}, \bar{x}) \in \text{gph} S \quad \Rightarrow \quad (\bar{c}, \bar{b}) \in \text{int} \left\{ (c, b) \mid P(c, b) \text{ has a strongly unique min.} \right\} \]

\(S \) is single valued and Lipschitz in a neighb. of \((\bar{c}, \bar{b}) \)

\(S \) is single valued and continuous in a neighborhood of \((\bar{c}, \bar{b}) \)

\(S \) is strongly Lipschitz stable

\(\Downarrow \quad \Uparrow \)

All conditions are equivalent in the linear case
On the exact Lipschitzian bound of S in LSIP/CSIP. Some references.

3. Coderivatives and Lipschitz-like in LIP/CIP

3.1. Coderivative analysis in LIP

Let us consider $\mathcal{F} : l_{\infty}(T) \rightrightarrows X,$

$$\mathcal{F}(p) := \{x \in X \mid \langle a^*_t, x \rangle \leq b_t + p_t, \ t \in T\}.$$
3. Coderivatives and Lipschitz-like in LIP/CIP

3.1. Coderivative analysis in LIP

Let us consider \(F : l_\infty (T) \rightrightarrows X, \)

\[F (p) := \{ x \in X \mid \langle a_t^*, x \rangle \leq b_t + p_t, \ t \in T \}. \]

Without loss of generality the stability analysis will be made at \(p = 0. \)
3. Coderivatives and Lipschitz-like in LIP/CIP

3.1. Coderivative analysis in LIP

Let us consider $\mathcal{F}: l_\infty (T) \rightrightarrows X,$

$$\mathcal{F} (p) := \{ x \in X \mid \langle a_t^*, x \rangle \leq b_t + p_t , \; t \in T \} .$$

Without loss of generality the stability analysis will be made at $p = 0$. \mathcal{F} has a closed and convex graph.

Definition

The **coderivative** of \mathcal{F} at $(0, \bar{x})$, $D^* \mathcal{F} (0, \bar{x}) : X^* \rightrightarrows (l_\infty (T))^*$, is given by

$$D^* \mathcal{F} (0, \bar{x}) (x^*) := \{ p^* \in (l_\infty (T))^* \mid (p^*, -x^*) \in N ((0, \bar{x}) ; \text{gph} \mathcal{F}) \} .$$
• \(N ((0, \bar{x}) ; \text{gph} \mathcal{F}) \) is the normal cone (of convex analysis) to \(\text{gph} \mathcal{F} \) at \((0, \bar{x}) \).
- $N((0, x); \text{gph} \mathcal{F})$ is the normal cone (of convex analysis) to $\text{gph} \mathcal{F}$ at $(0, x)$.
- Specifically, for $(p^*, x^*) \in (l_\infty(T))^* \times X^*$,

\[
(p^*, x^*) \in N((0, x); \text{gph} \mathcal{F}) \iff \left\{ \langle (p^*, x^*), (p, x) - (0, x) \rangle \leq 0, \right. \\
\left. \text{for all } (p, x) \in \text{gph} \mathcal{F}. \right\}
\]
Remark: gph\(F\) may be seen as the feasible set of the linear inequality system \(\{\langle a_t^*, x \rangle \leq b_t + p_t, t \in T \}\) with respect to the variable \((p, x) \in l_\infty(T) \times X\), which may be rewritten as

\[
\{\langle -\delta_t, p \rangle + \langle a_t^*, x \rangle \leq b_t, t \in T \},
\]

where \(\delta_t \in l_\infty(T)^*\) is the classical Dirac measure at \(t\).
Via the extended Farkas Lemma:

Proposition (computing the normal cone)

Let \((0, \bar{x}) \in \text{gph} \mathcal{F}\), and let \((p^*, x^*) \in l_\infty(T)^* \times X^*\). Then we have \((p^*, x^*) \in N((0, \bar{x}); \text{gph} \mathcal{F})\) if and only if

\[
(p^*, x^*, \langle x^*, \bar{x} \rangle) \in \text{cl}^* \text{cone} \left[\{ (-\delta_t, a^*_t, b_t) \mid t \in T \} \cup \{ (0, 0, 1) \} \right],
\]

where \(\delta_t\) denotes the classical **Dirac measure** at \(t \in T\) satisfying \(\langle \delta_t, p \rangle = p_t, \ t \in T\) for \(p = (p_t)_{t \in T} \in l_\infty(T)\).
Via the extended Farkas Lemma:

Proposition (computing the normal cone)

Let \((0, \bar{x}) \in \text{gph} F\), and let \((p^*, x^*) \in l_\infty(T)^* \times X^*.\) Then we have \((p^*, x^*) \in N((0, \bar{x}); \text{gph} F)\) if and only if

\[
(p^*, x^*, \langle x^*, \bar{x} \rangle) \in \text{cl}^* \text{cone} \left[\{(-\delta_t, a_t^*, b_t) \mid t \in T\} \cup \{(0,0,1)\} \right],
\]

where \(\delta_t\) denotes the classical Dirac measure at \(t \in T\) satisfying \(\langle \delta_t, p \rangle = p_t, \ t \in T\) for \(p = (p_t)_{t \in T} \in l_\infty(T)\).

Theorem (coderivative of the feasible solution map)

Let \(\bar{x} \in F(0)\). Then \(p^* \in D^* F(0, \bar{x})(x^*)\) if and only if

\[
(p^*, -x^*, -\langle x^*, \bar{x} \rangle) \in \text{cl}^* \text{cone} \left\{(-\delta_t, a_t^*, b_t) \mid t \in T\right\}.
\]
Theorem (computing the coderivative norm)

Let $\bar{x} \in \mathcal{F}(0)$. Assume that SSC is satisfied for $p = 0$ and that $\{a_t^* \mid t \in T\}$ is bounded in X^*. One has:

(i) If \bar{x} is a SS point for $p = 0$, then $\|D^* \mathcal{F}(0, \bar{x})\| = 0$.

(ii) If \bar{x} is not a SS point for $p = 0$, then

$$\|D^* \mathcal{F}(0, \bar{x})\| = \max \left\{ \|x^*\|^{-1} \mid (x^*, \langle x^*, \bar{x} \rangle) \in \text{cl}^* C(0) \right\}$$

via the w^*-closure of the characteristic set

$$C(0) := \text{co} \left\{ (a_t^*, b_t) \mid t \in T \right\}.$$
3.2. Arbitrary Banach spaces of decision variables

Theorem (coderivative criterion for Lipschitz-like property)

Let $\bar{x} \in \mathcal{F}(0)$. Then \mathcal{F} **Lipschitz-like** at $(0, \bar{x})$ if and only if

$$D^* \mathcal{F}(0, \bar{x})(0) = \{0\}.$$
3.2. Arbitrary Banach spaces of decision variables

Theorem (coderivative criterion for Lipschitz-like property)

Let \(\bar{x} \in \mathcal{F}(0) \). Then \(\mathcal{F} \) **Lipschitz-like** at \((0, \bar{x})\) if and only if \(D^* \mathcal{F}(0, \bar{x})(0) = \{0\} \).

Theorem (computing the exact Lipschitzian bound)

Let \(\bar{x} \in \mathcal{F}(0) \), **SSC** hold at \(b = 0 \) and \(\{a_t^* \mid t \in T\} \) be bounded:

(i) If \(\bar{x} \) is a SS point for \(p = 0 \), then \(\text{lip} \mathcal{F}(0, \bar{x}) = 0 \).

(ii) If \(\bar{x} \) is not a SS point for \(p = 0 \), then

\[
\text{lip} \mathcal{F}(0, \bar{x}) = \|D^* \mathcal{F}(0, \bar{x})\| = \max \left\{ \|x^*\|^{-1} \mid (x^*, \langle x^*, \bar{x} \rangle) \in \text{cl}^* \mathcal{C}(0) \right\}.
\]

The assumption of boundedness can be removed if \(X \) is reflexive.
In the proof the following fact is used:
In the proof the following fact is used:

\[\text{lip } F (\bar{p}, \bar{x}) = \text{reg } F^{-1} (\bar{x} \mid \bar{p}) = \limsup_{(x,p) \to (\bar{x}, \bar{p})} \frac{d (x, F (p))}{d (p, F^{-1} (x))} \]

(Under the convention \(\frac{0}{0} = 0 \))

Lemma

Assume that SSC is satisfied for \(p = 0 \). Then for any \(x \in X \) and \(p \in l_\infty (T) \) we have the extended Ascoli formula

\[d(x, F (p)) = \max_{(x^*, \alpha) \in \text{cl}^* C(p)} \frac{[\langle x^*, x \rangle - \alpha]_+}{\|x^*\|} \]

If \(X \) is reflexive we can remove \(\text{cl}^* \) in the formula above, but replacing \(\max \) with \(\sup \).

Moreover, for any \(x \in X \) and \(p \in l_\infty (T) \),
Remark: For X arbitrary Banach, T arbitrary, and $\{a_t^* | t \in T\}$ bounded, the set
\[
S := \{x^* | (x^*, \langle x^*, \bar{x} \rangle) \in \text{cl}^* C(0)\}
\]
is non-empty and w^*-compact provided that \bar{x} is not a SS point for $p = 0$. Under SSC, $0 \notin S$, and then the (w^*)usc mapping $x \mapsto \|x^*\|^{-1}$ attains its maximum on S.

Remark: In the continuous case considered in CaDoLoPa05 (T compact Hausdorff, $X = \mathbb{R}^n$ and $t \mapsto (a_t^*, b_t)$ continuous on T, under SSC at $p = 0$,
\[
S = \text{co} \{ (a_t^*, b_t) : t \in T_0(\bar{x}) \},
\]
and, hence,
\[
\text{lip} \ F(0, \bar{x}) = \max \left\{ \|x^*\|^{-1} | x^* \in \text{co} \{ a_t^* : t \in T_0(\bar{x}) \} \right\}
\]
\[
= d(0, \text{co} \{ a_t^* : t \in T_0(\bar{x}) \})^{-1}.
\]
Basic bibliography

Linear semi-infinite programming

Convex analysis

Variational analysis

References

________, ________, II: Necessary optimality conditions, *submitted.*